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A Diagnosis Algorithm for Constant Degree
Structures and Its Application to VLSI Circuit Testing
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Abstract— A simple diagnosis algorithm is presented for con-
stant degree systems such as rectangular grids connected as tori.
The algorithm determines the status of a unit according to the
size of its faction, a cluster of units that call each other fault-free
but outsiders faulty. Almost all units are correctly identified with
this algorithm under a binomial failure distribution even when
the probability of failure is rather high. The complexity of the
algorithm is O(n), where n is the number of units in a constant
degree system. The application of the algorithm to production
testing of VLSI chips is also considered. With a test board that
houses a large number of chips to be tested, all the chips can be
tested in parallel in a way that they test each other and the test
outcomes, not necessarily correct, are reported to a host system
for analysis. The actual status of each chip is determined by using
this new diagnosis algorithm. The above chip screening process
can be repeated for higher accuracy. It is shown that no more
than two steps are needed in most real situations. Compared with
testing by test equipment that usually tests only one chip at a
time, the saving of test time and the test equipment cost could be
significant with our approach.

Index Terms— Probabilistic diagnosis, system level diagnosis,
diagnosis algorithm, production testing, VLSI testing.

I. INTRODUCTION

HE CLASSICAL system level diagnosis was originated

by Preparata, Metze, and Chien [1]. They suggested
that a multiple processor system be diagnosed by letting the
processors test each other and then by analyzing the outcomes.
The outcomes of these interunit tests are classified as “fault-
free” or “faulty.” It is assumed that a fault-free testing unit
always gives the correct outcome while a faulty testing unit
can give an arbitrary outcome. It is also assumed that the
number of faulty units cannot exceed a predetermined upper
bound ¢. A system is said to be ¢-diagnosable if all faulty units
can be identified as long as the number of faulty units does
not exceed ¢. This model is called the PMC model. In order
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for a system to be t-diagnosable every unit must be tested by
at least ¢ other units.

However, for practical structures such as rectangular and
octagonal grids, a unit is connected only to a small constant
number of other units and therefore the ¢-diagnosability of
these systems is very small although they may contain large
numbers of units. Somani, Agarwal, and Avis [2] considered
diagnosis of sparsely connected systems, and determined that
a large number of fault sets of sizes larger than ¢ (the degree
of diagnosability) can still be identified on grids. Probabilistic
diagnosis has also gained attention recently [3]-[12]. Schein-
erman [3] presented a probabilistic diagnosis algorithm with
the probability of correctly identifying every unit approaching
one as n - oo, where n is the number of units in the
system. It requires that a unit be connected to slightly more
than log n other units, in contrast to ¢,¢ < (n/2), other
units for a system to be ¢-diagnosable. Another probabilistic
algorithm that imposes the same structural requirement was
proposed by Blough [4]. Blough also showed that probabilistic
diagnosis with a high probability is impossible if each unit is
connected only to log n other units. Fussell and Rangarajan
[8] proposed a different testing strategy for diagnosing constant
degree structures. Instead of a single test per test link, multiple
tests are performed corresponding to each test link. More
specifically, slightly more than log n tests are performed with
respect to each test link. They showed that the probability of
correctly identifying every unit approaches one as n — oc.
More recently [9] they further showed that the number of
test links per unit and the number of tests per test link can
be traded off as long as the product of these two parameters
grows as Q(log n) as n — oo. It is assumed (in the analysis)
that the coverage of each test is uniform and independent.
The test outcomes must be analyzed in some way to locate
faulty units. In the case when the test outcomes are analyzed
by a host system, the reporting of test outcomes demands a
higher communication bandwidth as log n bits of data per
test link need to be reported to the host instead of just one
bit per test link. Together with Malek [13], they discussed
the application of their diagnosis algorithm to testing of
integrated circuit wafers. In [13], the authors presented good
performance numbers for practical sized systems rather than
discussing asymptotic behaviors. LaForge er al. [14] presented
a new approach to diagnosing constant degree systems. Instead
of correctly identifying every unit with high probability, it
correctly identifies every faulty unit and a specified fraction
of good units with high probability while the degree of
connection is upper bounded by a constant. Basically, the
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algorithm looks for the largest cluster of units that call each
other fault-free and declares it to be the set of fault-free units.

In this paper, we will present a new diagnosis algorithm
for constant degree systems. As in the traditional system level
diagnosis, only one test is performed with respect to each test
link, and this eases test generation as well as the reporting
of test outcomes. However, unlike probabilistic diagnosis
algorithms wherein the probability of correctly identifying
every unit approaches one when n — oo, our algorithm
correctly identifies a constant fraction (very close to 1) of fault-
free units and a constant fraction (very close to 1) of faulty
units irrespective of the size (except, of course, when n is
trivially small, such as n = 2) of the system. The objective of
this approach differs from that of [14] in that a small fraction of
faulty units are allowed to be mis-identified. The benefit is that
a larger fraction of fault-free units can be correctly identified.

