IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8, NO. 3, MARCH 1989 257

O(n?) Algorithms for Graph Planarization

R. JAYAKUMAR, K. THULASIRAMAN, SENIOR MEMBER,

Abstract—In this paper we present two O(n’) planarization algo-
rithms—PLANARIZE and MAXIMAL-PLANARIZE. These algo-
rithms are based on Lempel, Even, and Cederbaum’s planarity testing
algorithm [9] and its implementation using PQ-trees [8]. Algorithm
PLANARIZE is for the construction of a spanning planar subgraph of
an n-vertex nonplanar graph. This algorithm proceeds by embedding
one vertex at a time and, at each step, adds the maximum number of
edges possible without creating nonplanarity of the resultant graph.
Given a biconnected spanning planar subgraph G, of a nonplanar graph
G, algorithm MAXIMAL-PLANARIZE constructs a maximal planar
subgraph of G which contains G,. This latter algorithm can also be
used to maximally planarize a biconnected planar graph.

I. INTRODUCTION

GRAPH is planar if it can be drawn on a plane with

no two edges crossing each other except at their end
vertices. A subgraph G’ of a nonplanar graph G is a max-
imal planar subgraph of G if G’ is planar and adding to
G’ any edge not present in G’ results in a nonplanar
subgraph of G. This process of removing a set of edges
from G to obtain a maximal planar subgraph is known as
maximal planarization of the nonplanar graph G. On the
other hand, maximal planarization of a planar subgraph G
refers to the process of adding a maximal set of edges to
G without causing nonplanarity. Maximal planarization
of a nonplanar graph is an important problem encountered
in the automated design of printed circuit boards. If an
electronic circuit cannot be wired on a single layer of a
printed circuit board, then we would like to determine the
minimum number of layers necessary to wire the circuit.
Since only a planar circuit can be wired on a single layer
board, we would like to decompose the nonplanar circuit
into a minimum number of maximal planar circuits. In
general, for a nonplanar graph, neither the set of edges to
be removed to maximally planarize it nor the number of
these edges is unique.

Determining the minimum number of edges whose re-
moval from a nonplanar graph will yield a maximal planar
subgraph is an NP-complete problem [1]. However, a few
algorithms which attempt to produce maximal planar
subgraphs having the largest possible number of edges
have been reported [2]-[4]. Recently, Chiba, Nishioka,
and Shirakawa [5] modified Hopcroft and Tarjan’s pla-
narity testing algorithm [6] to construct a maximal planar
subgraph of a nonplanar graph. Their algorithm needs

Manuscript received April 11, 1988; revised October 21, 1988. This
work was supported by the Natural Sciences and Engineering Council of
Canada under Grant A0904, Grant A4680, and Grant A7739. The review
of this paper was arranged by Associate Editor R. H. J. M. Otten.

The authors are with the Department of Computer Science, Concordia
University, Montreal, P.Q., Canada H3G 1M8.

IEEE Log Number 8825916.

IEEE, AND M. N. S. SWAMY, FELLOW, IEEE

O (mn) time and O (mn) space for a nonplanar graph hav-
ing n vertices and m edges. Ozawa and Takahashi [7] pro-
posed another O(mn) time and O(m + n) space algo-
rithm to planarize a nonplanar graph using the PQ-tree
implementation [8] of Lempel, Even, and Cederbaum’s
planarity testing algorithm [9], [10]; in short the LEC al-
gorithm. For a general graph this algorithm may not de-
termine a maximal planar subgraph [11]. Moreover, in
certain cases, this algorithm may terminate without con-
sidering all the vertices; in other words, it may not pro-
duce a spanning planar subgraph.

Whereas the planarization algorithm of [5] constructs
the required planar subgraphs by considering one edge at
a time, the algorithm of [7] proceeds by considering one
vertex at a time. Since an O(mn) maximal planarization
algorithm can be constructed in a straightforward manner
by adding one edge at a time and testing for planarity at
each step, these two algorithms are not significant as far
as their complexities are concerned. However, the algo-
rithm of [7] is quite interesting because at each step of
this algorithm as many edges as possible are added.

It seems that no maximal planarization algorithm of
complexity better than O (mn) will be possible. So, in thlS
paper, we focus our attention on the design of o(n*)
planarization algorithms. We present two planarization
algorithms—PLANARIZE and MAXIMAL-PLANAR-
IZE of time complexity O(n*) and space complexity
O(mn). These algorithms are based on Lempel, Even,
and Cederbaum’s planarity testing algorithm [9] and its
implementation using PQ-trees [8]. Algorithm PLA-
NARIZE is for the construction of a spanning planar
subgraph of an n-vertex nonplanar graph. This algorithm
proceeds by embedding one vertex at a time and, at each
step, adds the maximum number of edges possible with-
out creating nonplanarity of the resultant graph. Given a
biconnected spanning planar subgraph G, of a nonplanar
graph G, algorithm MAXIMAL-PLANARIZE constructs
a maximal planar subgraph of G which contains G,. This
latter algorithm can also be used to maximally planarize
a biconnected planar graph.

In the following, proofs of some of the results are omit-
ted in order to conserve space. These proofs may be found
in [12].

II. LempEL, EVEN, AND CEDERBAUM’S PLANARITY
TESTING ALGORITHM AND ITS IMPLEMENTATION
USING PQ-TREES

Consider a simple biconnected graph G = (V, E') with
= |V| vertices and m = | E| edges. The LEC algorithm
first labels the vertices of G as 1, 2, , n using what

0278-0070/89/0300-0257$01.00 © 1989 IEEE

258 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 3, MARCH 1989

is called an st-numbering [13], [14]. The graph G is then
called an st-graph. Let Gy, 1 < k < n, denote the
subgraph of G induced by the vertex set ¥, = {1, 2,
*++, k}. We define the subgraph By as follows. G, is a
subgraph of B,. In addition to G,, B, consists of all the
edges of G which emanate from vertices of V, and enter,
in G, vertices of V — V. These edges are called virtual
edges and the vertices they enter in V — ¥, are called
virtual vertices. The virtual vertices are labeled as their
counterparts in G; but kept separate. Thus in B there may
be several vertices with the same label, each with exactly
one entering edge. A drawing of B, is called a bush form
of By if in the drawing vertices with higher labels appear
at higher levels and all the virtual vertices appear at the
same level.

It can be shown [9], [10] that the sz-graph G is planar
if and only if for every B,, 2 < k < n — 2, there exists
a planar drawing B; isomorphic to_ B, such that in B} all
the virtual vertices labeled k + 1 appear consecutively.
As a consequence of sr-numbering, a cut vertex v in B,
will be the lowest vertex in all the maximal biconnected
components (except the one containing 1) with respect to
v. These biconnected components, called blocks, will
have the same structure as a bush form. The PQ-tree T,
corresponding to the bush form B, consists of three types
of vertices: (i) Leaves in T} represent virtual vertices in
By, (ii) P-nodes in T; represent cut vertices in By, and (iii)
Q-nodes of T, represent the maximal biconnected com-
ponents in B,.

A few definitions are now in order. Let S(k + 1) de-
note the set of leaves in 7} which correspond to the virtual
vertex k + 1. A node X in T} is said to be full if all its
descendant leaves are in S(k + 1); X is said to be empty
if none of its descendant leaves are in S(k + 1); other-
wise, X is partial. If X is full or partial, then it is called
a pertinent node. The frontier of T, is the sequence of all
the leaves read from left to right. The pertinent subtree
of T, with respect to S(k + 1) is the subtree of minimum
height whose frontier contains all the leaves in S(k + 1).
The pruned pertinent subtree of T, is the smallest con-
nected subgraph which contains all the leaves in S(k +
1). The root of the pertinent subtree is called the pertinent
root. Two PQ-trees are considered equivalent if one can
be obtained from the other by performing one or more of
the following types of operations.

