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In this paper we present an algorithm for Steiner minimal trees in grid graphs with a.
terminals located on the boundary of the graph. The algorithm runs in O(min{*, k2n}
time, where k and n are the numbers of terminals and vertices of the graph, respectively
It can handle non-convex boundaries and is the fastest known for this case. We also con
sider the homotopic routing problem and apply our Steiner tree algorithm to construc
minimum-length wires for multi-terminal nets.

1. Introduction

Given a set K of vertices, called terminals, in a graph G(V, E), the Steiner
problem is to find a minimum-Jength tree whose vertex set includes all term
in K. The minimum-length tree is called a Steiner minimal tree, while ver
with degree > 3 in the tree are called Steiner vertices. This problem has
extensively studied for many years because of its wide variety of applications,
as communication networks and VLSI layout design. In general, the proble
known to be NP-complete.” Dreyfus and Wagner® gave a dynamic program:
algorithm for the problem with time complexity O(n3* + n22* 4 n3), where
|G| and k = |K|. By specializing this general approach, Provanl® showed
the Steiner tree problem can be solved in polynomial time if G is a planar g
and all terminals are located on the boundary of one face of G. His algor
runs in time O(n®k?). Erickson, Monma and Veinott® reduced the complexit
O(nk? + (nlogn)k?).

*This paper was recommended by M. Marek-Sadowska.



2 M. Keufmann, S. Gao & K. Thulasiraman

In this paper we consider a special case of the Steiner tree problem in
(1) G is a grid graph with no holes, i.e., every finite face has exactly four inc
vertices, and (2) all terminals are located on the boundary P of G, i.e., the bow
of the infinite face (cf. Fig. 1). A grid graph without holes is also called a gener
switchboz, which is used to formuldte many VLSI routing problems.!! Withou
of generality, we assume that (1) G is biconnected, i.e., P is a simple polygon
(2) every boundary corner with the inner angle equal to 90° (convez corner)
terminal on it. The case in which G is not biconnected can be solved by partitis
G and then solving several biconnected-graph instances. For the second assumj
non-terminal convex corners can be removed from G because they are not nece
for constructing a Steiner minimal tree. Then P has at most 2k corners be:
there are no more non-convex corners than convex corners. We allow P t
non-convez, i.e., it may contain two or more consecutive non-convex corners.
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Fig. 1. An example of the Steiner tree problem in a grid graph with terminals (solid dots)
on the boundary.

In the following we present an algorithm for this special case. In Sec. 3 we
. a general description of the dynamic programming approach proposed by Dre
and Wagner.® In Sec. 4 we introduce a restricted type of subtrees which ca:
constructed more efficiently. Section 5 gives more details about the complexit
the algorithm. Our algorithm runs in O(min{k?, k?n}) time and O(min{k?, k*
space. Richards and Salowe!® developed an O(kv*)-time algorithm, where v is
number of the boundary sides of the graph. However, their algorithm can «
handle grid graphs with convex boundaries.

In Sec. 6 we extend our result to construct a collection of Steiner minimal t
in a grid graph, which is allowed to have holes. While terminals of the Ste
trees may lie on the boundary of the graph as well as on those of the holes,
topology of each tree is given. This problem is called homotopic routing in V
layout design. The goal is to find vertex-disjoint Steiner minimal trees for the gi
collection of terminal sets. Homotopic routing was first introduced by Leisers
Maley,'? but they only dealt with problems where each terminal set has cardina
of 2. We present an efficient algorithm for terminal sets of cardinality > 2 by us
the Steiner tree algorithm described in Secs. 2 to 4.
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2. The Dynamic Programming Algorithm

Since the graph boundary P is a simple polygon and all terminals lie on it,
define an interval [a,b] of K to be the set of terminals, including a and b,
by traversing P counterclockwise from a to b. Interval (a,b] or [a,b) is s
defined except that a or b is not included. The following lemma can be fi
Ref. 15 and is essentially due to Erickson et al.®

Lemma 1: Let K be a set of terminals lying on the boundary of a plana
G, and T a Steiner tree for K in G. The removal of any edge e = (u,v)
splits 7" into two subtrees T'(e,u) and T'(e, v) such that the terminals in eacl
subtrees form an interval of K.