Finally, we will discuss the application of the algorithm to
VLSI circuit testing. Modern VLSI testers usually test one
chip at a time. A very high speed tester may be multiplexed
to test more chips but this can only achieve a moderate
improvement. Our proposed alternative is to have a test board
housing a large number of chips to be tested and through
connections between the chip sockets to perform interchip
tests. Further we add comparators to the test board; the chips
to be tested are not necessarily “processors,” which are able to
perform tests on one another. Basically, they can contain any
digital circuit designed with full scan [15]. A set of pseudo
random or deterministic test vectors can be broadcast to all
chips under test and their results be compared bit by bit
by the comparators {16]. The results of the comparisons are
equivalent to interprocessor tests. A host system is employed
to analyze the test outcomes using our diagnosis algorithm
so as to identify the status of the chips in the same way as
system level diagnosis of multiple processor systems. As the
chips are tested in parallel, the saving of test time could be
significant. The actual test time improvement depends on the
size of the test board.

II. PRELIMINARIES

The test relationship can be modeled by a digraph D(V, A),
called the test digraph, wherein V is the set of vertices, one
corresponding to each unit, and A is the set of arcs. We assume
that if (u,v) belongs to A, then so does (v, u).

As in [4], we assume that the probability of failure of each
unit is independent and identical to some predetermined value
p,0 < p < 1. In other words, the distribution of failure is
binomial. Therefore, if there are a total of n units in the system
and g( f) is the total number of good (bad) units, then g+ f = n
and the expected number of good units is E(g) = n(l — p)
and the expected number of bad units is E(f) = np.

The set of test outcomes is called the syndrome of the
system and can be seen as a function w of arcs. As mentioned
earlier, we assume that, for a fault-free vertex u, w(u,v) =0
if v is fault-free, and w(u,v) = 1 if v is fauity. On the
other hand, if » is faulty, then w(u,v) can take on any
value independent of the status of v. In other words, the test
outcomes conform to the PMC model. However, we further

assume that the probability w(u,v) = 0 when » and v are
both faulty is some small value represented by v,0 < vy < 1.
If w is faulty and v is fault-free, no assumption is made on the
probability of w(u,v) = 0. This test outcome interpretation
can be considered to be a generalization of the BGM model
[17]. In fact, the model defaults into the BGM model when
v = 0.

III. DIAGNOSIS ALGORITHM

In this section, we will present our diagnosis algorithm.
Unlike other probabilistic diagnosis algorithms that use various
forms of voting for deciding the status of a unit, our algorithm
considers the size of a cluster of units that claim each other to
be fault-free but outsiders to be faulty, and then determine the
status of the whole cluster of units. Such a cluster of units is
called a faction. A faction may take various geometric shapes.
In the case that a faction of fault-free units forms a narrow
string, any of them will likely be misidentified to be faulty
with a majority voting based diagnosis algorithm because a
unit in such a faction has very few fault-free neighbors to
vote for it. The geometric shape of a faction is not important
in our algorithm, only is the number of units in the whole
faction.

Before presenting our algorithm, we need to define some
terms and notation. The neighbor set N(v) of a vertex v € V
is the set of vertices adjacent to v in D(V, A). In other words,
a vertex w is in N(v) if (v,u) is in A or (u,v) is in A. Recall
that in our test digraph, (u,v) € A implies (v,u) € A. The
neighbor set N(V') of a subset V' C V is the set of vertices
adjacent to some vertices in V' but not in V' themselves. The
number of neighbors of vertex v in a subset V' C V is denoted
by 8(v,V'). For a subset V' C V, the V'-induced subgraph
of D(V, A), denoted by D[V’], is the subgraph of D(V, A)
whose vertex set is V' and in which there is an arc from u
to v if and only if u and v are both in V’ and (u,v) is in A.
The out-going arc set A*[V'] of V! C V is a subset of the
arc set A whose heads are in V — V'’ and whose tails are in
V', The internal arc set A[V'] of V' is a subset of A whose
heads and tails are both in V’.

With the above preparation, a faction can now be formally
defined as follows:

Definition 3.1: A subset of units V/ C V forms a faction
of V if the following holds:

1) D[V’] is strongly connected, where D[V’] is a subgraph

of D(V, A) induced by V’.

2) Every arc in A[V’] has the weight of 0.

3) Every arc in AT[V’] has the weight of 1.

By the above definition of a faction, we have the following
observation:

Every fault-free vertex is always in a faction. This fact can
be explained as follows: If a fault-free vertex v is completely
isolated by faulty vertices, by our test model, every arc
in A*[v] must assume the weight of 1 and the other two
conditions of Definition 3.1 are trivially satisified. This means
that v forms a faction by itself. Assume that v is adjacent
to some other fault-free vertices. Let V' be the vertex set
containing v and the fault-free vertices to which v is adjacent.
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If any other fault-free vertices are adjacent to any of the
members of V’, add them to V’. Repeat this process until
all vertices adjacent to vertices in V"’ that are outside V' are
faulty. By our test model, every arc in A*[V’] must assume
the weight of 1 and every arc in A[V'] must assume the weight
of 0. Furthermore, we can see, from the construction of V”,
that D[V'] is strongly connected. This means that V' forms a
faction and therefore v is in a faction. Note that faulty vertices
may or may not be in a faction and therefore each faction is
not necessarily a cluster of fault-free vertices.

