ALGORITHMS AND COMPUTATIONS 1994

On Steiner Minimal Tree in Grid Graphs
and Its Application to VLSI Routing

. Michael Kaufmann?, Shaodi Gao?, K. Thulasiraman?

! Wilhelm-Schickard-Institut fir Informatik, Universitat Tiibigen,

Sand 13, 72076 Tiibingen, Germany :

? Department of. Electronic and Computer Engineering, Concordia University;
1455 De Maisonneuve Blvd. West, H3G 1M8, Montreal, Canada

* Abstract. In this paper we present an algorithm for Steiner minimal
trees in grid graphs with all terminals located on the boundary of the
graph. The algorithm runs in O(k? # min{k? log k, n}) time, where k and
n are the numbers of terminals and vertices of the graph, respectively. It .
can handle non-convex boundaries and is the fastest known for this case.
We also describe a new approach to the homotopic routing problem in
VLSl layout design, which applies oir Steiner tree algorithm to construct
minimum-length wires for multi-terminal nets. ' '

L]
.

1 Introduction

Given a set K of vertices, called terminals, in a graph G(V, E), the Steiner -
tree problem is to find a minimum-length tree that spans all vertices in K.
This minimum-length tree is called a Steiner minimal tree, while vertices with
degree >3 in the tree are called Steiner vertices. This problem has been exten- -

sively studied for many years because of its wide variety of applications, such

as communication networks and VLSI layout design. While the general problem
is known to be NP-complete [4], it can be solved in polynomial time when G is
planar and all terminals lie on one face of G. _

In this paper we first consider a special case of the Steiner tree problem in~
which (1) G(V, E) is a grid graph without holes, i.e., every finite face has exactly
four incident vertices, and (2) all terminals are located on the boundary of the
infinite face of G. For simplicity, we call it the boundary of G. This boundary is a
rectilinear polygon, which is allowed to be non-convex (cf. Fig. 1). We present a
Steiner tree algorithm that runs in O(k? *min{k?log k, n}) time, where k = |K| °
and n = |V]. Section 2 is a general description of the algorithm. Section 3 gives
the implementation of the algorithm and analyses its time complexity.

The Steiner tree problem in grid graphs is very important to formulate VLSI

- routing problems, where the routing area of a single net is often non-convex. The

previously known algorithms which can handle non-convex boudaries were given
by Provan [§] and by Erickson et al. [3]. Their time complexities are O(n2k?)
and O(nk® + (nlogn)k?), respectively. Richards and Salowe [9] developed an
O(kv*)-time algorithm, where v is the number of the boundary sides of the graph.
However, their algorithm can only handle grid graphs with convex boundaries.

-
1) T A d L]
[R T . .

I T T T T
[T B I H T
ot

A S S N N Lo .

I S I T T
SRS PR TN PR P PR SR FE A PR N S S .
[A R A R e A
1 1]]) 1 1 1]]

-a--r-a--r-q--r-a--F-d--b-a--
[T T T T T Voo
Fedo oL L sdecpoq-op-de-
[T Vo

I N R R T
P
to o

R IR L
Yo
! 1 1

Fig.1. An example of the Steiner tree problem in a grid graph with terminals (solid
dots) lying on the boundary.

In Section 4 we extend our result to construct a collection of Steiner minimal
trees in a grid graph, which is allowed to have holes. While terminals of the
Steiner trees may lie on the boundary of the graph as well as on those of the
holes, the topology of each tree is given. This problem is called homotopic routing
in VLSI layout design. The goal is to find vertex-disjoint Steiner minimal trees
for the given collection of terminal sets. Homotopic routing is first introduced
by Leiserson/Maley [6], but they only dealt with problems where each terminal
set has cardinality of 2. We present an efficient algorithm for terminal sets of
cardinality > 2 by using the Steiner tree algorithm described in Section 2 and
Section 3.