Lemma 1 is used in Refs. 6 and 15 to design recursive equations for -
namic programming algorithm. For each interval [a,b] of K and vertex v ¢
C(v, [a, b]) represent the length of a Steiner minimal tree for terminal set [a, |
and let B(v, [a,b]) represent the minimum length of a Steiner tree for the sa
minal set subject to the constraint that v has degree > 2 in the tree. B(:
can be computed as the sum of the lengths of two Steiner minimal trees fo
subintervals of [a,b]. That is

B(v,[a,b)) = a;é]aj:leiftlz,b]{C(v’ [a,z)) + C(v,[z,b])}.

A Steiner minimal tree for (v, [a,b]) consists of a path from u to v (v and v
identical) and a Steiner minimal tree for (u, [a,]) with degree(u) > 2 or u €

~Let d(u,v) denote the shortest distance between u and v in G. C(w, [a, b])

computed as follows.

C(v,[a,b]) = min { 1imelg{B(u, la,8]) + d(u,v)}, uéx{linb}{C(u, la, 0\ {u}) + d(«

A

- /

Fig. 2. Decomposition of a Steiner minimal tree. The sizes of the circles indicate the orde
decomposition.

The computation of the B- and C-values proceeds in order of the card
of the interval [a,b]. The initial conditions are C(v,$) = 0 and B(v,0) = 0
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v € V. At the end of the computation, the length of a Steiner minimal tree will be
C(v, K\{v}) for any v € K. The tree itself can be recovered by retaining a record
of the trees corresponding to the B- and C-values. The number of B- and C-values
to be computed is of the same order as the number of possible choices of vertices
v € V and intervals I C K, which is O(k*n). A simple-minded approach requires
O(k) time for computing a B-value and O(n) time for a C-value, which leads to
a total running time of O((n + k)nk?). In the following we introduce a restricted
type of subtrees whose length can be computed more efficiently.

3. The Restricted Subtrees

First we give some necessary notions. A line in a graph (G or its subgraphs) is a
maximal line segment, i.e., no collinear extension in the graph is possible. A line
may be subject to further restrictions, e.g., a line from a vertex v is a maximal line
segment starting at v. In rectilinear graphs, a line from a vertex can have one of
four directions, coded with the numbers 1 to 4. Vertices and lines on boundary P
are called boundary vertices and lines; all others are interior vertices and lines.

We define a reduced graph Gy of G by deleting all grid lines of G which do
not contain terminals in K or boundary corners of G. The vertices in Gk are the
intersection points of the grid lines in Gk. Hanan® proved that a Steiner minimal
tree for K in G is also a Steiner minimal tree for K in G. Therefore, we only need
to consider the reduced graph Gk. It should be noted that the boundary P of G
remains the boundary of G, because each boundary line contains a corner. The
vertices of Gx on P are called nodes. There are at most 4k nodes altogether, and
the number of vertices in G is O(min{n,k*}).

Definition 1: For any vertex v € V and interval [a,b] C K, a Steiner tree T is saic
to be a restricted tree or an R-tree if it satisfies the following two conditions.
(i) Every line in T' contains a node; every line from v also contains a node.
(i) For every node u with deg(u) = 2 in T, [a,b] U {u} is an interval of K'U {u}.
An R-tree is called an R;-tree if it contains a line from v pointing in direction 1
Similarly, an R;j-tree is an R-tree which contains lines from v pointing in directios
1 and j.

For a Steiner tree, an interior component is a connected component of the tre
after removing all the boundary lines. Hwang!® proved that any interior componen
of a Steiner minimal tree can be transformed without increasing the length into on
of the two types depicted in Fig. 3. For Type 1, all the Steiner vertices lie o
one line and the other lines incident to the first line point alternatively in th
opposite directions. For Type 2, the Steiner vertices lie on two lines, which form
interior corner, such that one of the lines has at most one Steiner vertex and th
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Every line in T has at least one end on the boundary, and hence satisfies the fii

condition of the R-tree. The second condition holds trivially. For any terminal
with deg(v) = 1, T is an R-tree for (v, K \ {v}).

I T
o |

Fig. 3. The two types of interior components. The circles indicate nodes.

The following rules will be applied to break ties among the Steiner minimal tre
First, choose the Steiner minimal trees whose node degree, i.e., the total degree
the nodes in the tree, is maximal. Among the Steiner minimal trees with t
maximum node degree, choose those whose interior components only have the t
types depicted in Fig. 3. We called a Steiner minimal tree satisfying the tie-breaki
rules an optimal Steiner tree. An R-tree for an interval of K is said to be optin
if it is a subtree of an optimal Steiner tree for K. The length of an optimal R;-t1
or R;;-tree for (v, [a,b]) will be denoted by Ci(v, [a,b]) or B;;j(v,[a,b]), respective
In the following two lemmas we show that there is an optimal Steiner tree for
which can be recursively decomposed into optimal R;- and R;;-trees for interv.
of K.