A threshold, k, is used to determine the status of each unit.
A unit is considered to be fault-free if it is in a faction of size
larger than a predetermined &, or faulty otherwise. This simple
algorithm can be formalized as follows:

Algorithm 3.1 (Fault Identification)

Input: Test digraph D(V, A), syndrome w and threshold

value k.

Output: Set of vertices declared fault-free: R.

Step 1: Set R = 0.

Step 2: For every vertex v € V, set R = RU {v} if v is

in a faction of size larger than k.

End

It is easy to see that the performance of the algorithm
depends on the selection of the threshold k. We will address
this issue in the next section.

From Algorithm 3.1 we can see that the main task in
determining the status of a unit is to determine the size of
its faction. A straightforward procedure to determine the size
is as follows.

1) Form an agreement graph G(V, E), which is an undi-
rected graph, such that an edge (u,v) is in F if and only
if w(u,v) = w(v,u) = 0.

2) Find the connected components of G(V, E) and deter-
mine the sizes of the connected components. It is easy to
see that if G[V’] is a connected component of G(V, E),
then D[V'] is strongly connected; i.e., the first condition
of Definition 3.1 is satisfied. Furthermore, in the test
digraph D(V, A), either (u,v), or (v, ), or both have
the weight of 1 for every vertex u € V’ and every vertex
v € N(u) - V.

3) For each connected component, determine if there are
two vertices in it such that one calls the other “faulty”
and if there is a unit in this component that calls a unit
outside the component “fault-free.” If both answers are
a “no,” the last two conditions of Definition 3.1 are
satisfied and the number of units in the component is the
size of the faction; otherwise, none of the units in the
connected component is in any faction. The two types
of violations are illustrated in Fig. 1, where both the
test digraph and the corresponding agreement graph are
shown. In (a) vertices vg, v1, v9 and vs form a connected
component of the agreement graph. However, because
vs calls vg “faulty,” none of these four vertices is in
any faction. In (b) vertices vy and v; form a connected
component of the agreement graph. Because v; calls v2,
a vertex outside the connected component, “fault-free,”
neither vg nor v; is in any faction.

®)

Fig. 1. Examples of violation.

However, the above procedure can be carried out in a more

efficient way as shown below:

Algorithm 3.2

Input: Test digraph D(V, A), syndrome w and threshold

value k.

Output: Set R of vertices declared fault-free.

Step 1: Set R = { and set status (v) = 2 for every vertex

v € V.

Step 2: If there is a vertex v; € V with status (v;) = 2,

then do the following:

1) Set T = 0, count = 1, status(v;) = 3 and LIST =
{'Ui}.

2) Call the procedure FACTION(v;), which is defined be-
low.

3) Set R = RU List and status v = 0 for every vertex v
on LIST if T = 0 and count> k; otherwise, set status
(v) = 1 for every vertex v on LIST.

Procedure FACTION (v;)

begin

For every vertex v; adjacent to v; with respect to D(V, A),

do the following:
1) If status (v;) = 2,w(v;,v;) = 0 and w(vj,v;) = 0,
set LIST = LIST U{v;}, status (v;) = 3 and count =
count +1 and call FACTION (v;).

2) If w(v;,v;) = 0 and w(v;,v;) = 1, set T = 1.

3) If status (v;) = 3 and either or both of w(v;,v;) and
w(vj,v;) are equal to 1, set T' = 1.

end

Theorem 3.1: A vertex v is placed in R by Algorithm 3.2

if and only if v is in a faction of size larger than k. The
complexity of the algorithm is O(max(|V|, |A|)) for general
digraphs and O(|V|) for constant degree digraphs.

Proof: It is easy to see from the algorithm that a set of
vertices is placed on the same LIST if and only if they are in
the same connected component of the agreement graph. Steps
2 and 3 of the procedure FACTION eliminate the two possible
violations mentioned earlier. Regarding the complexity of the
algorithm, note that each unit is visited exactly once and each
arc is visited twice, once from each direction. The complexity
is therefore O(max(|V|,|Al)). For constant degree digraphs,
since O(|V]) = O(]A|), the complexity is O(|V]). Q.E.D.
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IV. PERFORMANCE ANALYSIS

In this section the performance of Algorithm 3.1 on constant
degree structures will be analyzed. In particular, the rectan-
gular and octagonal grids will be considered. We will show
that the ratio of the expected number of correctly identified
fault-free (faulty) vertices to the expected number of fault-
free (faulty) vertices is very close to 1 for reasonable values
of p,~ and a chosen threshold value k. We will also show that
these ratios increase monotonically with the decrease of p and
the decrease of . As p and ~ cannot be accurately predicted,
this feature allows one to get lower bounds on these ratios as
long as one can get upper bounds on p and ~y. The variance
of the number of fault-free (faulty) units correctly identified
will also be discussed.