(i) Reversing the order of the children of a Q-node.
(ii) Permuting the children of a P-node.

It can be shown [10] that B} exists if and only if T, can
be converted into an equivalent PQ-tree T} such that all
the pertinent leaves appear consecutively in the frontier
of T;. Booth and Lueker have defined a set of patterns
and replacements using which T, can be reduced into a
PQ-tree T} in which all the pertinent leaves appear as
children of a single node. The reduction process consists
of two phases. In the first phase, called the bubble up
phase, the pertinent subtree is identified. In the second
phase, called the reduction phase, pattern matching and

corresponding replacements are carried out using the two
types of operations mentioned above.

To construct Ty ., from T}, we first reduce T, to T} and
then replace all the leaves corresponding to the virtual
vertex k + 1 by a P-node whose children are the leaves
corresponding to the edges incident out of vertex k + 1
in G. The LEC algorithm starts with T, and constructs the
sequence of PQ-trees Ty, T,, * - - . If the graph G is
planar, then the algorithm terminates after constructing
T,_,; otherwise, it terminates after detecting the impos-
sibility of reducing some T; into Tj. The crucial result in
the complexity analysis of the LEC algorithm is stated in
the following theorem [8].

Theorem 1: The sum of all the pertinent nodes in the
PQ-trees Ty, T,, - - - , T,_, of a graph in O(m + n). //

More details on the LEC algorithm may be found in
[81, [10], [15].

III. PRINCIPLE OF AN APPROACH FOR PLANARIZATION

In this section, we discuss the basic principle of an ap-
proach for planarization due to Ozawa and Takahashi [7].
This approach is based on the LEC algorithm for a pla-
narity testing. Let G denote a simple biconnected sz-graph.
Let T, T, - - -, T,_, be the PQ-trees corresponding to
the bush forms of G. Ozawa and Takahashi [7] classify
the nodes of any PQ-tree according to their frontier as
follows.

Type W: A node is said to be Type W if its frontier
consists of only non-pertinent leaves.

A node is said to be Type B if its frontier con-
sists of only pertinent leaves.

A node X is said to be Type H if the subtree
rooted at X can be rearranged such that all the
descendant pertinent leaves of X appear con-
secutively at either the left or the right end of
the frontier.

A node X is said to be Type A if the subtree
rooted at X can be rearranged such that all the
descendant pertinent leaves of X appear con-
secutively in the middle of the frontier with at
least one non-pertinent leaf appearing at each
end of the frontier.

Type B:

Type H:

Type A:

The central concept of the planarization algorithm is
stated in the following theorem.

Theorem 2: An n-vertex graph G is planar if and only
if the pertinent roots in all the PQ-trees T,, T5, -« * * ,
T,_,of Gare Type B, Hor A. //

We call a PQ-tree reducible if its pertinent root is Type
B, H, or A; otherwise it is irreducible. Theorem 2 implies
that the graph G is planar if and only if all the T;’s are
reducible. If any 7 is irreducible, we can make it reduc-
ible by appropriately deleting some of the leaves from it.
Of course, we would like to delete a minimum number of
leaves while trying to make 7; reducible. If we make all
the T;’s reducible this way, then a planar subgraph can be
obtained by removing from the nonplanar graph the edges
corresponding to the leaves that are deleted.

JAYAKUMAR et al.: GRAPH PLANARIZATION

It is easy to see that the PQ-tree T, _, is always reduc-
ible because its root is type B. The tree T is also reducible
because it has only one pertinent leaf—the leaf corre-
sponding to the edge (1, 2). Consider now an irreducible
PQ-tree T; of an n-vertex nonplanar graph. For a node X
in T;, let w, b, h, and a be the minimum number of de-
scendant leaves of X which should be deleted from 7; so
that X becomes Type W, B, H, and A, respectively. We
denote these numbers of a node as [w, b, h, a]. Any node
in T; may be made Type W, B, H, or A by appropriately
deciding the types of its children. So the [w, b, h, a]
number of any node can be computed from that of its chil-
dren. Thus to make T, reducible, we first traverse it bot-
tom-up from the leaves to the pertinent root and compute
the [w, b, h, a] number for every node in 7;. Once the
[w, b, h, a] number of the pertinent root is computed, we
make the pertinent root Type B, H, or A depending on
which one of the numbers b, h, and a of the root is the
smallest. After determining the type of the pertinent root,
we traverse T; top-down from the pertinent root to the
leaves and decide the type of each node in the pertinent
subtree of T;. Note that the type of a node uniquely de-
termines the types of its children and so the types of all
the leaves in T; can be determined by this top-down tra-
versal. This information would help us decide the nodes
to be deleted from 7; in order to make it reducible. After
deleting these nodes from 7;, we can apply the reduction
procedure to obtain T}*.

Repeating the above procedure for each irreducible 7,
we can obtain a planar subgraph of the nonplanar graph.
It is easy to see that if the minimum of b, A, and a for the
pertinent root in a PQ-tree T; is zero, then T is reducible.
Note that this algorithm may not determine a maximal
planar subgraph (see [11]). However, in the case of com-
plete graphs, this algorithm produces a maximal planar
subgraph.

Computing the [w, b, h, a] numbers for the nodes in a
PQ-tree is a crucial step in procedure GRAPH-PLA-
NARIZE. Ozawa and Takahashi [7] have presented for-
mulas to compute these numbers. The main drawback of
their algorithm arises from the fact that they permit dele-
tion of both pertinent and non-pertinent leaves from a tree
T; to make it reducible. Since in T}, the pertinent leaves
correspond to the edges entering vertex i + in the sz-graph

G and the non-pertinent leaves correspond to those enter-

ing vertices greater than i + 1, it may so happen that as
the algorithm proceeds, all the edges entering a vertex k
> i + 1 may get removed from G and thus vertex k and
some of other vertices may not be present in the resulting
planar subgraph. Thus the planar subgraph determined by
Ozawa and Takahashi’s algorithm may not even be a
spanning subgraph of the given nonplanar graph.

IV. A NEw GRAPH-PLANARIZATION ALGORITHM

In this section we develop an efficient algorithm to de-
termine a spanning planar subgraph of a nonplanar graph
G. The planarization approach discussed in Section III will
form the basis of this algorithm. We modify Ozawa and

259

Takahashi’s approach so that deletion of only pertinent
leaves is permitted.

Theorem 3: The planarization algorithm of Section III
will determine a spanning planar subgraph of a bicon-
nected n-vertex nonplanar graph, if only pertinent leaves
are considered for deletion while making any PQ-tree T;,
3 <i < n— 2, reducible.

Proof: Note that a PQ-tree with only one pertinent
leaf is always reducible. So it follows that from no PQ-
tree all the pertinent leaves will get deleted, if only per-
tinent leaves are to be chosen for deletion. This means
that in the subgraph that results at the end of the appli-
cation of the algorithm, each vertex will be connected to
at least one lower numbered vertex. Thus the subgraph
determined will be a spanning subgraph of the given non-
planar graph. //

Let G be a nonplanar st-graph. Let E;, 2 < i < n, be
the set of edges entering vertex { in G. We determine a
planar subgraph of G by removing a sequence Ej, Es,
-+, E,_, (E! C E;) of edges such that for each i the
subgraph of G obtained by removing the edges in E;, Es,
- - -, E} contains a planar subgraph induced by the vertex
set {1, 2, - -+, i}. Thus after removing the edges in
E}, Ei, - - - , E,_,, we obtain a planar subgraph of G. It
is easy to see that the edges in E/,|,3 =i = n — 2,
correspond to the pertinent leaves in the PQ-tree T; which
should be deleted to make 7; reducible.

