ture Notes ir

~ Computer Science -




ON THE USE OF SYNCHRONIZERS FOR ASYNCHRONOUS
COMMUNICATION NETWORKS

K.B. LAKSHMANAN
Department of Coamputer Science
AND

K. THULASIRAMAN
Department of Electrical and Computer Engineering
Concordia University
Montreal, Quebec H3G 1M8, Canada

ABSTRACT

A synchronizer is a mechanism that helps siﬁulate a synchronous

communication network on an asynchronous one. 1In this paper, we draw

attention to certain difficulties that one may face in the implementa-

tion of a synchronizer mechanism, if the model of computation assumed
does not permit delaying the processing of messages once received. To
illustrate the issues, we present the design of a simple, time-effi-
cient synchronizer. Using a synchronous breédth—fifst—search tree
protocol, it will be shown that this synchronizer will not work cor-
rectly in all cases, because:the simulation may not be exact. Similar
difficulties arise in the implementation of other synchronizers pro-
posed earlier in the literature, if the messages of the sjnchronous
algorithm do not carry the pulse number. It is easy to suggest reme-
dies for these difficﬁlties which are at variance with the model of
computation assumed. But, if we must stay within this model, we show
that only the time-inefficient B-synchronizer known earlier can be cor-

rected. We also present simple modifications to ensure this.

This research was supported in part by Concordia University under
grant CASA-N67, the Natural Sciences and Engineering Research Council
of Canada under grant A9194 and by the FCAR, Quebec under the Actions
Spontanées grant 87AS2407.

-d



258
I. INTRODUCTION

Consider a distributed comfuting system consisting of a number of
processors interconnected -through communication links. The processors
do not share a common memory, have only local information and hence
must communicate frequently to coordinate any computation to be accom—
plished. The interconnection network can be modeled by an undirected
communication graph G = (V,E), where nodes correspond to processors and
edges to bidirectional communication 1links. Recently, a number of
computational problems have been studied for such distributed systems,
with potential applications in the design of data communication ﬁet—
works, distributed operating systems, distributed databases, ete. 1In
such studies, two kin&s of assumption‘s are typlcal, as far as the com—
munication network 1s concerned. In an asynéhronous network model
[2-10,12,13], the exchange of messages between two neighboring proces-
sors is asynchromous in that the sender always hands over the message
to the communication subsystem and procee;is with its own local task.
The communication subsystem, we assume, will deliver the message at its
destination, without 1loss or any alteration, after a finite but
undetermined time lapse. On the other hand, in a synchronous network
model [2,3,11,14], we assume the existence of a global clock, so that
all network messages ére sent only when the clock pulse is generated.
Moreover, a message sent by any processor to its neighbor arrives at
its destination before the next pulse. Understandably, these assump-
tions make the ‘design, verification and analysis of protocols for syn~
chronous networks much simpler, in contrast to those for asynchronous

ones.




259

In the study of distributed algorithms, the complexity measures
used to evaluate their performances relate only to the communication
aspect, since messages are assumed to be processed in negligible compu-
tation time. The message complexity is the total number of messages
transmittéa during the execution of the algorithm. The time complexity
is the time that elapses from the beginning to the termination of the
algorithm, assuming that the delay in any link is exactly one unit of
time. 1In an asynchronous network, a time complexity analysis provides
a way of assessing the extent of parallelism present in the algorithm,
and it should be noted that the assumption of unit delay in communica-
tion links is made only for the purpose qf this analysis. The algo-
rithm is expected to operéte correctly under the actual assumption that
the delay is fiqite but cannot be bounded.

A synchronizer 1s a mechanism that helps simulate a syachronous
network on an asynchromous one. It is intended to be used ag an addi-~
tional layer of software, transparent to the user, on top of an asyn-
chronous network, so that it can now execute synchronous protocols.
Thus, with a Syﬁchronizer, the computation in an asynchronous network
proceeds in rounds, trying to simulate the pulse-by-pulse activity of a
synchronous protocol. For this purpose, a synchronizer basically gen-
erates a sequence of clock pulses at each node of the network, satisfy-
ing the following property: A new pulse is generated at a node only
after it receives all the messages of the synchronous algorithm, sent
to that node by its neighbors at the previous pulses [2]. Clearly, a
synchronizer will require additional mesgages. Let CPulse and T

pulse

denote the message and time requirements added by the synchronizer per

[

L e o e e S T e



260

and T denote

pulse of the synchronous algorithm. Also, let Cinit init

the message and time requirements of the synchronizer during its
initialization phase. Then the complexities of the "synchronous algo-
rithm S and the asynchronous algorithm A, obtained by combining S with

a synchronizei:, are related as follows:

= *
CA CS + cpulse TS + cinit’

= *
and Ta Tpulse Ts+ Tinie

Minimizing the message and time complexity overheads 1is the main issue
in the design of synchronizers.