For an easier and uniform analysis, we assume that the
test digraph D(V, A) is a torus connected grid. One of the
nice features of the torus connected grids is that every vertex
is in an identical position as far as the connection topology
is concerned. Any contiguous portion of a torus connected
grid has a natural planar embedding as a nontorus connected
grid. A rectangular grid is shown in Fig. 2. For any subset
of vertices V' C V, if the V’-induced subgraph D[V’] is
strongly connected, then D[V’] is called a patch and V' is
said to form the patch. Visually, a patch is a region of the
plane in which the grid is embedded and therefore has a
geometric shape. For the convenience of discussion, if V'
forms a patch of shape S, then V" is also said to have shape
S. The orientation of a patch is also important. Rotating the
template of a patch by 90°,180° or 270° produces a shape
symmetric to the old one. For a rectangular grid, there are six
different patch shapes for patches containing three vertices and
they are listed in Fig. 3. Shapes (a) and (d) are symmetric. The
other four shapes are also symmetric to each other. Moving the
template of a patch horizontally and/or vertically to cover some
other vertices produces a different patch of the same shape.
For instance, in Fig. 2, the subgraphs induced by vertex sets
{vs,v12,v13} and {vi3,vi7,v18} are two different patches.
There are s patches of size s that a vertex can be in for any
specific patch shape (this is true only when the grid is big
enough). For example, in Fig. 2, vertex v;3 can be in any of
the three patches of shape (b) (Fig. 3), whose size is three,
formed by {vs,v12,v13}, {v13,v17,v18} and {vg, vi3,v14}. If
there are m different patch shapes of size s, then the number
of different patches of size s that a vertex can be in is m times
s (this is true only when the grid is big enough). For example,
in Fig. 2, the number of patches of size three that vertex v3
can be in is 18, since there are six patch shapes of size three.

We next introduce the concept of an isolated set, which is
useful in the performance analysis of our diagnosis algorithm.
An isolated set is a maximal size cluster of vertices that
evaluate each other to be fault-free. This concept is formally
defined as follows.

Definition 4.1: A subset of vertices V/ C V forms an
isolated set if the following holds:

1) D[V'] is strongly connected, where D[V'] is a subgraph

of D(V, A) induced by V’.
2) Every arc in A[V’] has the weight of 0;

O

(d) (e) ®
Patch shapes of size three.

Fig. 3.

3) For every vertex v € V' and every vertex v € N(u) —
V7, either (u,v), or (v, u), or both have the weight of 1.
An isolated set may possibly be a faction but is not necessarily
one while a faction is always an isolated set. The difference is
illustrated in Fig. 4. Vertices u and v call each other fault-free
and for each of the other vertices either it calls one of u and
v faulty or it is called faulty by one of u and v. Therefore,
u and v form an isolated set. However, they do not form a
faction because u calls w, an outsider, fault-free.

The probability that a fault-free vertex v is in a faction of
patch shape S is denoted by ¢s(v, S). The probability that a
fault-free vertex v is in a faction of size no larger than & is
denoted by gr(v, k). The probability that a faulty vertex v is
in an isolated set of patch shape S is denoted by g¢;(v,.S) and
the probability that v is in an isolated set of size no larger
than k& is denoted by ¢r(v, k). The probability that a fault-
free vertex v is correctly identified is denoted by Pg(v) and
the probability that a faulty vertex v is correctly identified is
denoted by Pp(v). In the following, Ps represents one of the
patches of shape S that contain v; s is the number of vertices
in any patch of shape S; and V(Ps) represents its vertex set.
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Fig. 4. An example of a nonfaction isolated set.

Lemma 4.1: For a fault-free vertex v and a patch shape S,
the following holds:

g5(v,8) = s(1 — p)*~tpNV(PsII, o)

For a fault-free vertex v and threshold value k, the following
holds

gr(v, k)= ) a0, 9). )

S,s<k

Proof: As V(Ps) contains v and v is fault-free, all
members of V(Pg) must be fault-free for V(Pg) to form
a faction. Furthermore, all vertices in N(V(Ps)) must be
faulty. The event that V(Pg) forms a faction implies that
s— 1 more specific vertices are fault-free and that | N (V (Ps))|
specific vertices are faulty. As every vertex happens to be
faulty with the probability of p, the probability that the above
event happens is (1 — p)*~!plN(V(Ps))I Because there are s
patches of shape S that v can be in and because the events that
these patches form factions are pairwise disjoint (otherwise we
can arrive at a contradiction that a vertex is both faulty and
fault-free), (1) follows. Equation 2 follows from the fact that
the events that v is in factions of different patch shapes are
exclusive. Q.ED.

