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We present a generalized method based on the MU-method [30, 29] for select-
ing test sequence for conformance testing of protocol implementations whose
specifications are represented as deterministic Finite State Machines (FSM).
Our method uses solutions to two subproblems: Basic UIO Assignment Prob-
lem (BUAP), and the Rural Postperson Problem (RPP). The BUAP is defined
and an efficient algorithm based on the algorithm Jor the mazimal cardinality
two-matroid intersection problem [20] is presented. A heuristic algorithm is
proposed for the general RPP, which is known to be NP-complete. The method
works for all strongly connected FSM-based protocols whick have at least one
UIO-sequence for each state whereas the U-method [4] and the MU-method
are applicable only for e subset of this class of protocols. The proposed method
produces test sequences of varied lengths depending on the structure of the pro-
tocols as well as the set of UIO-sequences used in selecting the test sequence.

1 Introduction

¥
e

Conformance Testing is intended to assure that a given implementation of a protocol is
equivalent to the standard specification of the protocol [32, 2] The goal of interworking
among heterogeneous systems can be achieved through conformance testing. Test suite
selection (generation) is an important problem as the efficiency and the quality of testing
depends on the test suite selected. The OSI conformance testing methodology and frame-
work [2] defines a test suite as a set of test cases, one for each test purpose. Each test case
is a collection of event sequences. If a protocol is specified as a deterministic Finite State
Machine (FSM) then its test suite is usually specified as a single sequence of labels (input
and expected output pairs) of the transitions. Such a test suite is referred to as a test
sequence [4]. The specification of a protocol is normally described in Formal Description
Techniques (FDTs) such as LOTOS (8], Estelle [9}, or SDL [1]. Such a specification has
many advantages including automatic test suite selection [3]. The control structure in
the specification of a protocol can be represented as a Finite State Machine [6,21}). In
this paper, we consider only the control flow aspect of testing and we assume that the
‘protocol is represented as an FSM. .
Among the various FSM-based test sequence selection methods [4, 31, 10, 17, 34, 35),
the U-method by Aho et al [4] is well known for its minimal length test sequence with
high fault coverage [24). The method uses the criterion of covering each transition and ;.
confirming its tail state. UIO-sequences (defined later) are used for confirming the tail .
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states of transitions. This method generates a minimal length test sequence satisfying the
coverage criterion by formulating and solving a special type of Rural Postperson Problem
(RPP) [15] for which an efficient solution exists [4]. Further minimization of the length of
the test sequence is achieved in the MU-method {30] by assigning a suitable UIO-sequence
for each transition from a set of UIQ-sequences for each state. As pointed out in Section 3,
these methods are, however, not applicable for all protocols having UIO-sequences for
all states. In this paper we generalize the MU-method so that it can be applied to
select test sequences for all such protocols. The protocols considered in this paper are
represented as strongly connected FSMs having at least one UIO-sequence for each state.
The generalized method requires solutions to two sub-problems: Basic UIO Assignment
Problem (BUAP), and the general RPP. The BUAP is defined and an efficient solution
based on the maximum cardinality two-matroid intersection algorithms by Lawler [19, 20]
and Edmonds [14] is presented. A heuristic algorithm is proposed for the RPP; an upper
bound on the optimality of the tour is also established for this algorithm. Our method
carefully combines the above two algorithms with the MU-method to derive test sequences
for the given protocol. The method produces test sequences of varied lengths depending
on the structure of the protocols as well as the set of UIO-sequences considered.

The required definitions and the UIO-based test sequence selection methods are intro-
duced in Section 2. Motivations for our research are presented in Section 3. In Section 4
we define the BUAP and provide an efficient algorithm. The heuristic algorithm for the.
RPP is developed in Section 5. Section 6 presents our generalized UIO testing method.
The results are summarized in Section 7.

2 Preliminaries

2.1 Graphs and Matroids

Given a strongly connected directed graph G = (V, E) with weighted edges, and a subset
of edges F' C E, the asymmetric Rural Postperson Problem (RPP) with respect to F is
to find a tour with minimum cost such that it covers each edge in F at least once [15, 33].
Such a minimum cost tour is referred to as a Rural Postperson Tour (RPT) with respect
to F. The RPP is known to be an NP-complete problem [25].

The subgraph of G = (V, E) induced by an edge set F C E is denoted by G[F]. If K
is a set of edges having both end vertices in V, then G + K denotes the graph obtained
from G = (V; E) by adding all the edges in K to G.

A matroid M = (E,T) is a structure in which E is a finite set of elements and T is
a family of subsets of E such that (i) empty set is a member of Z; (i) if L C F and
F € I then Fy € T; and (iii) if F, and F,,; aze sets in T baving p and p + 1 elements
respectively, then there exists an element e € Fo11 — Fy such that F, U {e} € Z. Each
element in 7 is called an independent set in M. Let M, = (E,7;) and M, = (E,T,) be
two matroids. The Mazimum Cardinality Two Matroid Intersection Problem (MC2MIP)
[20] is to find a set H C E of maximum cardinality such that H is independent in both
'Ml and Mz. ’

A graphic matroid of a graph G = (V, E) is a matroid (E,T) such that F C E is in
Z iff F contains no cycle in G.