Lemma 2: If there is an optimal R;-tree for (v, [a,b]), then there is an optimal 1
tree which is composed of a path p from v to u and an R;-tree for (u,[a,b] \ {v
with u € [a,b] or an Ry ji-tree for (u/,[a,b]) with the line from u' to w pointi
in direction ’. Path p consists of up to three interior lines and a sequence
consecutive boundary lines between the interior lines.

Proof: Let T be an optimal R;-tree for (v,[a,b]). If deg{v) > 2, then it is a
an R;j-tree. Otherwise, let p be the path in T from v to the first vertex u wi
u € [a,b] or deg(u) > 3. If u € {a, b], then T\ p obviously satisfies the conditions
the R-tree and hence is an R -tree for (u, [a,b] \ {u}). If deg(w) > 3, we distingui
between two cases: (1) the last segment of p is an entire line of T, (2) it is a p:
of an interior corner. In the first case every line in T'\ p has a node. If  lies on
interior corner, let u' be the bending point of the corner. Then T\ p is an optin
R; ji-tree for (v, [a,d]), and it contains a line from u through «’ if w # «’. In t
second case, let w be the bending point. The line between v and w in T'\ p does 1
contain any node. We flip the corner bending at w to a new corner bending at u’
depicted in Fig. 4. This operation does not change the length. It does not char
the node degree either because w is not a node and T has the maximal node deg;
as an optimal R-tree. That means u' is not a node either. Since T is an optin
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R-tree, the resulting tree T' from T is a subtree of an optimal Steiner ti
Now T" \ p has the same properties as the T\ p in the first case, and hen
optimal R; j:-tree for (v', [a, b]).

) I

Fig. 4. Transform an optimal R-tree to another by flipping the corner.

Let u,...,u, be the nodes on p excluding v and p(uy,u,,) the corn
subpath of p. Further, let P(uy,u,,) be one of the two boundary parts b
and u,, which does not contain terminals in K \ [a,b]. This assumption i
because [a,b] U {u1,un,} is an interval of K U {u1,un} as required of
definition of the R-tree. If P(u;,u,,) contains any terminal, it belongs to
must be connected to T'. Such a connection has to cross p(u1, 4. ) because
formed by P(u1,%n) and p(u1, ., ) separates the terminal from ». That c
the assumption that p \ {v,u} does not contain Steiner vertices or tern
deg(v) = 1. That means P(u;,u,) may only have non-convex corners
convex corner always has a terminal. Therefore the shortest path p(u1,um
u; and u.,, is identical to P(u1,un). Finally, since every line in p exceg
ending at » must contain a node, p can have at most three interior lines:
v to u3, one from u,, and the third one ending at u.

Now we redefine B(u,[a,b]) to be the minimum length of the R;
(v, [a, b]) which contains a line from «’ to u in direction ¢ or j. That is

— . . .. 1
B lo,8) = min { min {8500 [n 1))}
Further, C(u, [a,b]) is redefined to be the minimum of C;(u, [a,d]) over :
Then we can use the right-hand side of Eq. (2) to compute C;(v,[a,d])
constraint that the path from v to u has the property of Lemma 2 an
segment points in direction 7.

Lemma 3: An optimal R;;-tree T for (v, [a, b]) can be split into an optinx
for (v, [a,z)) and R;-tree for (v, [z,b]). The separating terminal z can bed
by %,7 and v.
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Proof: Let e, = (v,u,) with 1 < r < deg(v) be the edges in T incident tc
From v, one of these edges points in direction ¢ and another in direction j.

Lemma 1, the removal of these edges split T" into deg(v) subtrees T'(e,,u,) v
each connecting an interval of K. We can combine these intervals into two inter
I; and I; of K such that they are connected by two subtrees T; and T; o
containing the lines from v in directions ¢ and j, respectively. It should be nc
that v is not included in I; or I;. To satisfy the'second condition of Definitio
in case v is a terminal, we have to make sure that if deg(v) > 2 in any of the

subtrees, say T;, then I;U{v} is an interval of K. To see that the condition holds
any other node u with deg(u) > 2, just imagine it as a terminal and consider 7
and T; as Steiner subtrees for KU {u}. Then the above argument can show t
L;u{u} or I; U {u} is an interval of K U {u}. Every line in T; and Tj is either a
or a line from v in T, which contains a node because T is an R-tree. That me
T; and T also satisfy the first condition of the R-tree. Therefore, the length of
optimal R;;-tree for (v, [a,d]) can be calculated by the following equation simila:
Eq. (1).