2 The Dynamic Programming Approach

Without loss of generality, we assume that the boundary of G is a simple polygon
P. The case in which the boundary is not a simple polygon can be solved by
partitioning G and then solving several simple-polygon instances. Since all ter-
minals are located on P, we can define an interval [u, v), for u,v € K, to be is the
set of terminals, including u but not v, visited by traversing P counterclockwise
from u to v. Intervals (u,v] and [u, v] are defined similarly.

The dynamic programming approach was proposed by Dreyfus and Wagner,
which they used to solve the Steiner tree problem in general graphs. The key
observation is that a Steiner minimal tree for K can be split at any of its vertices
v into two Steiner minimal trees for I U v and (K\I) U {v}. In the case that G
is a planar graph and all terminals lie on P, both I and K\I are intervals of K.

For each interval {a, b) of K and each vertex v of G, let C(v, [a, b)) represent
the length of a Steiner minimal tree, called a C-tree, for terminal set [a, b) U {v}.
Thus the length of a Steiner minimal tree for K is C(v, K\{v}), for any choice
v € K. For [a,)) of cardinality at least two, let B(v, [a, b)) represent the length
of a Steiner minimal tree for terminal set [a,) U {v} subject to the constraint
that v has degree > 2 in the tree. This tree is called a B-tree.

The computation of B(v, [a, b)) and C(v, [a, b)) proceeds in order of the car-
dinality of the interval [a,b). B(v,[a,b)) can be computed as the sum of the
lengths of two Steiner minimal trees for the subsets of [a,b) U {v}. That is

B(o,(a8) = min {C([02)+00[=8)} (O

The values of C(v, [a, b)) can be computed using the values of B(x, [a, b)) for »
alueV.

C(v, [a, b)) = Hg‘l}{B(ui [ax b)) + d(u, v)} (2)

where d(u,v) is the shortest-path distance between u and v in G. The initial
conditions are C(v,) = 0 and B(v,) = 0 for all v. At the end of the computation,
the length of a Steiner minimal tree will be C(v, K\{v}) for any v € K. The
tree itself can be recovered by retaining a record of the corresponding B- and
C-trees.

The number of B- and C-values to be computed is-of the same order as
the number of possible choices of vertices v € V and intervals I C K, which is
O(nk?). A simple-minded approach requires O(k) time for computing a B-value
and O(n) time for a C-value, which leads to a total running time of ((n+k)nk?).
In the following section we specialize the algorithm to the case of grid graphs
without holes and describe a more efficient way to compute the B- and C-values.

3 Computation of B- and C-values

3.1 Computation of B-values

For a given problem instance, there are normally more than one Steiner trees of
minimumlength. Let A represent the set of Steiner minimal trees for the terminal
set K in a grid graph G. We break ties in 4 by choosing trees with edges as far to
the “left” as possible. More exactly, we prefer trees in 4; = {A|A € 4,5 X (1) x
len(A N 1) is minimized}, where len(A N 1) is the length of the intersection of
tree A with vertical line /, and X(!) is the z-coordinate of I. The weighted sum
> X(I)xlen(AN) is called the leftness of tree A: Similarly, we define the topness
of tree A to be the weighted sum Y Y () X len(AN1), where [is a horizontal line, -
and Y(I) is the y-coordinate of {. We further break ties in A; by choosing trees
of the maximal topness: A3 = {A|X € 43, 3" Y () x len(A N1)is maximized}. The
following lemma is originally proven by Hanan [5], but our claim is stronger.

Lemmal. Let v be a vertez of degree > 2 in Steiner tree A € Az. Then each
straight-lined path in A which coniains v can reach the boundary of G and inter- .
sect at least one terminal.

Proof. Let € be the grid edge incident to v and p the longest straight-lined path
containing e. In the following we show if neither endpoint of p is a terminal, then
A is not in As.