Let P = {E\, E,..., E;} be a partition of the edge set E of a graph G = (V, E). Let
Q = {i1,%5,...,%} be a given set of non-negative integers. Let (E,Z) be a system such
that F* € Tiff |[E; N F| <1i; for j =1,2,... k. It is known that (E,T) is a matroid [20).
It is called a partition matroid of G with respect to the partition P and the index Q.
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2.2 Finite State Machines

An FSM M can be formally defined as a S-tuple M = (§,s,,1,0,T) where S is the
nonempty set of states of M in which s, is a designated state called the initial state. I
and O are nonempty sets of possible inputs and outputs of the protocol, respectively. The
transition function T is a partial function defined as T : S x J ~» § x 0. T(sia) = (s;,0)
means that the FSM M at state s; makes a transition to state s; when the input a is
applied producing the output o, Graphically this is also represented as s; — afo - s;.

An FSM M = (5,51, O,T) can also be represented by a directed labeled graph
G, = (V,E), where S = V and ‘each transition si —afo — 3; corresponds to an edge
in E directed from s; to s; with label afo. Thus an edge in E is specified by a triple
(5i,85;a/0). We assume that the functions start(e), label(e) and end(e) will return the
starting state, label and the ending state of any edge e, respectively. We assign a unit cost
with each transition since we focus on the test sequence length minimization. An FSM is
said to have reset capability if for each state 8; in .5 there exists a transition (s;,s;;r/ =)
called a reset transition which resets the FSM to its initial state where ‘v’ denotes the
‘reset’ command and ‘—’ denotes that the FSM does not produce any output for the reset
command.

A sequence of input-output is a concatenation of input-output pairs. We use the
operators ¢ and @ for concatenating input-output symbols and input-output sequences,
respectively. These operators are omitted in certain sequences whenever there is no con-
fusion. A sequence q of input-output pairs is said to be applicable at a state s; of an
FSM if the output part of q is observed on applying the input part of g to the FSM at
the state s;.

More formally, a sequence g =aifoeayfose...0 a;/o; is applicable at state s; iff
Jsi;,5=1,2,...1,1 > 1 such that s; —ayfo; — s; and 8i;_, — ajfo; — si;for2<j <l

An Unigue Input Quiput (UIO) sequence for a state s; is an input-output sequence
of minimum length such tkat it is applicable only at s; of G,. Note that for each UIO-
sequence of the state s;, there is a unique path from s;. For better understanding, the
UIO-sequences in the examples are expressed as the concatenation of the transitions along
their corresponding paths. We assume that functions head, tail, and length will return the
starting state, ending state, and the number of input-output pairs of any UIO-sequence,
respectively.

Let MU; be a nonempty set of UIO-sequences for each state s; of the specification graph
G, = (S,E). Let MU = MU, U MU, U...U MU,. Define the relation R CExMU
such that (e,u) € R iff end(e) = head(u). Clearly, R denotes the set of all possible
assignments of UIO-sequence from MU for all the transitions in E. We call any subset
B C R a valid UIO assignment or simply an UIO assignment for the set of transitions
D C E if dom{B) = D and Hul(e,u) € B}| = 1, for each e € D. That is, each element
in D has exactly one UIO-sequence assigned in B. A valid UIO assignment for E is also
referred to as a (valid) UIO assignment of the protocol G,. Consider the undirected graph
G’ = (8, E') where E' = {(start(e), tail(u); label(e)@u)|(e,u) € R}. It is easy to see that
there is a one-to-one correspondence between R and E'. In this paper, an element of R is
often treated as an edge in E’ and vice versa. An edge in E' js often referred to as a fest
edge of the underlying transition. For each edge ¢ = (start(e), tail(u); label(e)Qu) € E’
which corresponds to (e,u) € R, the length of the input sequence in label(e)@u is taken

as the cost of ¢ Let B be a valid UIO assignment for D C E. The subgraph G'[Blof G -

induced by B is called a test graph for D. The test graph induced by an UIO assignment
of the protocol G, is simply referred to as a fest graph for the protocol. Observe that every
test graph of a strongly connected protocol always spans all the states of the protocol. In
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this paper, subgraphs of G’ are often extended by adding edges from G,, and vice versa.
Suppose H' is a subgraph of G’ and F C E, then H' + F will be treated as an undirected
graph as H' is undirected. On the other hand, if H is a subgraph of G, and F' C F',
then H + F' will be treated as a directed graph as H is directed, the orientation of the
edges in F' coinciding with that of the corresponding edge in G,.