Lemma 4.2: For a faulty vertex v and a patch shape S, the
following holds

S—l,ylA[V('Ps)]l

II -p+p(a—»@VEN) 3
wEN(V(Ps))

gi(v, S) =sp

For a faulty vertex v and threshold value k, the following holds

a(k)= > @(9). @)

S,s<k

Proof: V(Pg) forms an isolated set only if all arcs in
A[V (Pg)] assume the weight of 0 and at least one of the arcs
(u,w) and (w,u) assumes the weight of 1 for every vertex
u € N(V(Ps)) and each of its neighbors w € V(Ps). As
v is faulty, every vertex in V(Ps) must be faulty for V(Pg)
to be an isolated set. This means that s — 1 other vertices are
faulty and it happens with the probability of p°~!. By our
model, the probability that all arcs in A[V(Pg)] assume the
weight of 0 is yAVPl If 4 is fault-free, v will always
evaluate its neighbors in V(Pg) to be faulty. If v is faulty,
the probability that at least one of v and w evaluates the other

to be faulty is 1 — v2. The probability that at least one arc
between u and each of its neighbors in V(Pg) assumes the
weight of 1 is therefore 1 — p + p(1 — 42)°V(Ps). Note
that there are s patches of shape S that v can be in and that
the events that these s patches form isolated sets are pairwise
disjoint. Combine all these conditions together, we have (3).
Equation 4 follows from the fact that isolated sets of different
patch shapes are exclusive. This completes the proof. Q.E.D.

Theorem 4.1: Consider all vertices in R produced by Al-
gorithm 3.1 to be fault-free and all vertices in V' — R to be
faulty. The probability of correct identification Pg(v) for every
fault-free vertex v is 1 —gp(v, k) and the probability of correct
identification Pg(v) for every faulty vertex v is greater than
qr(v, k).

Proof: As was observed earlier, a fault-free vertex is
always in a faction, no matter what its size may be. If a fault-
free vertex is not in a faction of size no larger than k, then it is
in a faction of size larger than k. Since a fault-free vertex v is
identified as fault-free by Algorithm 3.1 if and only if v is in a
faction of size larger than k and since the probability that v is
in a faction of size no larger than & is gr (v, k), the probability
that v is correctly identified is 1 — g (v, k). If a faulty vertex
v is in an isolated set of size no larger than k, then it cannot
be in a faction of size larger than k and therefore it is correctly
identified. Note that even if v is not in an isolated set of size no
larger than k, it is still possible that v is not in a faction of size
larger than & and therefore it will not be identified to be fault-
free. The probability that v is not in an isolated set of size no
larger than k nor in a faction of size larger than k is obviously
greater than 0. Hence the probability of correct identification
for a faulty vertex v is larger than ¢;(v, k). Q.E.D.

From Theorem 4.1, the probability of correct identification
of a vertex v depends on the value of k. There is a conflict
on the selection of the value of k. In order to get a higher
probability of correct identification of a fault-free vertex, a
smaller threshold value k is needed while a larger threshold
value k is needed for a higher probability of correct identifi-
cation of a faulty vertex. This means a good balance is needed
in choosing the threshold value k. Other factors that should
be considered in choosing the value of & are the probability of
failure p and the probability v of a faulty processor claiming
another faulty processor to be fault-free. Fortunately, we will
see that with k = 2 Algorithm 3.1 is suited to the rectangular
and octagonal grids for wide ranges of values of p and . With
such a value of k, both fault-free and faulty vertices can be
correctly identified with high probabilities.

To calculate gr(v,k) and g¢s(v,k) for rectangular and
octagonal grids, we need to enumerate all patch shapes of
size no larger than k. For the convenience of enumerating,
we consider all patch shapes that are symmetric to be an
equivalence class and take any one representative from this
class and call it a basic patch shape. In calculating gr(v, k)
and gy (v, k), we take into account the number of occurrences
of a basic patch shape—the number of patch shapes in the
corresponding equivalence class.

Figs. 5 and 6 are complete lists of basic patch shapes of
sizes no larger than 2 on a rectangular grid and on an octagonal
grid, respectively, with the number of symmetric patch shapes



368 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 4, APRIL 1995

o o

d=1,1A[V( P)]I=0 d=2, IA[V( p)]I=2
() 0)

Fig. 5. Patch shapes of sizes no larger than 2 on a rectangular grid.

X oK

d=1, IA[V(p)]I=0, a,=8 d=2, IA[V(p)lI=2,a; =6, a =4

(@ (b)

d=2, IA[V(P)]I=2, 2,=10, 2 ;=2
©

Fig. 6. Patch shapes of sizes no larger than 2 on an octagonal grid.

d and the number of internal arcs |A[V(P)]| indicated. For
the octagonal grid, another set of parameters a; and aq is also
given in the figure, where a; is the number of vertices in
N(V(P)) adjacent to exactly one vertex in V(P) and a, is
the number of vertices in N(V(P)) adjacent to exactly two
vertices in V' (P). The vertices in a patch P are shaded, and
internal arcs are represented by thick lines. From these figures,
we can deduce analytic expressions for gr(v,2) and gr(v, 2).
In what follows, we assume that a grid has at least four rows
and at least four columns.

