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Abstract

A new genetic algorithm for channel routing in
VLSI circuits is presented. Il is based on a random
path search in a laltice-like representation of the rout-
ing channel. The performance of the algorithm is
tested on different benchmarks and it is shown that
the results obtained using the proposed algorithm are
either qualitatively similar to or better than the best
published results.

1 Introduction

Channel routing of a VLSI circuit is the process
of connecting pins inside a channel subject to a set of
routing constraints. Its quality has a high influence on
the performance and production costs of the circuit.
The channel routing problem is NP-complete [1] and
therefore, there is no known deterministic algorithm
to solve it in a polynomial time. Hence, although dif-
ferent algorithms have been proposed over the years,
the problem of finding the globally optimized solution
for routing is still open.

New approaches are necessary to solve this prob-
lem. Such new approaches can be found in nature.
Genetic algorithms guarantee, for example, the best
fitness of an individual in its environment and thus,
can be used as a model for mathematical optimiza-
tion strategies.

To our knowledge, only three papers have been pub-
lished in which strategies derived from the concept of
genetic algorithms are applied to the channel rout-
ing problem [2, 3, 4]. In [2], a rip-up-and-rerouter
is presented which is based on a probabilistic rerout-
ing of nets of one routing structure. However, the
routing is done by a deterministic Lee algorithm [5]
and main components of genetic algorithms, such as
the crossover of different individuals, are not applied.
The router in [3] combines the so-called steepest de-
scent method with features of genetic algorithms. The
crossover operator, however, is restricted to the ex-
changing of entire nets and the mutation procedure
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performs only the creation of new initial individuals.
The proposed algorithm in [4] is limited to the restric-
tive channel routing problem. Here, all vertical net
segments are located on one layer and all horizontal
segments are placed on the other. Furthermore, the
so-called doglegs are not allowed, i.e. the horizontal
segments of each net must be placed on only one hor-
1zontal row.

We present in this paper a new genetic algorithm
for channel routing that is fundamentally different
from the above mentioned approaches. The algorithm
starts by performing a random path search to create
different routing solutions of the channel. These non-
optimized routing structures are seen as individuals of
an initial population. Based on certain quality factors,
these individuals are improved by genetic operators to
eventually present a globally optimized routing result.
It is shown that the resulting routing structures are
either qualitatively similar to or better than the best
results available in the literature.

2 Problem description

The channel routing problem is defined as follows.
Consider a rectangular routing region, called channel,
with a number of pins located either on the upper or
the lower boundary of the channel. The pins that be-
long to the same net have to be connected subject to
certain constraints and quality factors. The connec-
tion has to be made inside the channel on a symbolic
routing area consisting of horizontal rows and vertical
columns.

Three quality factors are used in this work to judge
the quality of the routing result:

e minimum routing area expressed as the number
of rows of the channel,

e net length and

e number of vias.
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3 Description of the algorithm

3.1 Survey

Genetic algorithms are optimization strategies that
imitate the biological evolution process [6]. A pop-
ulation of individuals representing different problem
solutions is subjected to genetic operators, such as, se-
lection, crossover and mutation that are derived from
the model of evolution. Using these operators the in-
dividuals are steadily improved over many generations
and eventually the best individual resulting from this
{)rocess is presented as the best solution to the prob-
em.

An overview of the genetic algorithm presented in
this paper is shown in Figure 1.

create initial population (P;)
fitness_calculation (P.)
Pbest = best_individual (P.)
for generation = 1 until maz_generation
Pn
for of fspring = 1 until maz_descendant
Pa = selection (P.)
pp = selection (P.)
Pn = Prn U crossover (pa, ps)
endfor
fitness_calculation (P,)
P. = reduction (P U Pn)
Pbest = best_individual (ppest U Pc)
mutation (P.)
fitness_calculation (P.)
endfor
optimize (ppest)

Figure 1: Outline of the algorithm.

3.2 Creation of an initial population

The initial population is constructed from ran-
domly created routing structures, i.e. individuals.