: ___\C b
d / \ .
e v /
a
: f
Fig. 2,

Assume that p is a vertical line (the case of horizontal lines can be treated
similarly). We can transform tree) into another tree X’ by moving p to the left
or to the right while keeping the connections between p and the horizontal edges
that are incident to p in A. If p moves to the left (right), then the length of
every horizontal edge incident to p from the left (right) side of p increases by

. the same amount, while the length of every edge on the other side decreases by
the same amount. This is because p does not contain any terminal. If there are
more incident edges on the right side than on the left side, then we move p to
the right and get a tree A’ whose length is smaller than that of X. Otherwise,
we move p to the left to get a tree A’ whose length is not larger than that of A
but whose leftness is smaller than that of A. In both cases A does not have the
properties required by A,. : O

We call a B-tree for interval [a, b) and vertex v restricted if (1) there are two
straight-lined paths p, and p, in the subtree from v to two terminals y, z € [a,)

and (2) the corner formed by py and p, which faces interval [y, z] C [a,) is 90°
or 180°. From Lemma 1, we can obtain the following lemma.

Lemma2. Let A be a Steiner minimal tree in Ay. Then X and any of its subtrees
can be split into two subtrees at some vertex v € V N X such that if a subiree is
a B-tree, it is restricted.

According to the above lemma, we only need to consider all the restricted
B-trees in order to construct a Steiner minimal tree A € A;. In Fig. 2 the B-tree -
for interval [c, f] and vertex v is not restricted. But we can split the Steiner tree
"into a restricted B-tree for interval [a, d] and v and a C-tree for [e, f] and v. The
following lemma suggests a more efficient way to construct all restricted B-trees
for a vertex v € V.

Lemma3. Let A be a restricted B-tree for interval [a,b) and vertez v € V with
two straight-lined paths from v intersecting terminals y and 2. If the length of the
restricted B-iree for [y, z] and v satisfies the equation B(v,[y,2]) = C(v,[y,z))+
C(v,[=,2]), for some terminal z € [a,b), then the length of the restricted B-tree
for [a,b) can be obtained by B(v,[a,b)) = C(v, [a,z)) + C(v, [z, b)).

g
jed

| Proof. In the B-tree for [a,b), the two straight-lined paths from v completely

separate terminals in [y, 2] from those in [a, b)\[y, 2] (cf. Fig. 3). Only the termi-
nals in [y, z] determine the subtree that spans these terminals and v. Therefore
this subtree should be identical to the restricted B-tree for [y, z] and v. That
means both restricted B-trees have the same separating terminal z. a

Fig. 3. The computation of the B-value of {»,][a,b)}.

For each vertex v € V, there are up to six special intervals [y;, z;] with
terminals y; and 2z; having either the same z-coordinate or the same y-coordinate
as v. For each of these interval [y;, 2;] and v, we compute the restricted B-tree,
which produces a separating terminal z; € [y;,2;]. According to Lemma 3, a
restricted B-tree for v and an interval I C K can be constructed by choosing
one of these separating terminals.

During the computation of the B-tree for v and a special interval [y, 2],
we have to try all possible terminals in [y, z] to get the B-value B(v,[y,2]) =
minge(y,s){C(v, [y, 2)) + C(v, [z, 2])}. It takes O(k) time for finding the separat-
ing terminals regarding a vertex v € V, and O(kn) time for finding all separating
terminals. After that the computation of B(v,{a,b)) for a vertex v € V and an
interval [a, b) C K requires O(1) time, because we have to try at most six possi-
ble separating terminals. Therefore, the total running time for the computation
of B-values is (k?n). :

3.2 Computation of C-values

For this part of the algorithm, we follow the idea proposed by Erickson et al.
[3]. The computations of C(v,I) for different choices of vertex v € V, but for
the same choice of interval I will be carried out simultaneously. We direct the
grid graph by replacing each edge with a pair of directed arcs. We then augment

the graph with a fictitious source s and place an arc with cost B(u,I) from
5 to each vertex u € V. An algorithm for finding shortest paths from s ¢an
determine values C(v,I) = B(v,I) + d(u,v) for all choices of v. The shortest-

~_path algorithm requires O((|V| + |E|) x f time for graph G(V, E), where f
" is the time for updating a path length. If heaps are used as data structures,

then f = logn. Since all values of B(v,I) and C(v,I) do not exceed n in our
application, we simply use n buckets as the data structure with each bucket 3,

" 1 <£1i< n, containing vertices with value i. Then updating the value of a vertex

or fetching a vertex of minimum value takes O(1) time. Therefore it takes O(n)
time to compute all C-values for one interval and O(k%n) time for all intervals.