In order to make a PQ-tree T; reducible, we first com-
pute the [w, b, h, a] number for each node in 7;. Recall
that a node in 7; is full if the number of leaves in the
pertinent subtree rooted at the node is equal to the number
of pertinent leaves. Note that while processing T; to make
it reducible, a full node and all its descendants may be
made Type W, or they will remain Type B. On the other
hand partial nodes may be made Type W, H, or A; but
never Type B because we delete only pertinent leaves from
T;. Thus any pertinent node in 7; may be made Type W,
H, or A only. So we need to compute only the w, A, and
a numbers for the pertinent nodes in 7;. We denote these
numbers as [w, k, a].

Now we develop formulas to compute the [w, A, a]
number for each pertinent node in 7;. We process T; bot-
tom-up from the pertinent leaves to the pertinent root.
Note that we can compute the [w, A, a] number for a node
from the numbers of its pertinent children. In the follow-
ing, P(X) denotes the set of pertinent children of X and
Par(X) denotes the set of partial children of X. Along
with the [w, h, a] number for each pertinent node, we
also determine, for each pertinent node which is not a leaf,
three children called h-childl (X), A-child2(X) and
a-child (X) which will be used later to decide the type of
each pertinent child of X in the reducible T;.

(i) X is a pertinent leaf.

In thiscase w = 1, A = 0, and a = 0.

(i) X is a full node.

In this case h = 0, @ = 0, and

2w
ieP(X)

(iii) X is a partial P-node.

w =

260 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 3, MARCH 1989

To make X Type W, all its pertinent children should be
made Type W. Thus

2w,

ieP(X)

w =

We can make X Type H by making all its full children
Type B, one partial child Type H and all other partial
children Type W. Thus the 4 number of X is given by

h= 2 w— max {(w,-—h,«)}.

iePar(X) iePar(X)
In this case the partial child which is made Type H will
be the A-child1 (X).

We can make X Type A in two different ways. We can
make one partial child of X Type A and all other pertinent
children Type W. In this case
2, w, — max {(w,- - ai)}

iePar(X) ieP(X)

o =

descendant pertinent leaves of X will have to be deleted.
The partial child which is made Type A will be the
a-child (X). On the other hand, if we make two partial
children Type H, all full children Type B and all other
pertinent children Type W, then

2. w;, — maxl {(w,-—-h,-)}

ay =

iePar(X) iePar(X)
— max2 {(w,- - h,-)}
iePar(X)

descendant pertinent leaves will have to be deleted from
T; to make X Type A, where max1 is the first maximum
and max2 is the second maximum. The partial child hav-
ing max1 {(w; — h;)} will be the h-child1(X) and the
one having max2 {(w; — h;)} will be the h-child2 (X).
Thus the P-node X can be made Type A by deleting

a = min {al, az}

pertinent leaves from T7;. If the value of a is different from
«y, then we make a-child (X) empty.

(iv) X is a partial Q-node.

To make X Type W, all its pertinent children should be
made Type W. Thus for X
Z W, .

ieP(X)

w =

To compute the & number of X, first note that X can be
made Type H only if either its leftmost child or its right-
most child is pertinent. Suppose that the leftmost child of
X is pertinent. Then let us traverse the children of X from
left to right and find P, (X), the maximal consecutive se-
quence of pertinent children such that only the rightmost
node in P; (X) may be partial. If the leftmost child of X
is not pertinent, then P; (X) will be empty. Suppose, on
the other hand, that the rightmost child of X is pertinent.
As we traverse the children of X from right to left, let
Pr(X) be the maximal consecutive sequence of pertinent
children such that only the leftmost node in Pg(X) may
be partial. If the rightmost child of X is not pertinent, then
Pr(X) is empty. We can easily see that X can be made

Type H by deleting

h= 2 w; — max
ieP(X)
' { 2 (w; — hy), 2 (w; — hi)}
iePL(X) iePR(X)

pertinent leaves from 7;. We let A-child1 (X ') be the right-
most node in P; (X) or the leftmost node in Pg(X) de-
pending on which one has the maximum X (w; — A;) sum
in the above formula for A.

Node X can be made Type A in two different ways. We
can make one of the pertinent children of X Type A and
all the other pertinent children Type W. This can be
achieved by deleting

B, = 2 w, — max {(w, - ai)}
ieP(X) ieP(X)

pertinent leaves from 7;. In this case the pertinent child
having max {(w; — ga;)} will be the a-child(X). let
P,(X) be a maximal consecutive sequence of pertinent
children of X such that all the nodes in P(X) except the
leftmost and the rightmost ones are full. The endmost
nodes may be full or partial. Then we can make X Type
A by making all the full nodes in P (X) Type B, the
partial nodes in P, (X) Type H and all the other pertinent
children of X Type W. Note that there may be more than
one P,(X). Thus we can make X Type A by deleting

By= 2 wi—max{ 2 (w,-—hi)}
ieP(X) Pa(X) ;iEPA(X)

pertinent leaves from 7;. In this case we let the leftmost
node in the P,(X) selected be the h-child2(X). Thus
node X can be made Type A with the deletion of

a = min {B,, B}

pertinent leaves from 7;. If the value of a is different from
B, then we make a-child (X) empty.

Traversing 7; bottom-up we can compute the [w, &, a]
number for each pertinent node in T; using the above for-
mulas. The procedure which computes these numbers for
a given T; will be referred to as COMPUTEI1(T;).

Lemma 1: The [w, h, a] numbers for all the pertinent
nodes can be correctly computed in O (n?) time.

Proof: Proof of correctness follows from our discus-
sions so far. As regards the complexity, note that for a
0O-node in T; procedure COMPUTEI (T;) traverses all the
children of the node. Thus the amount of work done for
all the O-nodes in a 7T; is proportional to the number of
children of all the Q-nodes in 7;. The children of a
Q-node corresponding to a block represent vertices, ex-
cept the lowest, on the outside window of the block.
Moreover, any vertex in G which is represented as a child
of a Q-node in T; can appear on the outside window of
only one block. Thus the total number of children of all
the @-nodes in T; is less than or equal to n, the number of
vertices in G. For a P-node, the work done by procedure
COMPUTEI (T;) is proportional to the number of its per-

JAYAKUMAR et al.: GRAPH PLANARIZATION

tinent children. A pertinent child of a P-node is either a
P- or O-node or a leaf. Since a 0-node represents a block,
there are no more than n Q-nodes in any 7;. Also the num-
ber of pertinent leaves in 7T; is in-deg(i + 1), where in-
deg (i + 1) is the number of edges entering vertex i + 1
in G. Furthermore the number of P-nodes in 7; is at most
i. Thus the amount of work for all the P-nodes in T; is
O(n + in-deg(i + 1)). It follows from the above that
the amount of work done by procedure COMPUTEI1 (T;)
for all the Q-nodes and P-nodes in T; is O(n + in-deg(i
+ 1)). Summing up the work done for all T;’s, we get
the complexity of computing the [w, k, a] numbers as
O(m + n*) = 0(n). 1]

After computing the [w, A, a] number for the pertinent
root of 7;, we can determine whether 7; is reducible or
not. If the minimum of 4 and a is zero for the pertinent
root of T;, then T; is reducible. If T; is not reducible, then
we make the pertinent root of 7; Type H or A depending
on which one of 4 and a is minimum, and make 7; re-
ducible by deleting the necessary pertinent leaves from T;.
Now we need to determine the type of each pertinent node
in T; to obtain a reducible T;. Note that 7; may have cer-
tain full nodes. If we decide to keep any such full node,
then we mark it Type B.