Lemma 4.3: For a vertex v on a torus connected rectangular
grid, the following holds:

D qr(v,2) = p* +4(1 — p)p°.

2) qr(v,2) = (1 - py*)* +4(1 - p7*)°pr%.

Proof: Consider Fig. 5. For patch shape (a) we have
s = 1 and |[N(V(P))| = 4. The number of symmetric
shapes is 1. By Lemma 4.1, we have a corresponding term
of p* in gr(v,2). For patch shape (b), we have s = 2 and
IN(V(P))| = 6. The number of symmetric shapes is 2. This
brings about a term of 2-2(1 — p)p®. This completes the proof
of condition 1.

Note that in both patch shapes, §(u, V(P)) = 1 for every
vertex u € N(V(P)). Also note that |[N(V(P))| = 4 and
|A[V(P)]| = 0 for shape (a) and |[N(V(P))] = 6 and
|A[V(P)]| = 2 for shape (b). Applying Lemma 4.2, we have
condition 2. Q.E.D.

Lemma 4.4: For a vertex v on a torus connected octagonal
grid, the followmg holds:

) qp(v 2)=p® +4(L—p)p® +4(1 p)p'?.

2) qrv 2) = (1-pv*)® +4(1 - py?)° (1-p+p(l-

22ty +4(1 - py®) (1~ p + p(1 = 7%)%) Py
Proof It can be proved in a way similar to the proof

of Lemma 4.3. One only needs to note that here 6(u, V(P))
varies from vertex to vertex. There are a; vertices u in
N(V(P)) with §(u, V(P)) = 1 and a, vertices u in N (V(P))
with 6(u, V(P)) = 2. Q.E.D.

So far, we have discussed the probability of correctly
identifying each individual vertex. A more useful criterion
for assessing an algorithm is the percentage of the vertices
that are correctly identified by the algorithm. This translates to
finding the ratio of the expected number of correctly identified
fault-free (faulty) vertices to the expected number of fault-free
(faulty) vertices in the whole system. An interesting result is,
as one will see in the following, that these ratios are identical
to the probability of correctly identifying a fault-free vertex
and the probability of correctly identifying a faulty vertex,
respectively. Let g and f be the number of fault-free vertices
and the number of faulty vertices, respectively. Let g. and
fc be the number of correctly identified faulty-free vertices
and the number of correctly identified faulty vertices. These
numbers are random variables. We use E[h] to represent the
expectation of a random variable h.

Lemma 4.5: For a torus connected grid, the following
holds:

1)

Elg.]

Elg] Folv).
2)

E[f]

& - )

where v is a vertex on the grid.

Proof: Let X; be a random variable such that X; = 1 if
vertex v; is fault-free and correctly identified, and X; =
otherwise. Obviously, g. = X;X; and therefore E[g.] =
¥;E[X;]. Note that E[X;] = (1 — p)Pa(vi). As Pg(v)
assumes the same value for every vertex, Efg.] = n(l —
p)Pg(v), where n is the number of vertices in the system.
Since E[g] = n(1 — p), we have the first equation of Lemma
4.5. The proof of the second equation is similar and hence
omitted. Q.E.D.

Using the equations of Lemma 4.3 and Lemma 4.4, we
calculated the probabilities of correct identification Pg(v) and
Pg(v) (using gr(v,2) as an approximation) for a wide variety
of values of p and ~y. The results are listed in Tables I and
II for the rectangular grid and octagonal grid, respectively.
We can see from these tables that both fault-free and faulty
vertices can be correctly identified with high probability in a
wide variety of situations. By Lemma 4.5, Tables I and II also
represent the ratios Elg.]/FElg] and E[f.]/E|f].

Lemma 4.5 shows the fraction of fault-free (faulty) vertices
that are correctly identified on the average. It is not clear yet
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TABLE 1
PERFORMANCE OF THE ALGORITHM ON A RECTANGULAR GRID WITH k = 2

P q1(v,2) < Pg(v) Pe(v)
+=0.05 ~v=0.1 v=0.2 | v=0.3

v=0.4

369

0.1 | 0.999999 | 0.99998 | 0.9997 | 0.999
0.2 | 0.999996 | 0.99993 { 0.999 | 0.994
0.3 ]0.99999 | 0.9998 | 0.998 | 0.988
0.4 [ 0.99998 | 0.9997 | 0.996 | 0.979
0.5 0.99997 [ 0.9995 | 0.993 | 0.968
0.6 [ 0.99996 | 0.9994 | 0.990 | 0.956

0.996
0.983
0.964
0.940
0.910
0.877

0.9999
0.998
0.990
0.965
0.906
0.796

TABLE 11
PERFORMANCE OF THE ALGORITHM ON AN OCTAGONAL GRID WITH k = 2

P q1(v,2) < Pg(v) Pg(v)
v=0.05 y=0.2 ] v=0.3
0.1 0.99999 0.999 | 0.994
0.2 | 0.99998 0.995 | 0.977
0.3 | 0.99995 0.989 } 0.951
0.4 | 0.99992 0.981 | 0.919
0.5 | 0.9999 0.971 | 0.882
0.6 | 0.9998 0.960 } 0.841

~v=0.1
0.9999
0.9997
0.9993
0.999
0.998
0.997

v=0.4
0.982
0.935
0.871
0.796
0.717
0.637

0.99999999
0.999997
0.9999
0.999
0.993

0.970

how far the performance of each instance of diagnosis may
deviate from the expectation. The following theorem gives
lower bounds on the probability that the performance is within
a range of the expectation. In the following, P[(predicate))
represents the probability that (predicate) holds, Var [X] the
variance of a random variable X and Cov {X;, X;] the covari-
ance of random variables X; and X;.