3.3 The overall time complexity

The time complexity of our Steiner tree algorithm is O(k?n) according to the
above analysis. In the case k2 < n, we can achieve even better result. Lemma 1
implies that by computing B- and C-values we only need to consider the vertices
v € V which have the same z- or y-coordinates as terminals in K. There are -
O(k?) vertices satisfying this condition. That means in the time analysis n can
be replaced by k2. Then the computation of B-values takes O(k%) time. By
computing C-values we have to use a heap as the data structure. The time
for all C-values for one interval is O(k?log k). Therefore we can also solve the
problem in O(k*logk) time in case k2 < n.

Lemmad4. If all terminals are located on the boundary of e grid graph without
holes, then the problem of finding a Steiner minimal tree in the graph can be
solved in time O(k? * min{k®logk,n}).

4 The Steiner Tree Algorithm in Homotopic Routing

In this section we apply the above described Steiner tree algorithm to construct
minimum-length interconnections for a collection of terminal sets in a grid graph.
In this case, the grid graph may contain holes, i.e., finite faces enclosed by more
than four grid edges. Terminals are located on the boundary of the graph as
well as on those of the holes. The interconnection topology for each terminal set
is given. This problem is called homotopic routing, which has found more and
more applications in VLSI layout design [1, 7].

" 4.1 Definitions and previous results

Formally, the problem of homotopic routing is given by a sketch S = (M, W)
which consists of a set M of modules, and a set W of nets. Modules represent
circuit components and each net define a set of terminals to be connected. The
topology of each net is given by a simple loop that connects all terminals of
the net. This loop may not cross or enclose any modules. Homotopic routing
transforms the loop of each net into a Steiner minimal tree in the routing graph

Fig. 4. Transforming a sketch of multi-terminal nets into a sketch of two-terminal nets.

G = (V, E) which can be obtained from the underlying rectilinear grid by remov-
ing all grid points and grid edges covered by the modules (cf. Fig. 4). In order
to maintain the topology of each net, any part of its loop may not be moved
over modules during the transformation. The Steiner trees for two different nets
must be vertex-disjoint.

Leiserson/Maley [6] proposed an efficient algorithm to solve the homotopic
routing problem for two-terminal nets. In the two-terminal case, the loop of each
net degenerates into a simple curve. The algorithm transforms these curves into
a set of vertex-disjoint paths in the routing graph. We summarize their results
in the following lemma.

Lemmab5. For the homotopic routing problem of two-terminal nets, the Leis-
erson/Maley algorithm can construct minimum-length solutions in O(n?logn)
time. '

4.2 The routing algorithm for multi-terminal nets

To solve the multi-terminal net problem, we first split each k-terminal net into
k two-terminal nets, which is called subnets of the k-terminal net. Then we
apply the Leiserson/Maley algorithm to find a solution for the modified problem.

- In the solution, the k two-terminal subnets of a k-terminal net define a grid

graph without holes. A Steiner minimal tree in this graph is a minimum-length
interconnection for these k terminals in the routing graph. Let S = (M, W)
be the input sketch of the homotopic routing problem, and G = (V, E) be the
underlying routing graph with |V| = n. The algorithm consists of the following
four steps. ‘

Step 1: Transform a sketch S with multi-terminal nets into a sketch S’ with
two-terminal nets. We first refine the routing graph G by inserting an additional
line between every two horizontal and vertical grid lines in G (cf. Fig. 4). Let the
resulting graph be G’. Each edge in G’ has half unit length. For each terminal,

Fig.5. (1) A detailed routing in G’. Grid edges in envelopes are omitted. (2) The
corresponding routing in G.

we create another terminal on the neighboring additional grid point along the
module boundary in G’. Then a k-terminal net will be split into k separated
two-terminal nets in S, which can be connected by edges on module boundaries
to form a ring. The resulting sketch S’ only contains two-terminal nets.