2.3 Testing Methods

The U-method [4] introduced in [28] requires that the representation graph G, = (S, E)
be strongly connected. Each state of G, is assumed to have an UIO-sequence. Let U; be
an UIO-sequence for sj, 1 < j < n. The U-method tests each transition (s;,s;;a/0), as
follows

The protocol Implementation Under Test (IUT) is first put in state s; . Then
the input @ is applied and the output is verified for o. Finally, to check for
state s; the input part of U; is applied to the current state of the IUT and
the output is examined against the output part of U;

The input-output sequence a/o@U is the test subsequence for the transition (s;, s;;a/o) .
By considering MU; = {U;},1 < 5 < n, weget G’ = (S, E'), where E' = {(s:,1ail(Uj); afo
@U;) | (si, s5;a/0) € E}. Cleatly, G' is the unique test graph of G,. Let G* =G, + E.
In the U-method, each transition in G, is tested by applying the subsequence along its
test edge in E'. Thus the optimal test sequence for G, lies along the RPT of G* with
respect to E'. In other words, the optimal test sequence selection problem is equivalent
to the problem of finding an RPT of G* with respect to E'. Before proceeding further, we
introduce a definition. A rural symmetric augmentation of a weighted graph G = (V, E)
with respect to F C F is a graph G[F U Ey] such that (i) number of incoming edges at
each vertex in G[F U Ey] is the same as the number of outgoing edges from that state,
and (ii) E; is a bag" of minimum cost in F satisfying (i). The polynomial algorithm given
in [28] for finding an RPT first computes a rural symmetric augmentation G*[E’ U E)]
of G* with respect to E’, where E; is a bag in E. It then generates a test sequence by
concatenating the subsequences and/or labels along an euler tour of G*[E’ U Ey]. This
algorithm can be successfully applied to a protocol G, if the test graph G’ is connected
[4]. Note that this is only a sufficient condition. It is also shown that protocols which
have either a self-loop at each state or the reset capability always meet this requirement.

In the MU-method [30, 29], Shen et al have recently proposed an improvement for the
U-method. While the U-method uses only one UIO-sequence for each state, this method
uses multiple (> 1) UIO-sequence(s) for each state. The improvement is obtained by
suitably assigning an UIO-sequence for each transition from the set of multiple UIO-
sequences of its tail state. Given a set MU; of multiple UIO-sequences of minimal length
for each state s;,% = 1,2, ... n of the protocol Gs = (S, E), the UIO-sequence Assignment
Problem (UAP) is to find a valid UIO assignment B of the protocol such that the RPT
of G, + B with respect to B is of minimum length among all valid UIO assignments of
the protocol. The MU-method solves certain specific instances of this problem efficiently
by transforming it into an equivalent multi-stage minimum cost maximum flow problem
[29]. As in the U-method, a minimum length test sequence is obtained by concatenating
the test subsequences and/or input-output of transitions along the minimum cost RPT.
The MU-method guarantees an optimal test sequence for a protocol G, if the test graph

1A bag is a collection of elements over some domain. Unlike sets, bags can have multiple occurrences
of the same element
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G'[B] is connected. It has been proved that the protocols which have either the reset
capability or a self-loop at each state always meet this requirement [29). As we shall see
in Section 3, this approach of obtaining minimum length test sequences does not work for
all protocols.

Methods for further minimizing the length of a test sequence by overlapping test
subsequences of the transitions are presented in [11, 23, 22]. Our focus in this paper
is on the applicability of the UlIO-based approaches on different protocols and we study
the U-method and the MU-method for this purpose. Henceforth, the U-method and the
MU-method are referred to as the UlIO-based methods. We need some more definitions.

Assume that the implementations may have only two types of faults: output fault,
transfer fault [5). Informally, an implementation is said to bhave an output fault (transfer
fault) in a transition, if the transition produces an output (terminates at a state) different
from the expected one as per the specification. The fault coverage of a test sequence is
the ratio of the number of faulty implementations the test sequence can detect to the
total mumber of possible faulty implementations. A test sequence selection method is said
to have complete fault coverage if the fault coverage of any test sequence selected by this
method is 1.

3 Motivation for the Present Work

It has been reported in [4] and [13] that the U-method can be applied to select test
sequence for any protocol @, which satisfies one of the conditions (i) through (v) below.
Note that conditions (i) through (iv) are independent of UIO-sequences whereas condition
(v) is with respect to a particular UIO-sequence for each state.

(i) G, has the reset capability [4].
(i1) G, has a self-loop at each state [4].

(iii) G, has a state, say S, with a self-loop and a reset edge, and each state has a self-loop,
or a reset edge, or an edge to the state s, (18]

‘(iv) For every partition of S into two nonempty subsets Sy and S — Sy, 3s; € S4 and

5; € S — 54 such that there is an edge to some state s, from both s; and s; [13].

(v) For every partition of S into two nonempty subsets S, and S — S4,3s; € 84 and
3; € 5 — S 4 such that state 3i(s;) has an edge to a state 5p(sq) in S and tail(U,) =
tail(U,). Here, U; is an UIO-sequence for the state $5,7=1,2,...,n and it is used
for testing every incoming transition at the state s; [13].

We would like to note that there are real life protocols, for example a simplified
transport protocol as given in [7], which do not satisfy any of these conditions, yet the
U-method can successfully select test sequences for these protocols provided suitable UIO-
sequences are chosen [27].