Consider now a pertinent node X and T; whose type has
been determined. To start with X is the pertinent root. If
X is Type B, then it is a full node and we would like to
keep X as well as all its descendants in 7;. So no action
needs to be taken in this case. On the other hand, if X is
not Type B, then we traverse the pertinent descendants of
X to determine their type. An easy case is when X is a
leaf. Then it should be Type W and so we have to delete
it from 7;. We also have to remove the edge correspond-
ing to X from G. Thus in this case, the edge corresponding
to X should be included in E], . If X is not a leaf, then
we have the following different cases to consider.

Suppose X is Type W. Then all its pertinent children
should be made Type W. Moreover, if any of these per-
tinent children is a full node, then the entire subtree of T;
rooted at that full child should be deleted from T;.

If X is Type H and a P-node, then we make the partial
child A-child1 (X) Type H, all the full children Type B
and all other partial children Type W. If X is Type H, but
a (-node, then we traverse the children of X from
h-childl (X) towards the rightmost child and determine
the maximal consecutive sequence of pertinent children
P;(X) or Pr(X). We then make all the nodes in this se-
quence Type B; the rightmost node in P; (X)) or the left-
most node in Pg(X) are made Type H and all other per-
tinent children of X are made Type W.

Suppose X is Type A and a P-node. Then we process
the pertinent children of X as follows. If a-child(X) is
not empty, then we make a-child (X) Type A and all other
pertinent children Type W. On the other hand, if
a-child (X) is empty, then we make the partial children
h-childl (X)) and h-child2 (X) Type H, all full children
of X Type B and all other partial children of X Type W.
If X is Type A and a Q-node, then we should process its

261

pertinent children as follows. If a-child (X) is not empty,
then we make g-child (X) Type A and all other pertinent
children Type W. If a-child (X) is empty, then we tra-
verse the children of X from h-child2 (X) towards the
rightmost child and find the maximal consecutive se-
quence P,(X) of pertinent children of X. Then we make
all nodes in P,(X) Type B, the endmost nodes in P,(X),
if they are partial, Type H and all other pertinent children
Type W.

From the above discussions it should be clear that the
type of any pertinent node in 7; uniquely determines the
types of its pertinent children. Hence we process the PQ-
tree T; top-down from the pertinent root, and determine
the set of edges E/,, and delete from T; the nodes which
are full and marked Type W. The procedure which
achieves these will be denoted by DELETE-NODES (T;).
Since certain pertinent leaves are deleted from T;, we have
to update, if necessary, for each node the number of de-
scendant leaves. Procedure DELETE-NODES (T;) per-
forms this update also.

Lemma 2: All the edges inthe sets E/,,3 =i <n —
2, can be determined and removed using procedure DE-
LETE-NODES (T;) in O (r?) time. //

Having made 7; reducible, we can now reduce it to ob-
tain TF using Booth and Lueker’s PQ-tree reduction al-
gorithm. We can then obtain the next PQ-tree T;., and
repeat our procedures to make T;,, reducible. Note that
the reduction of all the reducible PQ-trees can be per-
formed in O(m + n) time if we keep the parent pointers
for all children of P-nodes and for the endmost children
of Q-nodes. Thus in Booth and Lueker’s algorithm [8],
interior children of Q-nodes in any 7; are not assigned
valid parent pointers and if any such interior child be-
comes pertinent, then its parent pointer will be deter-
mined during the bubble-up phase. In our discussions so
far, we have assumed that the correct parent pointer for
every pertinent node is available. So we have to determine
the parent pointers of all the pertinent nodes in 7; before
processing it. Booth and Lueker’s planarity testing algo-
rithm stops when it detects during the bubble-up phase
that certain pertinent nodes cannot be assigned parent
pointers, for that would imply nonplanarity of the given
graph. However, since our aim is to planarize the non-
planar graph, we would like to proceed further to find par-
ent pointers of all the pertinent nodes. As a result, our
bubble-up algorithm described below is different from
Booth and Lueker’s.

Let X be a pertinent node in 7;. If X is a child of a
P-node or one of the endmost children of a O-node, then
it has a valid parent pointer. On the other hand, if X is an
interior child of a Q-node, then its parent pointer will be
empty. To find the correct parent pointer for X, we tra-
verse the siblings of X from X towards the rightmost child
and obtain the parent pointer for X from that of the right-
most child. Let Y be the parent of X in 7;. If at a later
time another child Z of Y is processed to find its parent
pointer, then the above procedure would require travers-
ing again all the children of Y up to the rightmost child

262 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 3. MARCH 1989

and may result in visiting certain nodes several times. To
avoid these unnecessary visits, we proceed as follows.
When we traverse the children of Y from X to the right-
most child, we assign the parent pointer of the rightmost
child to all the nodes traversed and store these nodes in a
queue called interior-queue. So when a child Z of Y is
processed, if its parent pointer is empty, then we traverse
the siblings of Z until we find a node with a non-empty
parent pointer. Though this path compression technique
makes our bubble-up procedure efficient, many non-per-
tinent children of Q-nodes may be assigned parent pointer.
In order to make the parent pointer of such non-pertinent
nodes empty, we process the interior-queue at the end of
the bubble-up. If any node in this queue is not pertinent,
then its parent pointer is made empty.

The efficiencies of our procedures COMPUTEI (T;) and
DELETE-NODES((T;) arise from the fact that we process
only the pertinent children of any P-node. In a PQ-tree
the pertinent children of a P-node may appear in any ar-
bitrary order and so we may have to traverse all the chil-
dren of a P-node to find the pertinent children. In order
to avoid this, we split the children of each pertinent
P-node into two groups—one group consisting of perti-
nent children only and the other consisting of only non-
pertinent children. The procedure which finds the parent
pointer for all the pertinent nodes in a PQ-tree T; and
groups the pertinent children of P-nodes together as de-
scribed above will be referred to as BUBBLE-UP(T;).
This procedure also computes the number of pertinent
children as well as the number of descendant pertinent
leaves of each pertinent node in the PQ-tree 7;. The fol-
lowing lemma shows that procedure BUBBLE-UP(T;) has
the same time complexity as the other procedures devel-
oped so far.

Lemma 3: The total cost of procedure BUBBLE-
UP(T;) forall2 < i <n—2is O(n*). //

Procedures COMPUTEI(T)) and DELETE-
NODES (T;) require that we should be able to determine
whether a pertinent node in 7; is full or partial. A pertinent
node is full if the number of descendant pertinent leaves
of the node is equal to the number of its descendant leaves;
otherwise it is partial. Procedure BUBBLE-UP(T;) deter-
mines the number of descendant pertinent leaves of every
pertinent node in 7;. Now we should find a way of deter-
mining the number of descendant leaves of every perti-
nent node in 7;. Clearly each leaf has one descendant leaf.
In T), the only node which is not a leaf is the P-node
corresponding to vertex 1. Thus the number of descendant
leaves of this P-node is the number of edges incident out
of vertex 1 in G. We determine the number of descendant
leaves of any node in 7;, 2 < i < n — 2, from the tree
T;_, as follows.