Theorem 4.2: For a torus connected rectangular grid, the
threshold £k = 2 and a constant ¢,0 < t< 1, the following
holds:

1))
ge |
P{E[g] >tPG]J
51 411 - (1 - p)Pg)
T 41(1-(1-p)Ps)+n(l-pPe(l-t)*
2)
e B 41(1 — pPp)
Plef> 7] > - e
Proof: 1Tt is easy to see that
P [% > tPG] = Plg. > tPE[g]]

= Plgc > tE]gc]].
By the one-sided inequality [18], we have

Var [g.]
Plg.> tE[!]c” >1- Var [gc] + (E[gc])Z(l —t)2 ’

Let X; be a random variable such that X; = 1 if vertex v;
is fault-free and correctly identified and X; = 0, otherwise.

&)

Fig. 7.

Correlated region.

It is clear that

n n
Var [g.] = zVar[Xi} + Z Cov [X;, X;]-
i=1 i,j=1,i%j
The number of edges on a shortest path from vertex v;
to vertex v; is called the distance between v; and v;. As
can be seen from the proof of Lemma 4.3, the event that a
fault-free vertex v; is correctly identified is independent of the
event that a fault-free vertex v; is correctly identified if the
distance between v; and v; is greater than 4. By hypothesis,
v; and v; occur to be fault-free independently. Therefore,
Cov [X;,X;] = 0 for any two vertices v; and v; whose
distance is greater than 4. We only need to concentrate on
those vertices v;’s whose distances from v; are less than
or equal to 4 in counting Cov [v;,v;] for vertex v;. These
v;’s are on a diamond of diameter 8 centered at v;, as
shown in Fig. 7. As we can see, there are altogether 40 of
them. Note that (Cov [X;, X;])? < Var [X;] Var [X;] and that
Var [X;] = Var[X,]. We have Var[g.] < 41n'Var [X;]. It is
obvious that Var [X;] = (1 —p)Ps(1 — (1 —p)Pg). Therefore

Var[g] < 41n(1 — p)Ps(1 — (1 — p)Ps).

Apply the above inequality to (5), condition 1 of the theo-
rem follows. The proof of condition 2 is similar and hence
omitted. Q.E.D.

Similar results can also be deduced for the octagonal grids.
As an immediate implication of Theorem 4.2, we have the
following corollary:

Corollary 4.1: For a torus connected grid, k = 2,0 <t <1
and 0 < p < 1, the following holds

1) For any ¢,0 < e<1, there is an N such that when
n >N

P[ Je

E[g] > tPG:| > e
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Fig. 8.

2) For any €,0 < e<1, there is an N such that when
n >N

fe
P {m >tP, B] > e

Fig. 8 shows how the number of vertices n varies with the
probability of failure p such that P[(g./E{g]) > 0.9P¢] > 0.9.
The results were obtained by computing the exact value of
Var [g.]. It is done by exhausting the 40 correlation cases
mentioned in the proof of Theorem 4.2. As can be seen from
the figure, for a moderately large size, g./E[g] falls into a
small range of its expectation with high probability.

In practice, the parameters p and  cannot be accurately
predicted. Now let us consider how the deviations of the
values of these parameters affect the probabilities Pg and Pg
predetermined with predicted p and « values. As stated in the
following theorem, one can get lower bounds on the actual
values of Pz and Pp as long as one can get upper bounds
on p and 7.

Theorem 4.3: For a torus connected rectangular or octag-
onal grid and the threshold k¥ = 2,P; > 1 ~ ¢} as long
as p’ < p” and Pg>qf as long as p’ < p” and v < 4",
where P/, and Py are the probabilities of correct identification
determined with p = p’ and v = ~' while ¢} and ¢} are
determined with p = p” and v = «".

Proof: 1t suffices to show that g increases monotoni-
cally with the increase of p and that q; decreases monoton-
ically with the increase of p and the increase of y. We only
consider the rectangular grids to save space. From Lemma
4.3, we know that gr = p* + 4(1 — p)p®. Let us compute
the derivative

d(qr)
d(p)

=4p® + 24p° — 28p°

=4p3(1 + 6p® — Tp%)
=4p*{(1 - p*) + (7p° - Tp*)}.