In [2,3], Awerbuch proposes the use of synchronizers as a general
methodology for designing efficient distributed algorithms for asyn—
chronous networks.. In fact, he studies three different synchronizers -
simply named «, B and y synchronizers. The a-synchronizer is time-

efficient and has C

pulse = 0(m) and T

pulse = 0(1), where m is the num—

ber of communication links or edges in the network. The B-synchro-

nizer, on the other hand, is message-efficient and has Cp = 0(n)

ulse

and Tpulse = 0(n), where n is the number of processors or nodes in the’

network. The y-synchronizer combines the features of both a and P

synchronizers and achieves C
: puls

k is a design parameter such that 1 < k < n. Thus, the y-synchronizer

e = 0(nk) and Tpulse = 0(logkn), where
exhibits a trade-off between its message and time complexities, which
Awerbuch proves to be within a constant factor of the lower bound.
Even though it was not proposed as a general technique for design~
ing asynchronous protocols, the use of synchronizer mechanisms for

specific problems can be traced back to even earlier literature. In




261

[6], Chang uses a synchronizer mechanism, similar to the p-synchronizer
= he calls his scheme a clocked network - for the problem of construc~
ting a shortest path tree in an asynchronous network. Again, in [10],
Gallager uses both « and B synchronizer mechanisms in the context of
constructi;ng breadth~first-search trees.

The issues discussed in this paper and the solutions we propose
are intimately tied to the model of computation used. For asynchronous
computations we follow. the model used in [2-;10,12,13] and for synchro-
nous computations we follow the model used in {2,3,11,14]. These
models are by far the most commonly used ones. In particular, we want
to draw attention to assumption (d) in [13_]. As stated there, in these
models it is assumed »thz;t all messages'received at a processor are
stamped with the identity of the sender and. transferred to a single
common _queue befofe being processed one by one. It 1is also assumed
that the actions necessary for processing a message can all be per—
formed in negligible computlation time, witﬁout wait once started, and
also, uninterrupted by the arrival of other messages. When processing
of a messagé -is.comp‘lete, it is discarded. Thus, in this model of com—.
putation, it is not permitted to delay the processing of a message once
received.

In this paper, we draw attention to certain difficulties one may
face in the iwplementation of a synchronizer mechanism with the above
restriction. To illustrate the issues, we present the design of a
simple, time~efficient synchronizer in Section II. Using a synchronous
breadth~first-search (BFS) protocol, it will be shown in Section III

that this synchronizer will not work correctly in all cases, because



262

the simulation may not be exact. However for some problems, it may be
possible to modify the original algorithm slightly, and then employ
this form of synchronizer. We also point out that similar difficulties
arise 1nkthe implementation of the synchroaizers proposed by Awerbuch,
if the messages of the synchronous algorithm do not carry the pulse
number. In Section IV, we present possible remedies for the diffi-
culties faced in the implementation of the synchronizers and analyze
their implications vis-a-vis the model assumed. A modification to the
B-synchroaizer is then propogsed which leads to a correct synchronizer

with C = 0(n) and Tpulse = 0(n). We also show that the a and y

pulse

synchronlzers, however, cannot be corrected.

II. IMPLEMENTATION OF A SYNCHRONIZER

As mentioned. earlier, in order to simulate the execution of a
synchronous protocol, a synchronizer bas;cally generates a sequence of
clock pulses at each node of the asynchronous network. As stated by
Awerbuch {2], the eclock pulses generated must satisfy the following
property: A new pulse is generated at a node only after it receives
all the messages of the synchronous algorithm, sent to that node by its
neighbors af the previous pulses. Awerbuch also asserts that this
property ensures that the asynchronous network behaves as a synchronous
one from the point of view of a particular execution of the synchronous
algorithm. Assuming this assertion to be correct, a simple, time-—
efficient synchronizer can be designed as follows.