First, each of these individuals is assigned a random
initial row number y;ng.

Let S = {s1,...8i,...5t} be the set of all pins of
the channel which are not connected yet and let 7 =
{t1,...1j,..t;} be the set of all pins having at least
one connection to another pin. Initially 7 = 0. A
pin s; € § is chosen randomly among all elements in
S. If T contains pins {ly,...t;,...8,} (with 1 < u <
v < I) of the same net, a pin ¢; is randomly selected
among them. Otherwise a second pin of the same
net is randomly chosen from S and transferred into
T. Both pins (s;,;) are connected with a so-called
”random routing”. Then s; is transferred into 7. The
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process continues with the next random selection of
s; €S until S = 9.

The creation of the initial population is finished
when the number of completely routed channels is
equal to the population size |P.|. As a consequence
of our strategy, these initial individuals are quite dif-
ferent from each other and scattered all over the search
space.

3.3 Calculation of fitness

The fitness F(p) of each individual p € P is cal-
culated to assess the quality of its routing structure
relative to the rest of the population P. The selection
of the mates for crossover and the selection of individ-
uals which are transferred into the next generation are
based on these fitness values.

First, two functions Fy(p) and F3(p) are calculated
for each individual p € P according to equations (1)
and (2).

1
F(p)= (1)
Nyow
where n,on, = number of rows of p.

1

Fap) = 53 2

Z(la“(z’) + a*lopp(8)) + b * Ving

where lacc(§) = met length of net i of net segments
according to the preferred direction of the

layer,
lopp(i) = ngt length of net 3 of net segments opposite
to the preferred direction of the layer,
a = cost factor for the preferred direction,
%inda = number of nets of individual p,
¥ind = number of vias of individual p and
= cost factor for vias.

The final fitness F(p) is derived from Fi(p) and
F3(p) in such a way that the area minimization, i.e. the
number of rows, always predominates the net length
and the number of vias.

After the evaluation of F(p) for all individuals of
the population P these values are scaled linearly as
described in [6], in order to control the variance of the
fitness in the population.

3.4 Selection strategy

The selection strategy is responsible for choosing
the mates among the individuals of the population P..
According to the terminology of [6], our selection
strategy is actually stochastic sampling with replace-
ment. That means any individual p; € P, is selected
with a probability
F(pi)

> F(p)
PEP.
The two mates needed for one crossover are chosen

independently of each other. An individual may be
selected any number of times in the same generation.
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Figure 2: Crossover of (pa,pg) to py.

3.5 Crossover operator

During the crossover, two individuals are combined
to create a descendant. Let p, and ps be copies of the
mates and p, be their descendant (Figure 2 (a,b)).

First, a cut column z. is randomly selected with
1 < 2, < Zind, where z;,4 represents the number of
columns of the individuals.

The individual p, (pg) transfers the routing struc-
ture to py which is located to the left (right) of the cut
column z. and not touched by z. (see Figure 2 (c,d)).

Assume that the part of po (or pg) which has to
be transferred into p, contains rows not occupied by
any horizontal segments. Then the row number of p,
(or pg) is decremented by deleting this row until no
empty row is left.

The initial row number ying4, of p, is equal to the
maximum of (Yinda, Yinds). The mate which now con-
tains less rows than p, is extended with additional
row(s) at random position(s) before transfering its
routing structure to p,.

The routing of the remaining open connections in
py is done in a random order by our random routing
strategy (see Figure 2 (e,f)).

If the random routing of two points does not lead
to a connection within a certain number of extension
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lines, the extension lines are deleted and the channel is
extended at a random position yggq with 1 < yae4 <
Yindy- If the repeated extension of the channel also
does not enable a connection, p, is deleted entirely and
the crossover process starts again with a new random
cut column z. applied to p, and pg.

The crossover process of creating p, is finished with
deleting all rows in p, that are not used for any hori-
zontal routing segment.

