i
=
<
i
i

3

k

On the optimal synchronizer

asynchronous distributed networks

Yoji KAJITANI*

Hiroshi MIYANO* Shuichi UENO*

K. THULASIRAMAN**

* DEPT. OF ELECTRICAL AND ELECTRONIC ENGINEERING, TOKYO INSTITUTE OF THCHNOLOGY

**Concordia University

ABSTRACT: In this paper, we consider the networks with acyclic
k-spanners which are closely releted to the optimal synchronizer
for asynchronous distributed networks. We:characterize the graphs
with acyclic 2-spanners, and give a polynomial-time algorithm
to decide whether a given outerplanner graph has an acyclic

k-spanaer.

1. INTRODUCTION

The asynchronous network is a communication
network without global clock, described by an
undirected simple graph N=(V,E), where the set of
vertices V represents processors of the network and
the set of edges E represents bidirectional
communication channels between them. Each vertex
has a distinct identity. The synchronizer is a
distributed algorithm that enables any synchronous
distributed algorithm to run in any asynchronous
network by generating sequences of clock pulses at
each vertex of the network.

The communication and time complexities are used
to evaluate performances of algorithms. The
complexities of the asymchronous algorithm A
resulting from combining a synchronous algorithm S
with a synchronizer » are

C{4) = C(8) + T(S)-C(»), and

T(A) = T(8)-T(v),
where C(X) and T(X) are the communication and time
complexities of the algorithm X, respectively.

Because 0(iV!) and 0(1) are lower bounds on
C(v) and T(»), respectively, a synchronizer v is
said to be optimal if C(»)=0(!Vi} and T{v)=0(1).

Unfortunately, it is known that there exists a

trade-off between the communication and time
complexities of the synchronizer, and no optimal
synchronizer can be comnstructed in general.

More precisely, it is proved in [1] that for any
positive integer i there exists a network N such that
if T(»)<i-1 then C(»)>%a!*'“i for any synchronizer
v. This leads us to a fundamental problem of
characterizing the networks with optimal
synchronizers. [2] shows a sufficient condition for a
network to have an optimal synchronizer. A subgraph N’
=(V,E’) is called a k-spanner of N if for every (u,v)
€E, the distance between u and v in N' is at most k.
It is proved in [2] that if a network N has a
k-spanner with 0(iV!) edges, then N has an optimal
synchronizer. [2] also shows that the hypercube has a
3-spanner with 0(:Vi) edges and thus has an optimal
synchronizer.,

In this.paper, we consider the networks with
acyclic k-spanners (k-AS's for short) as the first
step to characterize the networks with optimal
synchronizers. Note that a k-AS is a spanning tree of
N and thus has 0(iV:) edges. We characterize the
graphs with 2-AS’s, and give a polynomial-time
algorithm to decide whether an outerplanar graph has

a k-AS for a given integer k.

e T AT T A N n
AL s NI iyl T S

vevee ~

2. ACYCLIC 2-SPANNER

In this section, we characterize the graphs with
2-AS’s. It is easy to see that a graph has a 2-AS
if and only if each 2-connected component of the
graph has a 2-AS. Thus we may assume without loss

of generality that the graph is 2-connected.

LEMMA
Let G=(V,E) be a 2-connected graph with a 2-AS.
If a set of two vertices {u, v} is a separator of G,

then (u, v)€E and every 2-AS contains (y,v).

PROOF: _
Suppose that the graph obtained from G by
removing u and v consists of the connected components

Gi,..., and Gx. We prove the lemma by showing that

‘any acyclic spanner without (u,v) is not a 2-AS of G.

Let G’ be an acyclic spanner without (u,v).
The unique path between u and v in G’ is contained in
exactly one component, say Gi, and the length of
the path is at least 2. Then there exists a cotree
edge e in Gz such that the length of the fundamental
circuit determined by e with respect to G’ is more
than 3, for G is 2-connected Thus G’ isinot a 2-AS.

A graph G is said to be propped if there exists
an edge (u,v) for any minimal separator {u,v} of G.
¥We call such an edge (u,v) a prop of G.

Now Lemma 1 is restated as follows.