Careful assignment of UlO-sequences to transitions is necessary since an arbitrary
assignment may not produce a connected test graph despite the existence of such assign-
ment. For example, consider the abstract FSM protocol as given in Figure 1, based on the
responder module of the INRES protocol [18]. Only the core transitions are considered
here. The states 1,82, and s3 correspond to the stages DISCONNECTED, WAIT, and

- CONNECTED of the responder module, respectively. We have slightly modified the origi-

nal labels of the transitions so that the F5M has multiple UIO-sequences. The labels of the
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Figure 1: An FSM based on the INRES protocol: responder

Transition | Label Transition | Label

t1 CR/ICONindl t2 IDISreq/DR1
3 ICONresp/CC t4 CR/ICONind2
t5 IDISreq/DR2 6 DT2/AK

&7 DT1/IDATind&AK

Table 1: Labels of the transitions in Figure 1

transitions are given in Table 1. Let MU, = {t1}, MU, = {12,13}, and MU, = {14,15,16}
be the set of UIO-sequences for the states sy, s, and s3, respectively. Note that the UIO-
sequences are denoted by their corresponding transitions. Let MU = MU, UMU,UMUs.
Clearly, the assignments A; and Aj given in Table 2 and Table 3 , respectively, are valid
UIO assignments of the protocol. Also these assignments are solutions to the UAP. Note
that the test graph G'[A4;] is not connected whereas the other test graph G'[A;] is con-
nected. If the UIO-based methods assign UIO-sequences to the transitions as per A, then
they cannot select a test sequence for this protocol. On the other band, A, facilitates
the UIO-based methods to select an optimal test sequence for the protocol. The above
discussion implies that the UIO-based methods may not always produce a test sequence
even if the protocol has a connected test graph. Unfortunately, there is no way to ensure
that the min-cost max-flow approach will lead to a graph which is connected.

It should also be emphasized that certain protocols may not even have any connected
test graph. Consider the FSM representation of a simplified alternating bit protocol
(receiver) shown in Figure 2. m0/a0 and m1/al are the only UIO-sequences for the states
sy and s, respectively. The FSM neither satisfies the requirement stated in conditions (i)
through (v) nor has a valid UIQ assignment so that the resulting test graph is connected.

Thus the following questions arise: Given a set of multiple UIO-sequences for each
state, does the protocol have a set BE C E of transitions and a valid UIOQ assignment

for BE such that the resulting test graph for BE is connected one which spans all the

Transition | UIO-sequence | Transition | UTO-sequence
i1 () 2,5 i
t3, 16, t7 | t6 t4 3

Table 2: Valid UIO assignment without connected test graph
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Tra.risifion UIO-sequence | Transition | UIO-sequence
31 i3 : t2, 15 i
t3, t6, t7 | t6 t4 t2

Table 3: Valid UIO assignment with connected test graph

m0/al

ml/al

Figure 2: Simplified alternating bit protocol (receiver)

states of the protocol? If so, how to find a minimal set of transitions satisfying the above
condition? (This problem is formalized in Section 4 as the Basic UIO Assignment Problem
(BUAP).) I not, how to generate a test sequence for this protocol. These questions are
addressed in Section 5 and Section 6. While the BUAP assigns UIO-sequences for a
subset of the transitions in G,, the min-cost max-flow problem formulated in Section 6
assigns UlO-sequences for the remaining transitions such that the overall length of the
test sequence is minimized.

In this paper, we propose a new method which can be used to select test sequence
from any FSM-based strongly connected protocol having at least one UIO-sequence for
each state; the proposed method applies optimization techniques at various phases in
order to minimize the length of the test sequence. Our method is a generalization of the
MU-method and it is based on the BUAP and the general RPP. We present an efficient
algorithm for the BUAP and a heuristic algorithm for the RPP before describing our test
selection method.

4 Basic UIO Assignment Problem

As defined earlier, let MU; be a nonempty set of UIO-sequences for each state s; of the
strongly connected specification graph G, = (S, E); MU = MU, UMU, U ... U MU,.
R C E x MU is a relation such that (e,u) € R iff end(e) = head(u). Consider the
undirected graph G’ = (S, E') where E' = {(start(e), tail(u); label(e)Qu)|(e,u) € R}.
Observe that for each valid UIO assignment B, the induced graph G'[B] is a test graph
for dom(B).

The Basic UIO Assignment Problem (BUAP) is to find a minimum
set K C E and a valid UIO assignment B of K such that G’[B] has
the minimum number of connected components spanning G'.

The BUAP can be efficiently solved using the matroid theoretic approach. We demon-
strate this by mapping the BUAP into an equivalent maximal cardinality two-matroid
intersection problem which is solvable in polynomial steps. To start with, let us assume
that G’ is connected and it has no self-loop. Let M; = (E’,T;) be the graphic matroid
of G'. Let Q. be the set of all possible UIO-sequence assignments from MU for the tran-
sition e. Clearly, Q. C R and dom(Q.) = {e}. Let P = {Q.le € E}. Then clearly,
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P is a partition of E'. Let My = (E’,I,) be the partition matroid over the partition
P and integers i, = 1 for all ¢ € E. Suppose that I, is a maximum set such that it
is independent in M; as well as in M,, then it is a valid assignment for dom(Ipes) and
G'[Inas] is acyclic. Since Inuar is a maximum set it spans G. These properties in turn
imply that G'[I;as] contains the minimum number of components. As G'[I 4] is acyclic
no other valid UIO assignments of lesser cardinality will span G'. Hence, dom(Ip.z) and
Loz form a solution to the BUAP. '