Bij(v,[a,b]) = min {C;(v,[a,z)) + Cj(v,[z,b])}
a#z€[a,b] :

Let y and 2z be the first nodes on the lines from v in directions 7 and 7, resy
tively. Any R;;-tree for (v, [a,b]) contains y and z. Furthermore, [a,b] U {y, 2
an interval of K U {y,2} by Definition 1. Therefore, there is an interval [y, z
KU{y, z} that does not contain any terminals in K'\[a, b]. The lines from v to y:
z completely separate the terminals in [y, z] from those in [a,b]\[y, z] (cf. Fig.
Only the terminals in [y, 2] determine the subtree that spans them and v. T
means the separating terminal = in the minimal R;;-tree for (v, [y, 2]) can be u
to split the R;;-tree for any (v, [a,b]) as long as [y, 2]\[a, b] = @ holds.

Fig. 5. An optimal R;j-tree for (v, [, }]) and its separating terminal.

Nodes y and 2 in the above lemma may or may not be terminals in K. Howe
[y, z] is an interval of KU{y, 2}, which is called a special interval for vertex v. Tl
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are up to ten special intervals for vertex v because the two lines emana;
can form ten different angles: four of 90°, two of 180° and four of 270°.
computation of B- and C-values we will also consider the special interv.

4. Computation of the B- and C-Values

The computation of B;;(v,[a,b]) and C;(v, [a, b)) is carried out in the
order of the interval size. The values for the same interval [a, b], but fc
choices of v, are computed in one step.

For the computation of B;;(v, [a,b]), we distinguish between two case
is a special interval of v, and (2) it is not. In the first case, we have
possible terminals in [a,d] to find the separating terminal z which min
sum C;(v, [a, 7)) + C;(v,[z,8]). It takes O(k) time for every (v,[a,d]) i
Since there are O(n) choices of v and each of them have O(1) special
the entire computation for the first case takes O(kn) time. In the se
the separating terminal z is that of the corresponding special interval.
calculation of the B;;-value for a non-special interval [a,b] and a vertes
completed in O(1) time. The number of vertices v is O(min{k?,n}), and t
of intervals [a,b] is O(k?). Therefore, the time for the computation of all
is O(min{k%, k?n}).

Following an idea proposed by Erickson et al.,® the computation of
B(u, [a,b]) for one interval [a,b] and all vertices u € Vi can be consic
problem of finding all single-source shortest paths. For each direction
create a directed graph G from Gk by deleting all grid edges perpen
direction 4, giving the remaining edges direction ¢, and then adding a
source s, from which there is an arc to each vertex 4 € V. The cost of th
s to u is the minimum of By;(u, [a,d]) over 1 < j < 4; the cost of any othe
G’ is an acyclic graph, the shortest paths from s to all u can be found i
linear to the number of edges and vertices in @ K, which is O(min{k?,
length of the shortest path from s to u represents the minimum of B;;(u'
1< j < 4and u'u in direction i. The value B(u, [a, 8]) can be determinec
shortest path algorithm is performed for all four directions.

Similarly, C;(v, [a,b]) can be computed from B(u, [a,b]) in four iterat
for each interior line or the sequence of boundary lines in the path from
each iteration four different directions are computed separately as discus
except that the cost of each grid edge is its length instead of 0. In the
for the sequence of boundary lines, only boundary lines appear in G%
separate directions are considered: clockwise and counterclockwise. For
iteration, the cost of the arc from s to u is B(u, [a,b]); for any of the
iterations, the cost is the shortest length from s to u from the last iterati
iteration takes O(min{k?,n}) time. Therefore, the total running time for C
is O(min{k*, k%n}). '
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Lemma 4: If all terminals are located on the boundary of a grid graph without
holes, then the problem of finding a Steiner minimal tree in the graph can be solvec
in time O(min{k%, k?n}) and space O(min{k*, k°n}).