LEMMA 1°:
A 2-connected graph with 2-AS is propped.

Moreover, every prop is contained in any 2-AS.

We characterize 3-connected graphs with 2-AS’s.

LEMMA 2:
Suppose G is a 3-connected graph. G has a 2-AS

if and only if G has a star-tree, that is, G has a

vertex adjacent to every other vertex of G.

PROOF :
If G has a star-tree, it is easy to see that the

star-tree is a 2-AS of G.
Conversely, let T be a spanning nonstar-tree of

G. Then T contains a path P of length 3. Suppose the

‘vertices u, v, w, and x appear on P in this order.

Since G is 3-connected, there exists in G a path
between u and x vertex-disjoint from P. This means
that there exists a cotree edge e such that the
length of the fundamental circuit determined by e
with respect to T is more than 3. Thus T is not a
2-AS.

For propped graph G and a prop (u,v) of G,
cutting G with respect to (u,v) is to delete the
vertices u and v from G and add edge (u,v) to every
connected component of the resulting graph

Given a propped graph G, we obtain & by
successively cutiing the current graph with respect
to a prop until every connected component becomes
3-connected. Note that § is unique independent of the
order of cuttings.

From these lemmas, we have the following result.

THEOREM 1:
A 2-connected graph G has a 2-AS if and only if
each connected component C of G has a star-tree with

all props of G contained in C.

PROOF:

The union T of star-trees described in the
theorem is a spanning tree of G because every prop of
G is contained in T. Thus T is a 2-AS of G

The necessity is trivial by the above lemmas.

From Theorem 1, we obtain the following
polynomial-time algorithm to decide whether a given

graph has a 2-AS.

ALGORITHM 1:
1. For every separator {u, v},
if (u,v)€E then goto 2
else output 'No' and halt.
2. If props contain a circuit
then output 'No® and halt
else accept all of props for edges of 2-AS

g

o
=
B

3. Repeat cuttint operation until each connected
component has no prop.
{Then each connected component is 3-connected}
4. For each connected component P,
find a vertex
which is adjacent to all vertices of V{P)
and incident to all props of G contained in P,
then accept the incident set of the vertex
‘as edges of 2-AS. “
If there exists no such vertex
then output 'No’ and halt.
5. Output 'Yes' and halt.

3. THE ACYCLIC k-SPANNER OF OUTER PLANAR GRAPHS

In this section we give a polynomial-time
algorithm to decide whether a given outerplanar

graph has a k-AS.
3.1 ALGORITHM

Without loss of generality, we may assume that
the graph is 2-connected. The edges on the boundary
of the infinite region are called outer edges, and

others are called inner edges.

ALGORTTHM

INPUT: k: integer G: . outerplanar graph
OUTPOT: ANSWER: {’Yes', 'No’} P: k-AS

1:. If G is a simple circuit then
if V! > k+1 then output 'No’ and halt
else P=E-{e}, output 'Yes’ and halt.
/¥ e is an arbitary edge */
2: Embed G into plane such that every vertex is on
the boundary of the infinite region.
/* This step is not essential but convenient
for description of the algorithm %/
3: P-4, 0+ o
/* Q is defined for convenient as well */
4: Let label(e)=1 for each outer edge.

5: Find a face F which has exactly one non-labeled

edge.
/* Such a face must exist (See 3.2) %/
6: Let e be the edge whose label(e) is minimum in F,
and f be the non-labeled edge.
7: If label(e)+iFi-2 > k then goto 12.
/* \F! means the number of elements of set F %/
8: Q ~ Quie}, P « Pu(F-{e, f}).
9: Remove F-{f} from the graph.
10: label(f) « label (e)+iFi-2.
11: Goto 13.
12: Q « Quif}, and remove f from the graph.
13: If there exists a non-labeled edge then goto 5.
14: /% Now the graph is a simple circuit %/
Let F be the circuit.
If label(e)+iFi-3 < k for some edge e,
then
Q « Quie}, P « Pu(F-{e}),
output ’'Yes’, and list P
else
output 'No'.
15: Halt.