e now present an efficient algorithm called basic_assignment for solving the BUAP.
We assume that G’ is connected and it has no self-loop. This algorithm is based on the
algorithms [19, 14] for the maximal cardinality two-matroid intersection problem. While
the algorithms given in [19, 14] are for any two matroids, we adapt their approach for the
intersection of the graphic matroid M; and the partition matroid M; given above, thereby
reducing the overall complexity of the algorithm. Our algorithm basic_assignment starts
with an empty set of edges (that is, H = {)). At each iteration of the repeat...until
loop, the algorithm computes a valid UIO assignment H such that G’ (H] is acyclic and
H has one element more than the number of elements it had in the previous iteration.
The algorithm terminates when there is no such H in the current iteration. The UIQO
assignment H output by the algorithm and dom(H) form a solution to the BUAP. A formal
description of the algorithm is given below. This will be followed by an explanation for this
algorithm. For the sake of simplicity in notation, we shall let an element j = (e,u) € E'
also refer to the edge e.

Algorithm basic.assignment(G,, MU, G, H);
f Input: The digraph G, = (S, E), graph ¢’ = (S, E'), and a set of UIO-sequences MU }
Output: a set of edges H from E' }
H«#¥d;
Vag + {s,1}UE;
repeat
{Construct the digraph Gy = (Vi, Eg)}
Eg 9 H
for each j = (e,u) € B'— H do
begin
if (G'[H U {j}] is acyclic) then
Eg « EgU{(s,j)};
if (e ¢ dom(H)) then
Ey + EgU{(j,1)};
for each k = (¢',4') € H do
begin
if (e = ¢’) then
Ey « BEg U{(j,k)} ;
if (G'[H U {5}] has a unique cycle containing k) then
By « Eg U{(k,4)};
end
end
if (the digraph Gg = (Vyr, Ex) has a path from s to £) then
begin
find a shortest path (s, 41, &, .. vy Jp-1,kp—1,Jp,t) from s to ¢ in Gy;
H (H U {j1|j2, . ‘rjp}) - {kl)ka . ')kp—l
end
else
begin
output(H);
stop
end
for ever
end basic_assignment.
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A particular iteration of the repeat...until loop first constructs a digraph Gy = (Vu, Ey)
for a given H. Here, Vi = {s,t} U E', where s and ¢ are two designated vertices in Vg.
The set of vertices in Vi which represent the edges in B’ is partioned into two sets: H
" and E' — H. The graph Gy is constructed in such a way that the presence of a path from
s to t in this graph guarantees that the cardinality of H during the current iteration can
be increased by one. In order to construct the edge set Ey, the following is done for each
j=(e,u) € E'—H.

If G'{H U {j}] is acyclic, then an edge from s to j is added to Ey. Ife &
dom(H), then an edge from j to ¢ is added to Ey. For each k = (¢/,4') € H,
an edge from j to k is added to Ey if k and j are test edges for the same
transition (that is, if e = €'). Also, if j and k are contained in a cycle of
G'[H U {j}}, then an edge is added to Eg from k to j.

If the digraph Gy has a path from s to ¢ then let (s,j, k1, .., Jp_l,kp_l,J,,,t) be a
shortest path from s to t. As established in Theorem 1, H' = (H U {j1,72,--+Jp}) —
{ks,ks,...,kp—1} i8 a valid assignment such that G'[H] is acyclic. (Note that |H'} =
|H} + 1. ) Therefore, the algorithm proceeds to the next iteration of the repeat...until
loop with H' as H. On the other hand, if G has no path from s to ¢, then the algorithm
_terminates since H computed in the previous iteration and dom(H ) form a solution to
the BUAP (refer to Theorem 2).

Let n, m, and v denote the number of states, the number of transitions and the
maximum number of UIO-sequences in MU for a.ny state of the protocol, respectively
Suppose that the computation needed to check if a given set is mdependent in a given ma-
troid is considered as one step. Then, the algorithm basic_assignment requires O(n(mv)?)
steps. Note that this complexity is better than the complexity (O(mv)?)) of the general
maximum cardinality two-matroid intersection algorithms. Our a.lgonth.m takes at most
O(n?m?v?) time units when the time required to complete each step is also taken into
account. In the presentation of the solution to the BUAP, we have assumed that G’ is
connected and it has no self-loop. The approach can easxly be adapted for the general
case [27]. The following theorems establish the correctness of the algorithm. Proofs for
these theorems and detailed analysis of the algorithm are provided in [27].

Theorem 1 If (5,51, k1, - ,Jp_l,kp_l,Jp, t) is a shortest path from s to t in Gy then
= (HU{j1, 2, ,Jp})—-{ 15 Kk2, - - - kp-1} s @ valid UIO assignment for dom(H') and
G’[H'] is acyclic.

Theorem 2 If Gy has no path from s to t then H is a required solution for the BUAP.

5 Algorithm for the Rural Postperson Problem

As stated earlier, given a strongly connected directed weighted graph G = (V, E) and an
edge subset FF of E, the RPP is to find a tour with minimum cost which traverses each
edge-in FF at least once. This problem is known to be NP-complete. In this section we
present a heuristic algorithm, called app_rpt for the RPP.