Every node sending a message to its neighbor ensures that all

useful messages of the synchronous algorithm are sent before a GO




263

message. Also, each node waits for an explicit GO message from each
of its neighbors before it starts a‘new pulse. Thus, by the first—in,
first—out property of the communication links, receipt of all GO mes-
sages signals that the node is ready to initiate actions corresponding
to the nexit pulse. Observe that GO messages basically add O(m) message
and 0(1) time complexity overheads per pulse of the synchronous algo—
rithm. In order to implement such a mechanism, we also need an
initialization phase so that all nodes wakeup and send GO messages to
their neighbor;, thereby enabling every node to perform the first round
of actions, corresponding to the first pulse of the syﬂcﬁronous algo—-
rithm. The propagation to all nodes of a WAKEUP message from the node
initiating the algorithm can follow the ﬁrotocol given by Segall [13].
Its message and time complexities are 0(m) and O(n), respectively.
Similarly, the fact that the computation is complete can be propagated
to all nodes through a WINDUP message, with resulting message and time
complexities of O(m) and 0(#), respectively;

The synchronizer algorithm described above requires a data struc-—
ture called "goreceived”™ to keep track at various stages of the set of
neighbors from whom GO messages have been received. It is tempting to
think that this set cén be implemented at each node as a bit vector of
size equal to the number of neighbors of that node. Unfortunately,
this will not work. Comnsider a stage of execution when two neighboring
nodes i and j have completed (k-1) pulses of the synchronous algorithm.
Then, each one must have transmitted a GO message, permitting the other
to go through the kth round. But, it is quite conceivable that before

node i receives GO messages from all its neighbors and proceeds with



264

the kth pulse, node j may receive all its GO messages and hence proceed
to complete the actions corresponding to the kth pulse, thereby releas-
ing another GO message to node i. Thus, some times, more than one GO
messages could have arrived at node i from j, and heace the data struc-
ture ;éoreceived" should really be implemented as a multiset, permit-
ting more than one copy of an element. It is clear, however, that node
j cannot start the (k+l)th pulsé, before node i completes its kth pulse
and sends a GO message. Thus, at any point of time the number of
pulses of activity gone through by two neighboring nodes can differ by
at most one. This has two implications. The first is that at any
point of time there could be at most twb GO messages received at a node
from any of its neigﬁbors. The secohd implication is that over the
entire network, the number of pulses of activity gone through by any
two arbitrary nodes can differ by as much as the length of the shortest

path between these two nodes in the undirected communication graph.

III. FAILURE OF THE SYNCHRONIZERS

Consider the execution of an arbitrary synchromous protocol com-
bined with the synchronizer proposed in the previous section. We have
already seen that if i and j are two neighboring nodes, there is the
possibility that node j can complete the actions of its kth pulse after
i completes (k-1) pulses but before it begins its kth pulse. lThis then
implies a possibility of a message sent by node j in that pulse modify-
ing some data structures maintained by node i, in the process altering
what it would have done otherwise during the kth pulse. For example,

some messages sent by the synchronous algorithm may not get sent in the




265

simulated version. Since the set of messages transmitted by a node
during a specific pulse of activity in a synchronous algorithm is only
dependent on the values of all the variables maintained at that node
just prior to the start of that pulse, one can freeze the computation
of each nod; i just prior to the execution of its kth pulse and obtain
its state Zik' The simulation>of the synchronous algorithm with oﬁr
synchronizer may not be exact in the sense that the sequence of states
zik’ k =1,2,... is not the same, at all nodes, for both cases.

As a specific example, consider the following synchronocus protocol
for constructing a breadth-first-search (BFS) tree of the communication
graph [3,4,8,10]. 1In &istributed computing, we assume that the algo—
rithm will be initiated b& a specific node s and that at the end of
computation the BFS tree will be available in a distributed fashion,
each node knowing its level number and its father, if any, in the
tree. |