Step 2: We apply the Leiserson/Maley algorithm to S’ to find a detailed rout-
ing. In the solution, the two-terminal subnets of the same multi-terminal net
form a rectilinear polygon (cf. Fig. 5.1). This polygon is called the envelope of the
multi-terminal net. Envelopes of different multi-terminal nets are area-disjoint,
i.e., boundary edges of the envelopes do not cross each other and no envelope en-
closes any other envelope. This is because the routing algorithm for two-terminal
nets does not change the topology of S and it constructs vertex-disjoint paths.
In addition, envelopes in G’ are simple polygons, i.e., the boundary lines of the

same envelope do not touch each other except at the endpoints.

Step 3: Transform G’ back to G by deleting the additional grid lines. Accord-
ingly, we also shrink each envelope by moving every boundary line that'is on
an additional grid line to the next original grid line (cf. Fig. 5.2). After this
operation, every envelope remains connected and area-disjoint from each other,
because we shrink the envelopes during transforming G’ back to G.

Step 4: We partition G into disjoint subgraphs according to the envelops de-
termined by Step 3 and treat each subgraph separately. The envelope of a multi-
terminal net w encloses a connected subgraph G, of G, which will be used to
construct a minimum-length interconnection for w. Since Gy, does not contain
any modules, it is a grid graph without holes. All the terminals of w lie on
the boundary of G,,. Therefore we can find an interconnection for w by using

N

the Steiner tree algorithm described in Section 2. It takes O(k2n,,) time for w,
where k,, is the number of w’s terminals and n,, is the size of Gy.

It is easy to see that Step 1 and Step 3 can be executed in time O(n). In Step 2
the routing algorithm for two-terminal net requires O(n?logn) time according
to [6]. In Step 4 the Steiner tree algorithm needs kZn; time for each net w; of k;
terminals in subgraph G; of size n;. Therefore Step (D) takes O(k2n) time for
all the r nets with a total number £ of terminals.

Lemma6. The problem of homotopic planar routing for multi-terminal nets can
be solved in O(n?logn+k?n) time, where n is the size of the routing graph and k
is the number of terminals. In the solution, the length of every net is minimized.

5 Conclusion

‘We have presented an algorithm for finding Steiner minimal tree in grid graphs.
This algorithm can also handle non-convex boundaries, and is faster than the.
previously known algorithms for this case. We also apply the algorithm to con-
struct a collection of Steiner minimal trees for the homotopic routing problem.
Our results show that any Steiner tree problem in grid graphs can be solved in
polynomial time if the topology is given.

For the case that the boundary of a grid graph is convex, the algonthm by
Richards and Salowe [9] can be faster if the number boundary sides is much
smaller than the number of vertices of the graph. An obvious open question is
how to extend their techniques to the case of non-convex boundaries.

References

1. Dai, W. W., Dayan, T., Staepelaere, D.: Topological routing in SURF: Generat-
ing a rubber-band sketch Proceedings of the 28th Design Automation Conference
(1991) 39-44

2. Dreylus, S. E., Wagner, R. A.: The Steiner problem in graphs. Networks, 1 (1972)
196-207

3. Erickson, R.E., Monma., C. L., Veinott, A.F.: Send-and-split method for
minimum-cost network flows. Math. Oper. Res., 12 (1987) 634-664

4. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1979)

- 5. Hanan, M.: On Steiner’s problem w1th rectilinear distance. SIAM J. Appl. Math.,

14 (1966) 255-265

6. Leiserson, Ch., Maley, F. M.: Algorithms for routing and testing routability of
planar VLSI la.youts. Proceedings of the 17th Symposium on Theory of Computing
(1985) 69-78

7. Maley, F. M.: Compaction with automatic jog introduction. Proceedings of the 1985
Chapel Hill Conference on VLSI (1985) 261-284

8. Provan, J. S.: Convexity and the Steiner tree problem. Networks 18 (1988) 55-72

9. Richards, D. S., Salowe, J. S.: A linear-time algorithm to comstruct a rectilinear
Steiner tree for k-extremal points. Algorithmica, 7 (1992) 246-276

This article was processed using the IXTEX macro package with LLNCS style