3.6 Reduction strategy

Our reduction strategy simply chooses the |P.]
fittest individuals of (P, U Py) to survive as P, into
the next generation.

3.7 Mutation operator

Mutation operators perform random modifications
on an individual. The purpose is to overcome local
optima and to exploit new regions of the search space.

Our mutation operator works as follows. Define
a surrrounding rectangle with random sizes (zr, )
around a random centre position (z,y,z). All rout-
ing structures inside this rectangle are deleted. The
remaining net points on the edges of this rectangle
are now connected again in a random order with our
random routing strategy.

3.8 Optimization of the best individual

The best individual, pses¢, which has ever existed
throughout the evolution process undergoes an opti-
mization at the end of the algorithm. In this process
the mutation operator is applied sequentially t0 ppest-
Only improvements to pp.s¢ are accepted. The final
Phest constitutes the routing solution to our specific
channel routing problem.

4 Implementation and experimental
results

The algorithm has been implemented in FOR-
TRAN on a SPARC workstation. The approximate
size of our source code is 8000 lines.

The performance of the algorithm has been tested
on different benchmarks. The results obtained are pre-
sented in Table 1. They are compared with the best
known results from popular channel routers published
for these benchmarks.

In [10, Fig. 6-16], Joobbani was able to route a
channel which could not be routed by the Greedy
algorithm [11]. This was accomplished by using his
Weaver algorithm interactively and non-interactively.
As is evident from Table 1, our algorithm yields bet-
ter results than the Weaver algorithm even when the
latter is used interactively. Figure 3 shows our routing
solution.




[ Benchmark | System [Col. Rows Netlength Vias|

Yoshimura- | Yosh.-Kuh [9]| 12 5 75 21
Kuh Weaver [10] | 12 4 67 12
channel Monreale [3] | 12 4 72 11
Our work 12 4 70 11
Joo6.12 Weaver [10] 12 4 79 14
Packer [8] 12 4 82 18
Monreale {3] | 12 4 84 13
Our work 12 4 79 14
Joo6_13 Greedy [11] 18 8 194 38
Weaver [10] | 18 7 169 29
Silk [2] 18 6 171 28
Packer (8] 18 6 167 25
Our work 18 6 165 25
Joo6_16 Weaver [10] 11 8 131 23
Weaver® {10] | 11 7 121 21
Monreale [3] | 11 7 120 19
Our work 11 6 116 15
Burstein’s | Mighty 7] 13* 4 83 8
difficult Packer [8] 12 4 82 10
channel Monreale [3] | 12 4 82 10
Our work 12 4 82 8

% interactively
b empty column in the middle of the channel

Table 1: Benchmark results.

The routing results of the benchmarks are obtained
by a single execution of the algorithm using an arbi-
trary initialization of the random number generator.
No nets are prerouted and the number of layers is al-
ways defined as 2. The values of the most important
parameters are as follows:

A = 50

maz._descendant = 30

maz_generation = 150

a = 1.01 (Equation (2
= 2.00 (Equation (2

b
Mutation probability = 0.001

The same parameter setting is used for all bench-
marks.

1 618 27335547

I T
g ' L

3 _l;
T i1t
i

25 47 5414386

Figure 3: Our routing solution of Joo6_16.
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The CPU-times of the current implementation for
the benchmarks are:

Yoshimura-Kuh channel 5.6 min
Joo6._ 13.4 min
Joo6.13 94.2 min
Joo6.16 : 48.9 min
Burstein’s difficult channel : 9.6 min

Compared with other applications of genetic algo-
rithms in CAD [6], our CPU-times are relatively low.
Due to the inherent parallelism in genetic algorithms
we are optimistic about reducing the runtime further
through the implementation of a parallel version of
our algorithm.

5 Conclusions

A new genetic algorithm for the channel routing
problem of VLSI circuits has been presented. It has
been shown that the results obtained using our algo-
rithm are in most cases better than the best published
results for channel routing benchmarks. In conclusion,
genetic algorithms are very promising as approaches
for solving the channel routing problem.
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