The synchronous BFS p;otocol requires' two kinds of messages -
LABEL and ACK. LABEL messages carry a parameter and are sent to neigh-
boring nodes to 'inform them of possible lével numbers, whereas ACK
messages are sent in response to LABEL messages, to inform that the
corresponding LABEL messages have been handled suitably. The computa-
tion proceeds basically as follows. The source node labels itself at
level 0 and sends down LABEL messages to each of 1fs neighbors at the
first clock pulse. A node when it receives the first LABEL message
considers the sender of that message as its father, figures out its
level number and sends down LABEL messages to each of its other neigh-

boring nodes, if any. A node that receives a LABEL message and finds




266

that it has no neighbor other than its father or that it has been
labeled already with a level number, simply responds with an ACK mes-
sage. Also, when a node receives ACK messages for each.of thg LABEL
messages sent, it then sends an ACK message to the father node from
which it -"received the first LABEL message. When the source node
receives all its ACK messages, the computation is terminated. Recall
that in a synchronous distriﬁuted protocol messages can be transmitted
only when a clock pulse is generated. Thus, processing of messages
does not trigger immediate dispatch of further messages. But suitable
data structures are updated and information regarding messages to be
sent at the next clock pulse are recorded.

Observe the simple si:ructure of the éynchronous BFS protocol. The

first LABEL message to arrive at a node determines its level number,

and there is no need to update this later. - The correctness of the
algorithm -follows d-irectly from the assumptions regarding the communi-
cation delays made under the synchronous_ network model. The fact that
a message is tr-ansmitted only when a clock pulse starté, and that it
reaches ité desfination before the next clock pulse starts eansures that
a unode with level number k will recelve its first LABEL message only
during the kth pulse. Clearly such a simple protocol is not possible
for an asynchronous communication network.

Now, coansider the execution of the synchronous BFS protocol pre-
sented above, combined with the synchronizer of the previous section on

a 35-node asynchronous network shown in Fig. 1. Let s be the source

Rgasit. -



267

Fig. 1. Example network for BFS tree construction.

(root) node for the BFS tree to be constructed. Consider the stage of
computation at which all five nodes have woken up and have transmitted
GO messages to each of their neighbors. Dﬁring the first pulse of
activity, the source node s sends LABEL(l) messages to both u and v,
followed by GO messages, permitting them to execute the second pulse.
Nodes u, v, w and x, on the other hand, simply transmit GO messages to
each of their neighbors. Suppose these messages are received properly,
enabling both nodes u and v to be labeled at level 1. During the 2nd
pulse of activity, node u will send a LABEL(2) message to w, followed
by GO messages to s and w. Similarly, node v will send a LABEL(2)
message to x, followed by GO messages to s and x. The other nodes,
namely, s, w and x simply transmit GO messages to each of their neigh—-
bors. Now, suppose the messages from v to x are delayed arbitrarily.
In the mean time, node w can receive the LABEL message from u, label
itself at level 2, and, once the GO messages are received from both u

and x, proceed with the execution of the 3rd j)ulse. During this pulse,



268

it will transmit a LABEL(3) message to node x, which can cause node x

to be labeled at level 3. Recall that this level number will not be

revised even if the LABEL message from v is received subsequently.

Clearly, the_usimulated version of the BFS protocol does not work
“correctly.

Observe that if the simulation is exact in the sense defined
above, the correctness of a synchronous protocol guarantees the cor-
rectness of the simulated versioé. However, an exact simulation may
not really be necessary for some algorithms to accomplish the required
computation. Consider, for example, a modified synchronous BFS proto-
col where every LABEL message received is used to update the level
number of the destination node, so that the effect of early arrival of
LABEL messages with higher level numbers can be corrected. The algo~
rithm will then become very similar to a synchronous version of the
‘asynchronous protocol presented by Chandy and Misra [5] for the compu—
tation of a shortest paéh tree. It is-easy to see that such a BFS
synchronous protocol will work correctly when combined with the syn—
chronizer of the previous section, even if the simulation is not exact.
A formal proof of correctness can also be obtained along the same lines
as in Chandy and Misra {5]. Tt must be emphasized here that as far as
the execution of the modified BFS protocol on a synchronous network is
concerned, there will never be a need to update the level number at any
node. It is only when the protocol is combined with a synchronizer and
used on an asynchronous network the modifications play a part in ensur—
ing that a correct BFS tree is constructed. Such modifications may not

‘be possible for arbitrary synchronous protocdls. In any case, such a



269
3

synchronizer cannot be viewed as a transparent layer of software placed
on top of an asynchronous network to achieve a synchronous behavior.
The reason for the failure of the synchronizer proposed by us in
the previous section can be attributed to the fact that the messages
sent by a node j during 1its kth pulse of activity may arrive at a
neighboring node 1 even before it starts its kth pulse. It {ig easy to
show that the same sltuation can arise in the case of the synchronizers
proposed by Awerbuch [2] also, unless corresponding pulse numbers are
transmitted along with the_messages of the synchronous algorithm and
used as a basis for delaying the processing of some of the messages, as

explained in Section IV.