Algorithm app_rpt repeatedly applies the rural symmetric augmentation algorithm of
Aho et al [4]. We refer to this as rurelsymm_aug (G, F, G1, E,). This algorithm accepts
a weighted digraph G = (V, E), and an edge set F C E and computes a rural symmetric
augmentation Gy = G[F U Ey] of G with respect to F by finding a2 minimum cost bag F,
of edges from F such that G is symmetric.
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The algorithm app_rpt consists of three steps. The first step calls the algorithm ru-
ral_symm_aug(G, F F, Gy, Eo) to compute a rural symmetric augmentation Go of G with
respect to the given set FF C E. If G, is weakly connected, then the algorithm outputs
an euler tour of Gy as the required tour and terminates. Otherwise it proceeds to the
second step. This step joins the subtours in Gy in an iterative fashion by computing
rural symmetric augmentations of different auxiliary graphs with respect to certain sub-
sets of F'F. The idea of joining subtours is also applied by Frieze et al in their heuristic
algorithm [16] for the asymmetric traveling salesperson problem [33, 26]. The third step
further minimizes the cost of the tour obtained at the end of the second step. The formal
description of the algorithm is given below. :

Algorithm app.rp{G, FF,T)

{ The algorithm finds an approximate RPT I' of G with respect to FF, }
{ where G = (V, E) is a directed weighted graph }

{ each edge and FFCE. }

Step 1 {Initial rural symmetric augmentation }
rural_symm_aug(G, FF, Go, Ey);
if (G is weakly connected) then begin
Compute an euler tour I of Gy ;
Stop
end
else begin
Let 1, G, . ..., Ci¢t be the components of Gy;
T:=FFUEg K :=|¢;
Compute all pair shortest paths in G
end

Step 2 {Compute rural symmetric augmentations of auxiliary graphs }

repeat

{ Construct. an auxiliary weighted digraph ¢’ = (V’, E') }
V=0 B :=8;
F =g
Vi=@ V=4

fori:=1to K do begin
Choose an edge e = (vs,v) € FFNC; ;
Add vy to V; and to V';
Add v; to V; and to V/;
Add e to E' and to F';
Associate the cost of e in E as the cost of e in 5;
end
for each v, € V; do
for each v; & V; such that (vs,v:) € F’ do begin
Add an edge ¢’ = (v, vy) to E;
Let the cost of &’ be that of a shortest path from v; to vy in G;
end
Let G' = (V!, B);
rural_symm_aug(G’, F', G*, E*) ;
Let T" be the bag of all underlying edges in E for the edges in E* U F';
Add all the edges in 7" to T}
Let Cy,Cy, ..., Cy be the components of G*;
K = h;
wntil(K = 1)

Step 3 { Delete unwanted edges from T and compute the final tour }
Construct an undirected graph G” from G[T] by fusing the end vertices
of each edge in F'F and ignoring the orientation of the remaining edges;
Compute an MST 7" of G”;

Let F" be the set of edges in E corresponding to the edges in T”;




The multiple U10 method of test Sequence selection 219

mral.symm_aug(G’, FFypu, 5, E),
Compute an euler tour T of G;
end app_rpz.

The time complexity of the algorithm js O(m?logn + le|*log [c]), where le] is the number
of weakly connected components of the rural Symmetric augmentation obtained in the
first step of the algorithm [27). Let cost(X) denote the total cost of all the edges in bag

» considering each occurrence of an edge in X a4 being separate, We have proved in [27]
that the cost of the tour I produced by our app_rpt algorithm is (1 [togle[])-approzimat
to the cost of an RPT of G with Tespect to FF. We Summarize this result jn the following
theorem.

Theorem 3 Suppose that Topt és an RPT of G with respect to FF and that T ;s the output
given by algorithm apprpt. ThenT 45 ¢ single tour containing eqch edge in FF gt leqst
once and cost(T') < (T+7 loglc”)co.st(l".,,,;), where l¢] is the number of weakly connected
components of the ryrq] Symmetric augmentation obtained in the first step. That is, the
cost of I' 4s (1 + [ loglcl])-approcimate to the cost of an RPT of G with respect to .

6 Generalized UIo testing method

As pointed before, the existing UIO-based methods can be applied only to 3 subset of
strongly connected Pprotocols which i

defined earlier, MU, is 5 nonempty set of UIO-sequences for each state s;. Let MU =
MU, UMD, U . UMU,. Let B S E x MU such that (e,u) € Riff end(e) = head(u).
Let &' = (5, E') where E’ — {(start(e),tail(u);label(e)@u)](e, u) € B}. The generalized
method starts by checking whether the MU-method can be applied to select 5 test sequence
for the given brotocol. If so, the method computes 5 minjimum length test sequence in
Step 1 using the MU-method and terminates, If the MU-method fails to find a solution,
then the generalized method yseg the UIO assignment B obtained in the MU-method

apprpt. In Step 2, the method finds 5 BunImum set, of transitions BE and a valid UI0
assignment H for B such that the resulting test graph G'[H] spans ¢ and G'[H] has the
minimum number of connected components. This is doge by invoking the basic_assignment
algorithm.