Assume that the number of descendant leaves of each
node in 7;_, is known. During the processing of 7;_; we
may delete some leaves from it to make it reducible. Pro-
cedure DELETE-NODES (T;_) also updates the number
of descendant leaves of the nodes in T;_,. Thus in T,
the correct number of descendant leaves for each node is

known. Let E; = {(ji, i), (jas i), * * *, (jrs i)} be the
set of edges entering vertex i in the planar subgraph ob-
tained from G. In T, the leaves corresponding to the
edges in E; appear as children of the same node, say X.
Since these leaves are removed from T} | to form T;, the
number of descendant leaves of the nodes corresponding
to the vertices j,, j,, * * * , J if they are present in T},
should be decreased by one and the number of descendant
leaves of node X and its ancestors in T; should be de-
creased by in-deg (i). Moreover, we construct 7, from
T¥_, by adding a P-node corresponding to vertex i with
leaves corresponding to the edges incident out of vertex i
in G as its children. Clearly, the number of descendant
leaves of this P-node is equal to out-deg(i) in G. Since
this node is made a child of node X, the number of de-
scendant leaves of nodes X and all its ancestors in T;
should be increased by out-deg (i). Thus for node X and
for each one of its ancestors in T;, the net increase in the
number of descendant leaves is (out-deg (i)-in-deg (i)).
The procedure which performs this updating will be re-
ferred to as UPDATE-DESCENDANTS (T;).

Lemma 4: The total cost of procedure UPDATE-DE-
SCENDANTS(T)) forall2 < i < n — 2is O(n®). //

Now we present our planarization algorithm which uses
the procedures described so far.

procedure PLANARIZE(G);
comment procedure PLANARIZE determines the set
of edges E5 = ¢, E;, -+ , E,_, to be
removed from a nonplanar graph G to ob-
tain a spanning planar subgraph G,.
begin
{DESCENDANT-LEAVES(X) denotes the number
of descendant leaves of node X'}
construct the initial PQ-tree T, = TF;
DESCENDANT-LEAVES(1) : = out-deg(l);
for each leaf X corresponding to an edge in E, do
DESCENDANT-LEAVES(X) := 1;
fori:=2ton-2do
begin
initialize E}, | to be empty;
construct the PQ-tree T, from T} |;
UPDATE-DESCENDANTS(T);
for the P-node X corresponding to vertex i do
DESCENDANT-LEAVES(X) := out-
deg(i);
for each leaf X corresponding to an edge line
in Ei+1 do
DESCENDANT-LEAVES(X) := 1;
BUBBLE-UP(T});
COMPUTEI(T));
if min{h, a} for the pertinent root is not zero
then begin
make the pertinent root Types H or A
corresponding to the minimum of & and
a;
DELETE-NODES(T))
end;

JAYAKUMAR et al.: GRAPH PLANARIZATION

Fig. 2. Planar subgraph G,.

reduce 7; to obtain T
end
end PLANARIZE;

Theorem 4: Procedure PLANARIZE determines a
spanning planar subgraph of the nonplanar graph G in
O(n*) time and O(m + n) space. //

As an example, we applied our graph-planarization al-
gorithm on the nonplanar graph G shown in Fig. 1. Our
algorithm determines E¢g = {(2,6)}, Eg = {(2, 8)}, and
Ey = {(2,9),(3,9)} as the sets of edges to be removed
from G to planarize it and the spanning planar subgraph
G, is shown in Fig. 2. From this figure we can easily see
that the planar subgraph obtained is not maximally planar,
since the edge (2, 8) in Eg can be added to this embedding
without affecting the planarity of the resultant graph. Thus
the spanning subgraph determined by procedure PLA-
NARIZE may not be maximally planar.

V. A MAXIMAL PLANARIZATION ALGORITHM

For a given a nonplanar graph G, let G, be a spanning
planar subgraph of G obtained by the procedure PLA-
NARIZE described in the previous section. Our interest
in this section is to study the problem of constructing a
maximal planar subgraph of G which contains G For a
successful application of Lempel, Even, and Ceder-

263

baum’s algorithm for determining the required maximai
planar subgraph, it is necessary that G, have an s-num-
bering. This requirement necessitates that we assume that
G, is biconnected, since a graph which is not biconnected
may not have an s-numbering. Note that, in general, the
planar subgraph produced by procedure PLANARIZE
may not be connected.

With the assumption that G, is biconnected, we now
proceed to develop an O(n’) algorithm to construct a
maximal planar subgraph of G which contains G,. Let
E; = ¢, E;, - - -, E;_, be the sets of edges removed by
procedure PLANARIZE to obtain G,. Since more than
one maximal planar subgraphs containing G, may exist,
our aim will be to attempt to maximize the number of
edges in the required graph. Thus, we attempt to add to
G, as many edges as possible from the sets E}, Ej, - - -,
E, _, without affecting the planarity of the resultant graph.
Our approach to maximally planarize G, is to start with
G and construct its PQ-trees. After constructing a PQ-
tree, say T;, we make it reducible by deleting a minimum
number of leaves representing the edges in E/,,. (Note
that 7; will become reducible if all the leaves from the set
E!, are deleted from T;.) This can be easily done by com-
puting the [w, k, a] number of the pertinent nodes in T;.
Let T;(G,) denote the smallest subtree of 7; whose fron-
tier contains all the pertinent leaves from G,. Since we
would like to include G, in the final maximal planar
subgraph, we take care, during the reduction of 7;, not to
make any node in 7;(G,) Type A except its root. This
would ensure that the bottom-up reduction process pro-
ceeds at least up to the root of 7;(G,) and possibly be-
yond. Also, we note that, while computing the [w, A, a]
numbers we ignore the presence of empty leaves from
G — G,. In the following, the leaves in 7; corresponding
to the edges in E/, | will be called the new pertinent leaves
of T; and the other pertinent leaves of T; (corresponding
to the edges entering vertex i + 1 in G,) will be called
preferred leaves.

A node is called full if its frontier has no empty leaf
from G,; it is empty if its frontier has only empty leaves
from G,; otherwise it is partial. We call pertinent node X
a preferred node if it has some of the preferred leaves
among its descendants. If X is not preferred, then it may
either be retained in the reducible 7; or it may be deleted
along with all its descendants to make 7; reducible.

The formulas for computing the [w, h, a] numbers of
pertinent nodes are the same as those given in Section IV.
So, in the following we only consider the essential fea-
tures of our Type assignment policy which guarantees that
G, is included in the final maximal planar graph. Let X
be a pertinent node in 7;.

Case 1: X is a Partial P-Node

In this case X can have at most two partial preferred
children.

(a) X has no partial preferred children

If X is the root of 7;(G,) or its ancestor in T;, then it
can be included in the reducible 7; by making it Type A
or Type H. Otherwise it can be included only by making

264 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 3. MARCH 1989

it Type H. Note that in the latter situation we should set
h-child2 (X ') and a-child (X) empty.
(b) X has exactly one partial preferred child

The partial preferred child has to be retained in the re-
ducible T; and it becomes A-child1 (X). Moreover, if X is
the root of T;(G,) or its ancestor in T}, then it can be
included by making it Types A or H. Otherwise it can be
included only by making it Type H. Note that if X is the
root of T;(G,), then none of its children can be made Type
A and so a-child (X') will be empty in this case.

(c) X has two partial preferred children

In this case X is the pertinent root of the reducible T;.
One of the practical preferred children of X becomes
h-child1 (X ') and the other becomes A-child2 (X). We set
a-child(X) empty and remember that the root is pro-
cessed.