A. a-synchronizer

To implement an a-synchronizer, Awerbuch requires each node to
send out an explicit acknowledgment for each message of the synchronous
algorithm it receives. Note thatvthese acknowledgment messages do not
increase the.asymptotic message complexity of the synchronous algo-
rithm. Wheq a node receives acknowledgments for each of the messages
it has sent out, it considers itself safe and sends out a SAFE message
to each of its neighbors. A new pulse is generated at a node once SAFE
messages are received from all its neighbors. It is easy to see that
these SAFE messages play a role similar to that of the GO messages of
our synchronizer. Thus, even with an a-synchronizer, messages corre—
sponding to the kth pulse may be received at node i from a neighboring

node j, even before it starts its kth pulse,



270

B. p-synchronizer

In contrast to an g-synchronizer where each node decides on its
own to go ahead with the next pulse of activity once it has received
SAFE meséﬁges from each of its neighbors, in a p-synchronizer there is
a designated node which coordinates the computation. Initially, a
leader is chosen and a rooted spanning tree is constructed. The syn~
chronizer mechanism works as follows. After execution of a certain
pulse, each node waits .until it recognizes itself as safe as in the
a-synchronizer. But, when a node learns that it is safe and all its
descendants in the tree are also safe, 1t reports this fact only to its
father. When the leader, being the root'.of the tree, recognizes that
‘all nodes are safe with respect to a certaln pulse, it notifies each
node that they may all start a new pulse, again, via the spanning tree.
Since all synchronizer related messages flow only along the spanning
tree edges, the message and time complexities are both only 0(n) per
pulse of the synchronous algorithm. Also, in this synchronizer, when
any node starts its kth pulse of activity, it is guaranteed that all
nodes in the network have completed (k—-1) pulses and that no messages
of the synchronous algorithm corresponding to these (k-1) pulses are
still in transit. This 1is not so in the case of an a-synchronizer.
But, if the B-synchronizer will have to be combined with an arbitrary
synchronous protocol, the basic problem still remains. It is possible
for node j to recelve the notification from the leader, via the span—
ning tree, earlier than a neighboring node i, enabling node - j to com
plete the actions of a particular pulse, before node i starts the

corresponding pulse.




271

C. y-synchronizer

To implement this synchronizer the network is first partitioned
into clusters. A spanning tree 1s used for the coordination among
nodes in a -cluster. For communication between each two neighboring
clusters, one communication link is chosen. In each phase of working

. of the y-synchronizer, the f~synchronizer is applied separately in each
cluster, and the cluster leaders communicate among themselves in a
manner similar to thatrseen in an a-synchronizer. Tﬁus, a y-synchro-
nizer is basically a combination.of the « and 8 synchronizers, conse-

quently suffering from the same problems mentioned above.

IV. POSSIBLE REMEDIES

For the correct working of an arbitrary synchronous protocol when
combined with any synchronizer, it is necessary that before a node
executes 1its kth pulse of activity, all messages sent to it by its
neighbors during the (k-1)th pulse of activity must have been received
and processed. All synchronizers proposed so far ensure this. It is
also necessary that before a node executes its kth pulse of activity,
no message seat to it by its neighbors during the kth pulse of activity
should be processed, even if some have been received already.

There are several ways in which the requirements mentioned above
can be met. Suppose, while processing a message it is valid to check
up on some conditions and decide to handle the message right away or
delay its processing by putting it back at the end of the queue. Then
messages that arrive earlier than permitted can be effectively delayed.

In the context of the synchronizer proposed in Section II, this can be



272

achieved as follows. Whenever a message is received from J, a pending,
unused GO message that has been received earlier from node j indicates
that the processing of the current message has to be delayed. Simi-
larly, if at each node, two queues are permitted for handling the
incoming ;nessages, the processing of some messages can be effectively
delayed by queuing them up in the second queue. The processing of
these messages can be taken ﬁp immediately after a new pulse has been
generated at this node. Again, 1f there 1is one separate queue of
incoming messages, for each of the communication links at a node, as
assumed in [1], the requirements for the synchronizer can be easily
met. The synchronizers proposed by Awerbuch [2] also work precisely
this way by requiring ea;:h message to ca;rry a pulse number, which can
be used as a basis for deciding to delay the processing of messages
that arrive earlier. Note that all these approaches are clearly at
variancg with the model of 'computation we have assumed for designing
asynchronous distributed algorithms.