In order to minimize the length of the test Sequence, a valid UIQ assignment H' for the
transitions in £ BE and a minima] bag EP of transitions from £ are computed in Step 3
such that the graph G” = | [HUH+EP s Symmetric. Note that each transition in EP is

repeated in G 2 many times ag they occur in EP. H'and EP are obtained by computing
" 2 minimum cost maximum flow f* of 5 multi-stage flow graph Gy = ( Vi, Ef) whose

*The cost of a tour 4 is said to be k-approvimate to that of a tour B if P g) < k, where
cost(A), cost(B) >0, k > 1 ang cost(B) # (.
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Edge T lower bound . cost capacity

3, Z;) 0 i # of out trans. from s; in &
(-'fi;yj} 0 ) - 0 ' # of trans. from s; to s; in E— BE
(%, 2 0 length(u): head(u) = 3; A tail(u) = 85 oo

Zi, 25 0 1 ) [+

(#,1) 0 0 # of out trans. from s; in B

Zi, z5) 1 0 1

Table 4: Parameters on the edges of the flow graph G,

construction is described below.’ Vi = {s, UV, UV, UV, where V, = {z1,22,...,2,},V, =
{995 ., a}, and V, = {z1,22...,2,}. By = E U EzyUE,UE,. UE, U E,, where,
Ew ={(s,z:) |1 <i<n}, Ery = {(2i,y;) | Je € E— BE A start(e) = s; A end(e) =
sityBye = {(w,2;) | Ju € MU; A tad(v) = 8;}, B, = {(2,2;) | Je € EA start(e) =
sifend(e) = s;}, By = {(2:,8) |1 < i < n}, and Er, = {(z;,2;) | Ie,u) € H Astart(e) =
si Atail(u) = s;}. The lower bound, cost, and capacity assigned to the edges of G are
shown in Table 4.

Assignment of UlIO-sequences for the transitions in £ — BE is done using the optimum
flow f* in Gy. For instance, an unit Aow from z; to z; through the vertex y; indicates
that the UIO-sequence u € M. U; with tail(u) = s; is to be assigned to a transition in
E — BE from s; to s;. This assignment H' is computed in Step 3. EP is obtained by
adding a transition from s; to 8;j to EP as many times as the flow F*(#, 2;) along the
edge (2, z;) € E,,.

If G” is connected, then G” is eulerian and an euler tour I'; of G” is computed in
Step 4. Otherwise, an approximate RPT T'; of @G, + F with respect to F' is computed
in this step using the heuristic algorithm app_rpt, where F = H U H'. The tour with
minimum cost is chosen from Ty and T2 and a test sequence is obtained from this tour
by concatenating the subsequences and/or labels of the transitions along this tour. The
algorithm guio_test is described below. :

Algorithm guio_test(G,, MU, G, TS);
Step 1

Apply the MU-method;

Let B be the UIO assignment computed in the MU-method;

Let Ey be a bag in E computed in the MU-method

such that G'[B]+ E; is symmetric;

if (G'[B)+ E; is connected) then

begin
Obtain the test sequence TS by concatenating the labels
of the edges along an euler tour I' of G [B] + Ey;

stop
end
else app_rpt(G, + B, B, Iy)
Step 2
basic_assignment(G., MU,G@, H);
BE ¢ dom(H);
Step 3
C?mpléte a minimum cost maximum flow f* of Gy(Vy, Ey);
H +0;
for each e = (si,55;8/0) € E~ BE do
begin

S (2i,95) = f*(zi,95) ~ 1

Choose (y;, 21) € Ey such that P (5, 2) > 0;

I (w5, 2) & F* (g, 2) ~ 1;

Let u € MU; such that head(y) = s; and tail(u) = s
Add (e, u) to H’;
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Transitions | UIO-sequence | Transitions UIO-sequence
) 3 2, 65 3}
16, t7 6

Table 5: UIO-sequence assignment using min-cost flow

end
F = {(start(e), tail (u); label(e)@u) | (e, v)€e HUH');
EP «8;

for each (z;, z;) € By such that f*(zi,25) >0do
Add a transition from s; to 8; with minimum cost to EP f* (2, z;) times ;
Step 4
i (G"=G'[HUH'|+ EPis connected) then
Find the euler tour I'; of G%;
else app_rpi(G, + F, F, I);
Obtain the test sequence TS by concatenating the labels of
the edges along the tour with minimum cost between T'; and I'y;
end guio.fest.

We would like to note that the multi-stage flow problem formulation used above is similar
to the one given in [29] for assigning UIO-sequences to the transitions in E. While the
assignment obtained in [29] may not result in a connected test graph, an optimal flow of
our flow graph always yields a connected test graph whenever such a test graph exists.
This is due to the fact that any optimal flow in our flow graph always subsumes the UIQ
assignment obtained as a solution to the BUAP in Step 2. It can be seen that the rural
symmetric augmentations made in the first step of app_rpt is redundant, as far as the
guio_test is concerned, since similar augmentation is already done in Step 1 or Step 3 of
guio_test. We do not however modify algorithm app_rpt due to its generic application.