Case 2: X is a Partial Q-Node

In this case, all the preferred pertinent children of X
should appear consecutively. We first traverse these chil-
dren from the leftmost child towards the rightmost child
and determine the maximal consecutive sequence P’ (X))
with the properties

(i) P'(X) contains all the preferred children of X;

(ii) only the leftmost node and/or the rightmost node
in P’ (X) may be partial; that is, its frontier may contain
an empty leaf from G,; and

(iii) all the other nodes in P’ (X) are full; that is, the
frontier of each of these nodes contains no empty leaf be-
longing to G,.

Now X can be made Type H only when one of the follow-
ing happens:

(i) P'(X) appears at the left end of X and the leftmost
node in P’ (X) has in its frontier no empty leaf from G,.
Then we set P, (X) = P'(X),

(ii) P'(X) appears at the right end of X and the right-
most node in P’ (X') has in its frontier no empty leaf from
G,. Then we set Pr(X) = P'(X).

(Note that P, (X) and Pz(X) are as defined in Section
IV.) In both the above cases, we set h-childl (X) to the
leftmost node in P’ (X) and compute the 4 number for X.

Suppose neither of the above conditions is satisfied.
Then if P’ (X) contains only one node, this node should
be made Types H or A corresponding to the minimum of
h and a. If P'(X) is made Type A, then the only node in
P'(X) becomes a-child(X); otherwise it becomes
h-child1 (X'). If P’ (X) has more than one node, then we
set h-child2 (X)) to the leftmost node in P’ (X) and com-
pute the a number for X. We also remember in this case
that the pertinent root is processed.

Processing the pertinent nodes of 7; up to the pertinent
root using the above ideas and using the formulas of Sec-
tion IV, we can determine the [w, h, a] numbers of all
the pertinent nodes in 7;. The procedure which achieves
this will be referred to COMPUTE2 (T;).

Before we proceed further, we wish to note that some
of the nodes in P’ (X) and/or their descendants may have
only empty leaves from G — G, in their frontier. While
making 7; reducible during procedure PLANARIZE, these

leaves must have caused deletion of certain pertinent
leaves from 7;; but they themselves got deleted at a later
step in the execution of PLANARIZE. Since they are no
longer in G, it becomes possible to add to G, some new
pertinent leaves thereby making the graph constructed thus
far maximal. This is exactly what we do while identifying
the maximal sequence P’'(X). Thus procedure
COMPUTE2(T;) identifies a maximal set of new perti-
nent leaves to be added to G, without causing nonpla-
narity. More important is the fact that the PQ-tree reduc-
tion procedure would ensure that those empty leaves from
G — G, which appear in the frontier of P’ (X) and which
made possible addition of certain new pertinent leaves will
not be present in subsequent PQ-trees. Thus these empty
leaves which would normally be new pertinent leaves in
subsequent PQ-trees will not even be present in these PQ-
trees and therefore will not be available for addition to
G,. Thus future addition of new pertinent leaves to the
planar subgraph already constructed at step i would not
cause nonplanarity.

The following lemma gives the total cost of procedure
COMPUTE2(T;),2 =i=<n — 2.

Lemma 5: The [w, h, a] numbers of the pertinent nodes
in all the PQ-trees can be computed in O (n*) time using
procedure COMPUTE2(T;),2 <i <n — 2.

Having computed the [w, A, a] numbers for the perti-
nent nodes in 7;, we can obtain a reducible 7; by travers-
ing the pertinent subtree top-down from the pertinent root
using procedure DELETE-NODES (T;) (see Section IV).
Note that while applying Procedure DELETE-
NODES(T;), the term ‘‘full’”’, ‘“‘empty’’ and ‘‘partial”’
should be understood as defined at the beginning of this
section. During this processing some of the new pertinent
leaves in 7; may not be processed at all. Clearly, such
pertinent leaves should be deleted from 7; to make it re-
ducible and the edges corresponding to these leaves should
also be removed from the nonplanar graph G.

Recall that procedure COMPUTE2 (T;) requires that we
are able to determine whether the frontier of a node X has
an empty leaf from G,. Suppose the frontier of X in G,
has only empty leaves. Then the procedure BUBBLE-
UP(T;) of Section IV will not even visit this node because
this procedure traverses only the pruned pertinent subtree
of T; which does not include empty leaves. In order to
overcome this problem, we modify BUBBLE-UP(T;) so
that in addition to traversing all the nodes in the pruned
pertinent subtree of 7, it also traverses every node whose
frontier contains at least one empty leaf from G,. Inter-
estingly, as we show now, this modification does not af-
fect the complexity of the bubble up process (given in
Lemma 3), and we refer to this modified procedure as
MODIFIED-BUBBLE-UP(T;).

Lemma 6: The total cost of MODIFIED-BUBBLE-
UP(T,)forall2 < i <n— 2is O(n®).

Proof: Let n,(T;) be the total number of leaves of T;
belonging to G, and let UNARY (T;) be the number of
unary nodes (nodes of degree one) except leaves
traversed by MODIFIED-BUBBLE-UP(T;). Then the

JAYAKUMAR et al.: GRAPH PLANARIZATION

cost of MODIFIED-BUBBLE-UP(T) is O(n,(T)) +
UNARY(T;)). But n,(T;) = O(m,) where m, is the
number of edges in G and UNARY(T) = O(n) Since
G, is planar, m, = O(n) Hence cost of MODIFIED-
BUBBLE-UP(T,-) is O(n). Summing up this cost for all
T;,2 =i <n -2, we get the result. //

Processing the PQ-trees 15, Ty, - -+ T, _, using the dif-
ferent procedures described above we obtain a maximal
planar subgraph of the nonplanar graph G.

procedure MAXIMAL-PLANARIZE(G);
comment procedure MAXIMAL-PLANARIZE deter-
mines a maximal planar subgraph of the
nonplanar graph G. This procedure uses
the spanning planar subgraph obtained by
procedure PLANARIZE. It is assumed
that the spanning planar subgraph is bi-
connected.
begin
{Determine the spanning planar subgraph}
PLANARIZE(G);
{Maximally planarize the spanning planar subgraph}
construct the initial PQ-tree T = T%;
DESCENDANT-LEAVES(1) : = out-deg(1);
for each leaf X corresponding to an edge in E, do
DESCENDANT-LEAVES(X) := 1;
fori:=2ton—-2do
begin
construct the PQ-tree T; from T
UPDATE-DESCENDANTS(T));
for the P-node X corresponding to vertex i do
DESCENDANT-LEAVES(X) : = out-deg(i);
for each leaf X corresponding to an edge in E; , ,
do
DESCENDANT-LEAVES(X) : =
MODIFIED-BUBBLE-UP(T});
COMPUTE2(T));
if min{#, a} for the pertinent root is not zero
then begin
make the pertinent root Types H or A cor-
responding to the minimum of 4 and a;
DELETE-NODES(T));
delete the new pertinent leaves which are not
processed from T;
end;
reduce 7; and obtain T
end
end MAXIMAL-PLANARIZE;

i~15

Clearly, when algorithm MAXIMAL-PLANARIZE is
applied on a nonplanar graph G, treating the edges of a
planar subgraph G, as preferred edges, it produces a planar
subgraph G’ containing G,. We now prove that G’ is in-
deed a maximal planar subgraph of G.

Suppose we apply algorithm MAXIMAL-PLANAR-
IZE on G treating G’ as the preferred graph. Then in the
following theorem T, T3, - - - , T'_, will refer to the
PQ-trees which are generated as the algorithm progresses.