- However, one valid approach will be to modify the p-synchronizer
discussed inlthle previous section. Recall that in a B-synchronizer an
elected leader coordinates the pulse-by-pulse activity of all nodes in
the network. Here, when the leader decides to send down the PULSE
message, notifying all nodes to start a new pulse of activity, it is
guaranteed that all nodes have completed the previous pulse, no mes-
sages of the synchronous algorithm are still in traunsit, and that all
nodes are ready to start a new pulse. ~ But the problem is that the
notification to start a new pulse of activity is propagated via a

rooted spanning tree and sometimes this notification may arrive at a




273

node later than a useful message of the synchronous algorithm transmit-
ted by a neighboring node which has already completed its new pulse of
activity. One way to remedy this will be to flood the network of this
notification to start a new pulse, using the protocol of Segall [13],
as is done for WAKEUP and WINDUP messages of our synchronizer. In
other words, each node, when it first receives the PULSE message,
informs each of its neighbors of that fact before proceeding with the
execution of the new pulse. Subsequent PULSE messages received via
other neighboring nodes can always be ignored. To accomplish this, a
PULSE message must carry one bit of information that alternates between
1 and O, indicating whether it corresponds to an odd numbered or an
even numbered pulse, .Correspondingly: each node must maintain a one-
bit flag to keep track of the number of pulses of activity gone
through. Based on this bit of information a nﬁde can decide to handle
or ignore a PUL.SE meéssage. As before, after completing a pulse of
activity, a node may haje to wait untiliit recognizes itself as safe
before informing the leader so. This information can, of course, flow
through tbe-tree just as in a B-synchronizer. But observe that this
solution then means that the message and ;ime complexity overheads of

the modified B-~synchronizer are ¢ = 0(m) and Tpulse = 0(n),

pulse
respectively. -
The message complexity overhead of the modified B~synchronizer can
now be reduced, if the PULSE message is forwarded by each node only to
those neighbors to whonm it intends to send a useful message of the

synchronous algorithm, during that pulse of activity. But, in order to

be sure that each node receives the PULSE message at least once, it may



274

have to be propagated via the rooted spanning tree also, as in a normal
B—synchronizer. Now observe that the message complexity overhead
resulting from the PULSE messages that flow along non-tree edges can be
absorbeq along with the message complexity of the synchronous algo—-
rithm, Qithout affecting its asymptotic nature. Thus, this wodified
p-synchronizer which ensures the correct working of an arbitrary syn-

= 0(n).

ulse

chronous protocol also has only C
pulse

= 0(n) and Tp

The question that remains is whether the ¢ and Y synchronizers can
also be corrected by finding simple modifications to them. Unfortu-
nately, this is not so. First, observe that when a node u executes its
kth pulse, it may send a message to a neighboring node v. Since node v
is not permitted to deiay the processiﬁg of this message, then, for
simulation to be exact, it must also execute its kth pulse immediately,
if it has not doqe so already. Therefore; before executing the kth
.pulse, node u must ensure that node v has completed its (k-1)th pulse
and that no messages of the (kﬁl)th.pulse are still in transit for
itself or for node v. More importantly, if node v executes its kth
pulse and sénds a message to 1its neighboring node w, then w is also
forced to execute its kth pulse immediately. As a result, before exe-
cuting the kth pulse, node u must ensure that node w has also completed
its (k-1)th pulse and that no messages of the (k-1)th pulse are still

in transit for node w. Extending this argument, it is clear that for

the correct working of an arbitrary synchronous protocol when combined

with a synchronizer, it must be guaranteed that before .any node

executes 1its kth pulse every node in the network has completed its

(k-1)th pulse and that no messages of the (k~1)th pulse are still in -

SRt



275

transit for any node. This argument proves that only a f-synchronizer
can permit any arbitrary synchronous algorithm to be combined and run

correctly on an asynchronous network.

