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The second improvement upon [13] is based upon the
observation that an �0-sequence may be used to check the final
state of a transition. This property is utilized, in the generation of
checking sequences, to allow overlap between the �0-sequences and
the test segments. This further contributes to a reduction in the
length of the checking sequence.

The method given in this paper might be further enhanced in
two ways. First, the connecting transitions might be chosen from
the set of transitions of the given FSM M during optimization,
rather than being drawn from a cycle-free subset (E00) found prior
to optimization. This may be achieved by including a copy of each
transition and relying upon properties of the optimization
algorithm, which starts with the production of a minimal
symmetric augmentation, that guarantee that the set chosen is
cycle free. Second, prefixes of the distinguishing sequence may be
used to recognize states.
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Abstract—We show that, in any given uniform orientation metric plane, the

shortest network interconnecting a given set of points under a fixed topology can

be computed by solving a linear programming problem whose size is bounded by a

polynomial in the number of terminals and the number of legal orientations. When

the given topology is restricted to a Steiner topology, our result implies that the

Steiner minimum tree under a given Steiner topology can be computed in

polynomial time in any given uniform orientation metric with � legal orientations for

any fixed integer � � 2. This settles an open problem posed in a recent paper [3].

Index Terms—Steiner trees, shortest network under a fixed topology, uniform

orientation metric plane, linear programming.

æ

1 INTRODUCTION

LET p1; p2; . . . ; pn be n terminal points (whose locations are fixed) in
a plane with distance function d and pnþ1; pnþ2; . . . ; pnþm be m

Steiner points (whose locations are to be determined) in the same
plane. A topology for these terminal and Steiner points is a graph
T ¼ ðV ;EÞ, where V ¼ fv1; v2; . . . ; vnþmg is the set of ordered
vertices (with vi corresponding to pi) and E is the set of undirected
edges. A network T under topology T is obtained by mapping
vertex vi to location l½i� such that l½i� ¼ pi for i ¼ 1; 2; . . . ; n. The cost
of a network T is the sum of edge costs where the cost of each edge
is measured using the distance between the locations of its two end
vertices:

costðT Þ ¼
X

ðvi;vjÞ2E
dðl½i�; l½j�Þ: ð1Þ

The shortest network under topology T is a network T under

topology T with the minimum possible cost. A shortest network

under a given topology T can be obtained by finding the optimal

locations of the Steiner points which correspond to an optimal

solution to the following optimization problem:

min
l½nþ1� ;...;l½nþm�

X
ðvi;vjÞ2E

dðl½i�; l½j�Þ: ð2Þ

Problem (2) has been studied extensively under the name

multifacility location problem (see [1], [2], [12], [18], [19], [22], [23],

[24] and the references therein). It also has important applications

in the computation of Steiner minimum trees when T is a tree

graph where the degree of vk is less than or equal to 3 for k ¼
1; 2; . . . ; n and exactly 3 for k > n. Such a topology is called a

Steiner topology and a shortest network under a Steiner topology

T is called a Steiner minimum tree under topology T . The Steiner

tree problem with Euclidean and rectilinear distances has attracted

much attention due to its applications in telecommunications and

in design of printed circuit boards [4], [5], [7], [8], [9], [10], [13].
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