265

Theorem 5: Algorithm MAXIMAL-PLANARIZE
when applied on a nonplanar graph G, treating a bicon-
nected planar subgraph G, as the preferred graph, pro-
duces a maximal planar graph G’ which contains G,.

Proof: As we noted before, G’ is planar and contams
G,. So, we need only prove that G’ is 2 maximal planar
subgraph of G. Assume the contrary. Then there exists an
edgee = (j, k) € G,j < k, such that e ¢ G’ and G' U
{e} is planar. Among all such edges select the one for
which k is minimum and let this edge be e = (j, i + 1).
This means that the leaf in T/ representing e is a new
pertinent one with respect to G’. Note that in T this leaf
was also new pertinent with respect to G, and it was not
added while procedure MAXIMAL-PLANARIZE con-
structed G' starting from G,. Furthermore, T} is iso-
morphic to the corresponding PQ-tree T; generated when
G, is treated as the preferred graph. Also, since G, € G’
all the preferred pertinent leaves of T; will also be pre-
ferred pertinent leaves in T}. Furthermore, some of the
new pertinent leaves in 7; may become preferred ones in
T!.

Since G' U {e} is planar, through a sequence of
Q-node flippings and permutations of children of P-nodes,
T} can be converted into a tree T/ such that its frontier
contains a maximal sequence L’ with the following prop-
erties.

(i) Except the first and/or the last leaf in L', none of
the others are empty leaves from G’. (Note: this means
that except the first and/or the last leaf in L', none of the
others are empty leaves from G,.)

(ii) L’ contains all the preferred pertinent leaves of G'.
(Note: some of these leaves are, possibly, present in T, as
new pertinent ones; the remaining leaves are preferred
ones in T;.)

(iii) L' contains the new pertinent leaf e and possibly a
few more new pertinent ones. (Note: these leaves are all
new pertinent in 7; t0o.)

(iv) Empty leaves from G — G’ may be added to L' to
make it maximal. (Note: these leaves belong to G — G,
too, since G, € G'.)

Since T; and T, are isomorphic, it follows that 7, can
also be converted into T/. Furthermore, the above obser-
vations imply that L’ satisfies all the properties required
to be satisfied by the sequence P’ (X) (where X is the
pertinent root of 7;) identified by COMPUTE2 (T;). But,
P'(X) is a proper subset of L' since ¢ ¢ P’ (X). This is
a contradiction because P’'(X) is not maximal as re-
quired. //

Theorem 6: Procedure MAXIMAL-PLANARIZE is of
complexity O(n®) in time and O(m + n) in space. //

As an example, applying procedure MAXIMAL-
PLANARIZE on the planar subgraph G, shown in Fig. 2,
we obtain the maximal planar subgraph shown in Fig. 3.
We have implemented procedure MAXIMAL-PLA-
NARIZE in PASCAL and tested it on several nonplanar
graphs using a CDC Cyber 170. In Table I we show the
number of edges removed by procedure PLANARIZE and
the number of edges added by procedure MAXIMAL-

266 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 3, MARCH 1989

Fig. 3. Maximal planar subgraph of the graph G (Fig. 1).

TABLE 1
Number of Number ot
Number Number |edges removed| edges added Execution
Graph of of by procedure by procedure Time
vertices| edges PLANARIZE MAXIMAL- (sec)
PLANARIZE
Gl 10 35 et 3 0.¢63
G2 20 60 24 0 0. 672
03 30 95 4z 5 ©. 976
" 40 125 39 2 1. 321
(35 50 150 47 4 1.985
G6 60 180 53 3 3.126
G7 70 225 57 o 4. 795
GB 80 250 78 7 5.013
G9 90 300 103 5 6. 792
GlO 100 350 124 8 7.863

PLANARIZE for some of the test graphs. It can be seen
from Table I that procedure MAXIMAL-PLANARIZE
adds only a very small number of edges to the spanning
planar subgraph. We have also shown in Table I the ex-
ecution time required to find the maximal planar subgraph
for these graphs.

Given an n-vertex biconnected graph G,, it is easy to
see that by applying algorithm MAXIMAL-PLANARIZE
on the n-vertex complete graph K, and treating G, as the
preferred graph, we can construct a maximal planar
subgraph which contains G,. Thus, we can maximally
planarize any biconnected planar graph using algorithm
MAXIMAL-PLANARIZE and we have the following
theorem.

Theorem 7: Maximal planarization of an n-vertex
biconnected planar graph can be achieved in O(n?)
time. //

We now return to the question of the maximal planar-
ization problem when the subgraph G, of G produced by
algorithm PLANARIZE is not biconnected. In this case,
the st-numbering of G which we used before applying al-
gorithm PLANARIZE on the graph G may not be an st-
numbering for G, because a graph which is not bicon-
nected may not have an sz-numbering. Since the embed-
ding produced by the LEC algorithm assumes that the ver-
tices are placed at different levels dictated by the sz-

numbers, it follows that algorithm MAXIMAL-PLA-
NARIZE when applied on G, produces a maximal planar
subgraph (containing G,) of G which is consistent with
the embedding of G, as dictated by the original s-num-
bers. But such a subgraph may not be a maximal subgraph
containing G,. So, one way to proceed further for the con-
struction of the required maximal planar graph is to first
obtain the biconnected components of G,. Then we should
examine each edge for possible addition to one or more
biconnected components of G,. But, before doing so, we
should obtain the new sr-numbering for the graph ob-
tained by adding the new edge to G,. The complexity of
such a maximal planarization algorithm will be O(mn),
which is the same as that of the straightforward algorithm.

VI. SuMMARY AND CONCLUSION

In this paper we present two O(n?®) planarization al-
gorithms—PLANARIZE and MAXIMAL-PLANARIZE.
These algorithms are based on Lempel, Even, and Ced-
erbaum’s planarity testing algorithm [9] and its imple-
mentation using PQ-trees [8]. Algorithm PLANARIZE is
for the construction of a spanning planar subgraph of an
n-vertex nonplanar graph. This algorithm proceeds by
embedding one vertex at a time and, at each step, adds
the maximum number of edges possible without creating
nonplanarity of the resultant graph. Given a biconnected
spanning planar subgraph G, of a nonplanar graph G, al-
gorithm MAXIMAL-PLANARIZE constructs a maximal
planar subgraph of G which contains G,. This latter al-
gorithm can also be used to maximally planarize a bicon-
nected planar graph.

We conclude by pointing out that no non-trivial pla-
narization algorithm of complexity O(n?) have been re-
ported in the literature. The O(mn) algorithms of [5] and
[7] do not seem to lend themselves to easy modifications
resulting in such planarization algorithms. Furthermore,
no O(n’) algorithm for maximal planarization of a bicon-
nected planar graph has been reported before in the liter-
ature. We have also pointed out how the algorithm
PLANARIZE and MAXIMAL-PLANARIZE can be used
to construct a maximal planar subgraph even when the
graph produced by PLANARIZE is not biconnected.
Though the worst-case complexity of such a maximal
planarization algorithm will be the same as that of the
algorithm in [5], we expect this algorithm to require, on
the average, less computation time since construction of
G, requires only O(n*) time and while constructing G,
we have attempted to include as many edges as possible.

The question now remains whether we can design an
O(n?) algorithm to construct a maximal planar subgraph
of a nonplanar graph. Such an algorithm will be possible
provided we can find an O(n?*) algorithm to construct a
spanning biconnected planar subgraph of a given non-
planar graph.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-completeness. ~San Francisco, CA: Free-
man, 1979.