V. CONCLUDING REMARKS

In this paper we have studied the concept of a synchronizer and
identified some difficulties in implementing them. These difficulties
are intimately tied to the fact that in the study of asynchronous dis-
tributed algorithms, the usual set of assumptions made do not permit
delaying the processing of messages once received, while they require
that messages be simply discarded after processing. However, a modifi-
cation to the B—synchror;izer, originally- proposed by Awerbuch, is pos-—
sible. This modified synchronizer which will work correctly in combi-
nation with any arbitrary asynchronous protocol has the same message
and time complexit.y overheads per pulse as the original one. On the
other hand, the time-efficient a—-synchronizer cannot be corrected. It
is clear from our discussions that the various synchronizers studied
differ from eéch other in the level of synchronization each node
demands before executing the next pulse. We have argued that the level
of synchronization provided by the B-synchronizer is necessary for the
simulation to be exact. However, such a high level of synchronization
may not be necessary for certain classes of algorithms. 1In such cases,
it may be possible to use other synchronizers as long as the corre-
sponding synchronous protocols are defined carefully. For example, as
we have pointed out earlier, the a-synchronizer and the one we have

pProposed using GO messages can both be used in conjunction with the



276

synchronous version of the protocol given by Chandy and Misra [5] fo

the shortest path problem.

i

[2]

[3]

[4]

(5]

[6]

[7]

REFERENCES

H.H. Abu-Amara, "Fault-Tolerant Algorithms for Election in Com
plete Networgé", Techﬁical Report, Coordinated Seience Labora
tory, University of Illinois, USA, Feb. 1987.

B. Awerbuch, "Complexity of Neiwork Synchronization”, J. Assoc.

Comeut. Macho, Vol. 32, No. 4, Oct. 1985, PP~ 804"823.

B. Awerbuch, "Reducing Complexities of the Distributed Max~Flow

"and Breadth-First-Search Algorithms.by Means of Network Synchro-

nization”, Networks, Vol. 15, 1985, pp. 425-437.
B. Awerbuch and R.G. Gallager, "A New Distributed Algorithm to

Find Breadth-First-Search Trees”, IEEE Trans. Info. Theory, Vol.

IT-33, No. 3, May 1987, pp. 315-322.
K.M. Chandy and J. Misra, "Distributed Computation on Graphs:

Shortest Path Algorithms”™, Comm. -Assoc. Comput. Mach., Vol. 25,

No. 11, Nov. 1982, pp. 833-837.

E.J.H. Chang, Decentralized Algorithms in Distributed Systems,
Ph.D. Dissertation, (Also Technical Report CSRG-103), University
of Toroanto, Canadé, 1979.

E.J.H. Chang, "Echo Algorithms: Depth Parallel Operations on

~ General Graphs”, IEEE Trans. Software Engg., Vol. SE-8, No. 4,

July 1982, pp. 391-401.



(8]

[91

[10]

11}

[12]

[13]

[14]

277

G.N. Frederickson, "A Single-Source Shortest Path Algorithm for
Planar Distributed Network;, in Proc. STACS 85, Lecture Notes in
Computer Science, Vol.. 182, Springer-Verlag, Berlin, 1985, pp.
143-1?0.

E. Gafni, "Perspec;ive on Distributed Network Protocols: A Case
for Building Blocks”, in Proc. IEEE Military Communications
Conference, Monterey, Oct. 1986.

R.G. Gallager, "Distributed Minimum Hop Protocols”, Technical
Report LIDS-P-1175, Massachusetts Institute of Technology, USA,
Jan. 1982.

E. Korach, D. Rotem_and N. Santoro, ."Distributed Algorithms for

Finding Centers and Medians in Networks”, ACM Trans. Prog. Lang.

Systems, Vol. 6, No. 3, July 1984, pp. 380~-401.
K.B. 'Lakshmanan, N. Meenakshi and K., Thulasiraman, "A Time-
Optimal, Message-Efficient Distributed Algorithm for Depth-First-

Search”, Info. Proc..-Letters, Vol. 25, No. 2, May 1987, pp. 103-

109.

A. Segall, “Distributed Network Protocols”™, IEEE Trans. Info.

Theory, Vol. IT-29, No. 1, Jan. 1983, pp. 23-35.

J.E. Vaﬁ Leeuﬁen, N. Santoro, J. Urrutia and S. Zaks, "Guessing
Games and Distributed Computations in Synchronous Networks”,
Technical Report SCS—TR-96, School of Computer Science, Qarieton

University, Canada, June 1986.