5. Homotopic Planar Routing of Multi-Terminal Nets

In this section we apply the above described Steiner tree algorithm to construc
minimum-length interconnections for a collection of terminal sets in a grid graph
In this case, the grid graph may contain holes, i.e., finite faces enclosed by mor
than four grid edges. Terminals are located on the boundary of the graph as wel
as on those of the holes. The interconnection topology for each terminal set i
given. This problem is called homotopic routing. In the homotopic planar routing
interconnections for different terminal sets must be vertex-disjoint (routing on onc
layer). Homotopic routing can handle different types of routing areas, even area:
containing holes, while other routing methods only deal with very restricted routing
areas such as channels and hence require partitioning of routing areas and inter
connections. Therefore, homotopic routing has found more and more application:
in VLSI layout design.®!3

The first algorithms for homotopic planar routing were proposed by Cole-Siegel’
and Leiserson-Maley.'? Maley'# later established a general theory on homotopis
planar routing. However, these algorithms can only deal with the case of 2-termina
nets. An idea of splitting each multi-terminal nets into a ring of 2-terminal nets wa:
put forward in Ref. 12 and detailed in Ref. 8. In this section we propose a routin
algorithm which constructs minimum-length solutions for multi-terminal nets b;
means of Steiner minimal trees. We first employ the results of Ref. 8 and Ref. 12 t
divide the routing area into a set of disjoint subregions where the interconnection
for individual nets are to be accommodated. We show that the underlined gric
graph in each subregion is connected and contains a Steiner minimal tree for th
corresponding net. The grid graph does not contain any holes and all terminal
lie on its boundary. Therefore, our Steiner tree algorithm can be applied to find
minimum-length connection for each multi-terminal net.

5.1. Definitions and previous results

The problem of homotopic planar routing is given by a sketch S = (M, W) whic]
consists of a set M of rectilinear polygons, called modules, and a set W of nets tha
interconnect terminals on module boundaries. Modules are placed on a rectilinea
grid so that module boundaries are aligned with grid edges and terminals are locate:
on grid vertices. The grid graph G = (V, E) formed by grid vertices and edges whic.
are not covered by the modules is called the routing graph of the sketch. The goal i
to construct a detailed routing for S, which is a set of vertex-disjoint Steiner tree
for the input nets. To describe the net topology, each k-terminal net is represente:
by a set of k curves (called subnets) which form a simple ring by intersecting th
k terminals (cf. Fig. 6(a)). Except for the terminals, this ring may not cross ¢
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enclose any modules. The subnets are two-terminal nets, and have ha
of the original net. Any other representations (including trees) for mu
nets can be transformed to a ring of two-terminal nets by slicing the 1
centerline.
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Fig. 6. (a) A sketch S that contains multi-terminal nets. (b) A detailed routing in th
sketch S’. Grid edges in envelopes are omitted.

A sketch is routable if there is a detailed routing for it. The rou
be determined by a so-called cut condition. A cut X is an open-endec
connects two module points and intersects no other modules. The flo
is half the number of crossings of X by nets which are necessary a
the topology of the sketch. The capacity of X is the maximum of t
of the horizontal and vertical grid lines which X crosses. A cut X is
flow(X) = capacity(X) and oversaturated if flow(X) > capacity(X). A
similarly defined except that one of its endpoints is on a net. It is prove
and 14 that the routability is equivalent to the non-existence of oversat
Based on the cut condition, Leiserson—Maley proposed an efficient al
testing the routability. They also developed an algorithm to determi
routings for routable sketches. Let | M| denote the number of terminals -
corners, |W| the number of line segments that represent the net topolog
summarize their results in the following lemma.

Lemma 5: A sketch S = (M, W) which contains two-terminal nets
if and omly if there is no oversaturated cut. A detailed routing can |
O(|M||W|log |M||W|) time and O(|M||W|) space. The solution has t}
properties:
(i) Every net has the minimum length and
(ii) For every net segment, there is a saturated half cut that ends on it
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5.2. The routing algorithm for multi-terminal nets

To transform a problem instance with multi-terminal nets into one with two-termit
nets, we adopt the idea in Ref. 8. Every grid line [ in the routing graph G of S
replaced by a pair of lines which is parallel to and 1/4 unit away from the orig
I. At the same time, modules are stretched in all the four directions (left, rigt
up and down) by 1/4 unit except for the convex corners, which are flipped to no
convex ones (cf. Fig. 6(b)). For every terminal ¢ in G, we create two terminals 1
unit away from the origin ¢ on the new module boundary, while a corner termin
is replaced by two terminals on the new, neighboring corners. Any k-terminal ne
which is represented by a ring of two-terminal nets in S, is split into k separat
and intersection-free two-terminal nets. Let S’ be the resulting sketch and G’ i
routing graph. The length of edges in G’ is 1/2 unit, while nets in S’ also have h:
width. Therefore, S’ can be considered as a sketch only containing two-termir
pets. The transformation preserves the routability: for each oversaturated cut
in one sketch there is an oversaturated cut X’ in the other sketch whose endpoir
are next to those of X.