3,2 Validity of the algorithm

Notice that there always exists a face
satisfying the condition in step 5. Because, in each
stage of the algorithm, an edge is labeled if and
only if the edge is an outer edge of the current
outerplanar graph, and an outerplanar graph has a
face with exactly one inner edge

First, we prove that if this algorithm outputs
"Yes’ then P is k-AS. At the beginning of this
algorithm, two end vertices of any labeled edge are
not spaned by P because P is empty. When an edge is
labeled, two end vertices of the edge is not spaned
by P. And there is a path in P from any vertex which
has already removed in step 9 to some vertex which
has not removed yet. This means that the union of a
spanning tree of the current graph and P becomes a
spanning tree of the original graph. Thus the output
P is a spanning tree of G. We must prove that each
fundamental circuit of the tree is of length k+l or
less. Assume that C is a fuhdamental circuit of P of
length more than k+l. Let £ be the length of C, and

.*_-'1

I R R B S TR

V(C) be the vertices of C. Also let ei,ez,.., and e
be cotree edges each of which connects two vertices
of V(C), sorted by increasing order of labels. Note
that C is the fundamental circuit defined by e: with
respect to P. It is clear that label(e;)=1. When e;
is labeled in step 10, the edge e, ‘which appeared in
the statement of step 10, is some e; (i>j). Let £
and 2; be the lengths of fundamental circuits defined
by e and e; respectively. Then it is easy to see
that label(ei)=1abel(e;)+iFi-2 and #:=8;+:F!-2. So
the length of fundamental circuit defined by e: is
#+1-label(e:). Since this circuit satisfies the
condition of step 7, there is a tree edge which is
not got into P until step 14 executed. However, this
circuit does not satisfy the condition of step 14,
that contradicts to our assumption that P is the
output. Therefore P is a k-AS.

Conversely, we prove that if the output is 'No’,
the graph G does not have a k-AS. Suppose that graph
G has a k-AS and the algorithm outputs 'No’. In this
algorithm, P and Q are updated one after another. Let
the pairs of (P, Q) of each step be (Pi,Q:), (P2, Q2),
wees (Pu, Qa). Note that Pi=Ci=¢, and P:sP;,QisQ;
(i<j). Then there is an integer t which satisfies the
following conditions.

(CONDITIONS)

IT:k-AS such that P: ST, QunT=¢p

IT:k-AS such that Piei 6T, Qs1nT=¢p
If such a number t dose not exist then Pa must be
k-AS and this algorithm outputs 'Yes'. The updating
from (P:,Q:) to (Pe+1,0t+1) can occur at step 7, 11
or 13. We prove that this is impossible. It is
trivial that the updating which satisfies the
conditions does not occur at step 13. Therefore we
disscuss steps 7 and 11.

Assume that such an updating occurs at step 7.
Then,

Qee1=Qeute}, Prs1=Pru(F-le, f}).

Suppose that T is a k-AS which satisfies that Pi<T
and QenT=65. By the definition of t, eecT or F-{e, f}4T.
Also by the fact that a labeled edge is an outer edge,
E-(P:+1uQ:+1) does not span two end vertices of any
edge of F-{f}. So, (F-{f}) contains at most one

cotree |edge of the tree which contains all edges of

P+ and none of Q.. Now two cases remain: i)F-{f}cT
and ii)3heF-{f}, hse, heT.
i) f¢T holds, then it is clear that Tu{f}-{e} is
k-AS. This contradicts the definition of t.
ii) Obviously Tuth}-{e} is k-AS which contradicts the
definition of t.
Next, we assume that such an updating occurs at
step 11. Then,
Pi.1=Pe, Qe+ 1=Qruif}.
There exists a k-AS satisfying that PiST, QunT=o,
and feT, by the definition of t. But this means that
T contains a fundamental circuit of length more than

k+l. This is a contradiction.

It is easy to see that the time complexity of
this algorithm is 0(n2).

REFERENCES

[1] B. Awerbuch: Complexity of Network Synchronization,

Journal of ACM, Vol.32 No.4 (1985) 804-823.

[2] David Peleg and J.D.Ullman:An optimal synchronizer

for the hypercube, Symp. on Primciples of Distributed C
omputing (1987).