The algorithm takes at most O(n?m?22 4 ¢t log ¢) time units. Here, ¢ = max{|c|, leal},
where {¢| and |¢;| are the number of weakly connected components of G'[B] + E and G” ,
respectively. As before, v denotes the maximum number of UIO-sequences in MU for any
state. The level of optimality of the test sequence obtained by the generalized method
is summarized in the following theorem. The Proof of the theorem directly follows from
Theorem 3 and the algorithm guio_test.

Theorem 4 The length of the test sequence selected in the generalized method has the
following levels of optimality.

(i) if G'[Bl + Ey is connected then it is optimum

(#) if G" is connected then it is optimum subject to the condition that the edges in
dom(H) are preassigned using H » @ solution to the BUAP.

(i) In the worst case, it is always (1+[log(min{cy ], |e;})])-approzimate to the length of
an optimal test sequence, where le1] and |ey| are the number of connected components
of G"[B]+ Ey and G, respectively. : .

We now illustrate the proposed method on the FSM given in Figure 1. Let us consider
the same sets of multiple UIO-sequences which are used in Section 3: M U, = {1},
MU, = {12,13}, and MU, = {24,15,16}. The generalized method finds a test sequence
of minimum length (14) if G'[B] + Ey, computed in Step 1, is connected. If not, let us
suppose that the UIO-assignment of the FSM obtained in Step 1 is A, as given in Table 2.
Since G'[4,] itself is symmetric, By = §. Since G'[A;] + E, is not connected, app.rpt is
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Note: (i) " indicates the infinite capacity (i) Edge lables are the triplet (cost, capacity, flow),
the last entry (flow) is omitted if it is zero (jii) (1, -) is assumed on all the unlabelled edges
(iv) Assign a lower bound of one unit on edges (x2, z1) and (x3, z1) and zero for other edges

Figure 3: Flow graph for the FSM given in Figure 2

invoked in Step 1. Suppose that the set of edges {(s1,s1;¢1 12),(s2,53;23 6)} C E' is
chosen as F in the first iteration of the repeat...until loop of the algorithm app_rpt (Note
that the label of the edges in this set is simply the sequence of underlying transitions in
@,). Then T' = {t1,5} and app_rpt moves to the third step. In Step 3 of app.rpt, the
edge 13 is added so that G'[A;] + E,, t1,15, and {3 together form the tour T'y: i1 2 #1
12 t1 1316 £5 t1 t3 L4 13 46 t6 L7 16 t5 of length 17. The algorithm basic.assignment
is invoked at Step 2 with the above set of multiple UIQ-sequences. Suppose that the
algorithm basic.assignment assigns the UIO-sequences t5 and 2 to transitions 3 and
14, respectively. Note that this assignment in fact yields a connected test graph. The
multi-stage flow graph for computing the UIO assignment for the remaining transitions
as well ag a set of transitions to be added for obtaining G” is shown in Figure 3. Labels
in each edge is a triplet representing the cost, capacity, and the optimal flow, in that
order. The last part of the triplet is omitted if the optimum solution has a zero flow along
that edge. Edges (z2,21) and (z3,21) also have a unit lower bound. The resulting UIO
assignment for the remaining transitions are shown in Table 5. The solution also indicates
that £1 and 3 are the only additional transitions required for obtaining a rural symmetric
augmentation of G, + (H U H') with respect to HU H'. t1 t3 16 16 t716 5 11 t2 1 3 15
t1 t3 t{ 12 is the resulting tour I';. Since the length of T'; is less than the length of I,
the test sequence is obtained by concatenating the input-output of the transitions along
I';. Observe that our generalized method produces a test sequence of length 16, two more
than the optimum test sequence, whereas the MU-method by itself does not guarantee a
test sequence.

. Unlike the W-method [12] or the Wp-method [17], our method does not assume that
the protocol has the reset capability. The fault coverage of this method with respect to
output faults and transfer faults is same as that of the MU-method. Simulation studies
show that the MU-method has very high fault coverage [24]. In [10], Chan et al have es-
tablished that the UIO-based methods have complete fault coverage if the UIO-sequences
are also UIO-sequences of the corresponding state in the IUT. The recent method by Yao
et ol [35] for protocols without reset capability selects test sequences which also include
subsequences for verifying the UIO-sequences in the [UT. We would like to note that the
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inclusion of additional test subsequences for verification of the UIO-sequences increases
the fault coverage at the price of considerable length increase in the test sequence.

7 Conclusions

The optimal UlO-based test selection methods (U-method and MU-method) [4, 30] do
not cover certain protocols which are represented as strongly connected FSMs having at
least one UIO-sequence for each state. In this paper we have generalized the MU-method
so that it can be applied on any such protocol. Note that our approach does not require
the reset capability. The method selects test sequences of different level of optimality
depending on the structure of the protocol as well as the set of UIQ-sequences used. The
method uses solutions to the Basic UIO assignment Problem, and the Rural Postperson
Problem. An efficient algorithm for the BUAP and a heuristic algorithm for the general
RPP are also presented.

Since the length of the test sequence obtained in the last step of our method depends
on the bound on the optimality of the solution obtained by the heuristic algorithm for the
RPP, the length can be minimized further by designing better approximate algorithms
for the RPP. To the best of our knowledge, our algorithm is the first heuristic for the
asymmetric RPP with explicit bound on the optimality of the solution.
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