Since 0 < p < 1,(d(gr)/d(p)) > 0, which implies that gp
increases monotonically with the increase of p. Also from
Lemma 4.3 we have that g7 = (1 — pv2)* + 4(1 — py?)®py2.
Substitute 3 for py2. We have q; = (1 — 8)* + 4(1 — 8)88.
Let us take the derivative

dlgr) _ 1 s 6 Ay
10 = 4(1-8)° + (4(1 - B)° —248(1 - B)°) (6

=-48(1 - B)*{(3 - 3P)? + 2B7}. @)

As p and v beth range from 0 to 1, 3 also ranges from 0 to
1. We can see from the above that d(qr)/d(5) < 0. Now let
us take the original partial derivatives

Olar) _dlar) 9(B) _ »dlar)

a(p) _ d(B) ap) | dB)
dar) _d(ar) 08) _, dlar)
a(y) ~dp) o) - Frap) =

This completes the proof. Q.E.D.

V. APPLICATION TO VLSI CIRCUIT TESTING

In this section we will show how our diagnosis algorithm
can be applied in production testing of VLSI chips. The chips
to be tested can be arbitrary digital circuits, not necessarily
“processors.” We assume that the chips to be tested are
identical. We are not concerned with the generation of test
data. We assume that for at least one test vector a bad chip
will produce a response different from that produced by a
good chip. If some faults are not detectable, then they cannot
be detected by any other method with the same set of test data.
With this assumption, the PMC model is justified.

To perform interunit tests we have a test board as shown in
Fig. 9. There are four comparators for each chip socket, each
corresponding to one of its neighbors. The connection topology
is a torus-connected rectangular grid. Test data is broadcast
to all chips and each chip (its comparators) compares its
results with those from its neighbors. A chip (its comparator)
evaluates a neighbor fault-free if and only if the responses are
identical for all test vectors.

The outcomes of the comparisons can be reported to a host
system through the output buses as shown in Fig. 10. Each
column of chips shares a common output bus. The latches
in the four comparators for each chip, where the comparison
outcomes are held, are connected into a shift register for
outcome reporting. Each register has an output strobe pin.
The strobe pins are connected together for each row of the
grid. At any one time during outcome reporting exactly one
row of registers is selected. The selection can be done through
the shift register as shown at the left edge of the figure. If
the number of output buses is more than that the host system
can accommodate, they can be grouped and each group be
equipped with a shift register.

With the above arrangement test data can be broadcast to
the chips to be tested and the outcomes of the comparison tests
be reported to the host system. Our diagnosis algorithm can
then be run on the host system to identify the status of the
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chips. The chips that are declared fault-free are retained and
those that are declared faulty are discarded.

The chip testing scheme described above has the following
characteristics.

1) The chips to be tested can be arbitrary digital circuits,
not necessarily “processors”.

2) There is no need for storing the correct test responses
anywhere nor do we even need to know what the correct
responses are.

3) The massive transmission of test responses (chip re-
sponses to test vectors) is limited to local neighborhoods
and is carried out in parallel. As only the comparison out-
comes (four bits of data per unit) need to be transmitted
to the host, the demand on communication bandwidth
is low.

Now let us take an example to see the performance of this
scheme. Assume that the failure rate of the given batch of
chips to be tested is p = 0.1 (we also consider this to be
the probability that a chip is faulty). We also assume that
the probability that a faulty chip calls another faulty chip
“fault-free” is 0.1; i.e., v = 0.1. After one application of the
procedure the number of fault-free chips correctly identified
(in the sense of expectation, the same for the following) is
n(1 — p)Ps and the number of faulty units wrongly identified
as fault-free is np(1 — Pg), where n is the total number of
chips in the batch. The failure rate of the set of chips that
passed the screening procedure is therefore

o = np(l — Pp) _ p(1 - Pp)
np(l — Pg)+n(l —p)Ps p(1-Pp)+(1-p)Ps’

Using the formulae of last section to calculate Pg and P we
get from the above equation that p’ = 1.99 x 1075 If this
failure rate is not low enough, the test-diagnosis screening
procedure can be repeated once more and we can get a new
failure rate of passed chips of p” = 1 x 10720, This is
obviously an extremely low failure rate and acceptable in
almost all real situations. Assume that the total number of
chips in the batch is 10°. The number of faulty chips that
passed the screening is virtually zero. The expense is throwing
away only about 0.01% of good chips. The saving of test time
is obviously significant, and the extent of the saving depends
on the size of the test board.

VI. CONCLUSION

We have presented a simple and efficient diagnosis algo-
rithm for constant degree structures. The algorithm is shown
to be able to correctly identify almost all units even when
the probability of failure is rather high. The application of
the algorithm to the production testing of VLSI chips is also
presented. With a very simple test board, a large number of
chips can be tested in parallel and the actual status of the
chips can be determined using our diagnosis algorithm. This
screening procedure can be repeated for a higher accuracy of
diagnosis. It is shown that an extremely high accuracy can be
achieved with only two repetitions. The saving of test time and
the test equipment cost could be significant with this approach.
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