JAYAKUMAR et al.: GRAPH PLANARIZATION

[2] G. J. Fisher and O. Wing, ‘‘Computer recognition and extraction of
planar graphs from the incidence matrix,”’ IEEE Trans. Circuit The-
ory, vol. CT-13, pp. 154-163, June 1966.

[3] K. Pasedach, ‘“Criterion and algorithms for determination of bipartite

subgraphs and their application to planarization of graphs,” in

Graphen-Sprachen und Algorithmen auf Graphen, Germany: Carl

Hanser Verlag, pp. 175-183, 1976.

M. Marek-Sadowska, *‘Planarization algorithm for integrated circuits

engineering,”” in Proc. 1978 IEEE Int. Symp. on Circuits and Sys-

tems, pp. 919-923.

[5] T. Chiba, 1. Nishioka, and 1. Shirakawa, ‘‘An algorithm of maximal
planarization of graphs,”” in Proc. 1979 IEEE Int. Symp. on Circuits
and Systems, pp. 649-652.

[6] J. Hopcroft and R. Tarjan, ‘‘Efficient planarity testing,”’ J. Ass. Com-
put. Mach., vol. 21, no. 4, pp. 549-568, Oct. 1974.

[7] T. Ozawa and H. Takahashi, ‘A graph-planarization algorithm and
its application to random graphs,’’ in Graph Theory and Algorithms,
Springer-Verlag Lecture Notes in Computer Science, vol. 108, pp.
95-107, 1981.

[8] K. S. Booth and G. S. Lueker, ‘‘Testing for the consecutive ones

property, interval graphs, and graph planarity using PQ-tree algo-

rithms,”” J. Comp. Syst. Sci., vol. 13, no. 3, pp. 335-379, Dec. 1976.

A. Lempel, S. Even, and I. Cederbaum, *‘An algorithm for planarity

testing of graphs,”’ in Int. Symp. on Theory of Graphs, Rome, Italy,

July 1966. P. Rosenstiehl (Ed.), Gordon and Breach, New York, pp.

215-232, 1967.

[10] S. Even, Graph Algorithms.
land, 1979.

[11] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy, *‘On maximal
planarization of non-planar graphs,’” IEEE Trans. Circuits Syst., vol.
CAS-33, no. 8, August 1986, pp. 843-844.

[12} —, **O(n*) algorithms for graph planarization,’’ Tech. Rep. CSD-
88-01, Dep. of Comp. Sci., Concordia Univ., Montreal, Canada, June
1988.

[13] S. Even and R. E. Tarjan, ‘‘Computing an st-numbering,”” Theo.
Comp. Sci., vol. 2, pp. 339-344, 1976.

[14] J. Ebert, ‘‘St-ordering the vertices of biconnected graphs,’’ Comput-
ing, vol. 30, pp. 19-33, 1983,

[15] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy, ‘‘Planar
embedding: linear time algorithms for vertex placement and edge or-
dering,”” IEEE Trans. Circuits Syst., vol. CAS-35, pp. 334-344, Mar.
1988.

[4

s

—

Potomac, MD: Computer Sci., Mary-

R. Jayakumar received the B.E. (hons) degree in
electronics and communication engineering from
the University of Madras, Madras, India, in 1977,
the M.S. degree in computer science from the In-
dian Institute of Technology, Madras, India, in
1980, and the Ph.D. degree in engineering and
computer science from Concordia University,
Montreal, Canada in 1984,

Since 1984 he has been an Assistant Professor
of Computer Science at Concordia University. His
research interests are in VLSI algorithms and ar-
chitectures, fault-tolerant VLSI systems, VLSI design automation and graph
theory and graph algorithms.

Dr. Jayakumar is a member of the Association for Computing Ma-
chinery.

267

K. Thulasiraman (M’'72-SM’84) received the
Bachelor’s and Master’s degrees in electrical en-
gineering from the University of Madras, Madras,
India, in 1963 and 1965, respectively, and the
Ph.D. degree in electrical engineering from the
Indian Institute of Technology, Madras, in 1968.

He joined the Indian Institute of Technology,
Madras in 1965, where he was associated with the
Department of Electrical Engineering from 1965
to 1973 and with the Department of Computer
Science from 1973 to 1981. After serving for a
year (1981-1982) at the Department of Electrical Engineering, Technical
University of Nova Scotia, Halifax, Canada, he joined Concordia Univer-
sity, Montreal, as Professor at the Department of Mechanical Engineering
where he was involved in the development of programs in Industrial En-
gineering at the undergraduate and graduate levels. Since 1984 he has been
with the Department of Electrical and Computer Engineering at Concordia
University. Earlier, he had held visiting positions at Concordia University
during the periods of 1970-1972, 1975-1976, and 1979-1980. He has pub-
lished over 50 technical papers on different aspects of Electrical Network
Theory, Graph Theory and Design and Analysis of Algorithms. He has also
coauthored the book, Graphs, Networks and Algorithms (New York: Wiley-
Interscience, 1981). He was awarded a Senior Fellowship by the Japan
Society for Promotion of Science. Under this fellowship he will be visiting
the Tokyo Institute of Technology, Tokyo during March-July 1988. His
current research interests are in network and systems theory, graph theory,
parallel and distributed computations, operations research and computa-
tional graph theory with applications in VLSI design automation, computer
networks, communication network planning, etc.

M. N. S. Swamy (S’59-M'62-SM’74-F’80) re-
ceived the B.Sc. (hons) degree in mathematics
from Mysore University, Mysore, India, in 1954,
the Diploma in electrical communication engi-
neering from the Indian Institute of Science, Ban-
galore, India, in 1957, and the M.Sc. and Ph.D.
degrees in electrical engineering from the Univer-
sity of Saskatchewan, Saskatoon, Sask., Canada.
in 1960 and 1963, respectively.

He worked as a Senior Research Assistant at
the Indian Institute of Science until 1959, when
he began graduate study at the University of Saskatchewan. In 1963, he
returned to India to work at the Indian Institute of Technology, Madras.
From 1964 to 1965, he was an Assistant Professor of Mathematics at the
University of Saskatchewan. He also taught as a Professor of Electrical
Engineering at the Technical University of Nova Scotia, Halifax, N.S.,
Canada, and the University of Calgary, Calgary, Alta., Canada. He was
Chairman of the Department of Electrical Engineering, Concordia Univer-
sity (formerly Sir George Williams University), Montreal, P.Q., Canada,
until August 1977, when he became Dean of Engineering and Computer
Science of the same university. He has published a number of papers on
number theory, semiconductor circuits, control systems, and network the-
ory. He is coauthor of the book Graphs, Nerworks and Algorithms (New
York: Wiley, 1981). A Russian translation of this book was published by
Mir Publishers Moscow, in 1984.

Dr. Swamy is a Fellow of several professional societies including the
Institution of Electrical Engineers (U.K.), the Institution of Electronic and
Radio Engineers (U.K.), the Engineering Institute of Canada, the Institu-
tion of Engineers (India), and the Institution of Electronics and Telecom-
munications Engineering (India). He is Associated Editor of the Fibonacci
Quarterly and the new journal Circuits, Systems and Signal Processing.
He was Vice-President of the IEEE Circuits and Systems Society in 1976,
Program Chairman for the 1973 IEEE-CAS Symposium, and the General
Chairman for the 1984 IEEE-CAS Symposium. He was an Associate Editor
of the CAS TRANSACTIONS during 1985-1987. He is co-recipient, with Drs.
L. M. Roytman and E. 1. Plotkin, of the IEEE-CAS 1986 Guillemin-Cauer
Best Paper Award.