Now we can apply the results for two-terminal nets by Leiserson-Maley
test the routability and to find a detailed routing for S’ if it is routable. In t
solution the two-terminal nets which are subnets of a multi-terminal net, togeth
with the edges on module boundaries, form a rectilinear polygon (cf. Fig. 6(b
This polygon is called the envelope of the multi-terminal net. Envelopes of diff¢
ent multi-terminal nets are area-disjoint, i.e., the boundary segment of the envelop
do not cross each other and no envelope encloses any other envelopes. This is t
cause the routing algorithm for two-terminal nets does not change the topology
S’ and it constructs vertex-disjoint paths. Each envelope encloses a subgraph of
which will be used to find a Steiner tree for the corresponding net.

Lemma 6: Every envelope U encloses a connected part of G, which contains
Steiner minimal tree for the corresponding multi-terminal net.

Proof: Because U is a simple polygon, the only possibility that the enclosed p:
of G is not connected is that two parallel segments of U are next to each otk
and have different origins. According to Lemma 5, there is a saturated half ¢
X that crosses the both segments. It is not possible for a saturated cut to crc
two segments of an envelope consecutively, while the two segments have differe
origins.

Let T be a Steiner minimal tree for the corresponding net. As mentioned befo
T can also be considered as a ring of subnets which connect the terminals in t
same order as the subnets of U does. The length of T is half of the total leng
of its subnets, because each edge of T is shared by two subnets. If T does not_
totally within U, then there is a subnet p of U crossing a subnet ¢ of T. Since
and T have the same topology, there is an even number of crossings of p and ¢. I

ol Y {alu MY dennte the nart af m {4\ hotwoan twan nninte ar and 2 Wa eall afl o
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a outer path of T' if u and v are two consecutive crossings of ¢ by p, and .
outside of U in the immediate vicinity of u and v. Every outer path q(u
can be replaced by a path of G which is 1/4 unit away from p(u,v). As
T is transformed to a Steiner tree T” lying totally within U. The replacem
not increase the total length of the subnets length, because p is a short
according to Lemma 5. On the other hand, 7’ has the same property a
every tree edge is shared by two subnets. This means the length of 7" is als
the total length of its subnets, and hence is not larger than that of T. T
T’ is a Steiner minimal tree lying totally within U.

Lemma 6 shows that finding minimum-length interconnections for a se
can be treated as a set of separate instances of the Steiner tree probler
Steiner minimal tree is in a grid graph enclosed by the envelope of the n
the terminals are located on the boundary of the graph. Since the envelope
contain any modules, the grid graph does not have holes. Therefore, the a
described in the previous sections can be applied to Steiner minimal tree
case. It takes O(k®n) time for a k-terminal net in a grid graph with n
For an input sketch S(M, W), let |K| denote the total number of termi
the number of the vertices in the routing graph G = (V,E). Then Stei
algorithm can find minimum-length solutions for all the nets in O(|K|2|V
The routing algorithm for a two-terminal net requires O(|M||W|log |M||V
according to Lemma 5. |M| is the total number of module corners and te
ie., |[M| > |K|, while [W| can be expected to have the same order of v].
other steps can be carried out in O(|V|) time.

Lemma 7: The problem of homotopic planar routing for multi-terminal -
be solved in O(|M|[Wlog |M||W| + |K[?[V]). In the solution, the length -
net is minimized.

6. Conclusion

We have presented an algorithm for finding Steiner minimal trees in grid
This algorithm can also handle non-convex boundaries, and is faster than
viously known algorithms for this case. We also apply the algorithm to con
collection of Steiner minimal trees for the homotopic routing problem. Ou
show that any Steiner tree problem in grid graphs can be solved in polynom
if the topology is given.

For the case that the boundary of a grid graph is convex, the algori
Richards and Salowe'® can be more efficient if the number boundary sides
smaller than the number of terminals. An obvious open question is how tc
their techniques in the case of non-convex boundaries.
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