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SUMMARY

Suflicient conditions are established for the (n +p)-node, p > 2, realizability of Y-matrices of (n + 1)-node resistance
n-port networks. It is shown that these conditions are a generalization of the previous known results for p =2 and
p=n

1. INTRODUCTION

The n-port resistance network synthesis problem has long been a subject of research. While the complete
solution of the problem seems to be formidable, several aspects of this problem have been investigated
during the last two decades or so. Two of the recent contributions include those of References [ and 2.
While in Reference 2 the problem of (1 +2)-node realizability of Y-matrices of (n+ 1)-node n-port
networks is considered, an interesting study of degenerate resistance networks is made in Reference 1.
In this paper we consider the problem of (n +p)-node, p > 2. realizability of Y-matrices of (n + 1)-node
resistive n-port networks. It might appear that if a matrix is realizable by an (n + 1)-node resistive n-port
network, then it should also be realizable by an n-port network having more than n+ 1 nodes. However,
such is not the case. In fact, Lempel and Cederbaum® have shown that certain extremal Y-matrices can
not be realized by networks with more than (n + 1) nodes. They have also shown that for each n = 3. and
P 1=p=n, there exists a realizable nth order Y-matrix which can be realized with any number of nodes
between n+1 and n +p, but not more than n +p. For example, the fifth-order extremal Y-matrix

52 21 1
22100
Y={(2 1 2 00
10010
1 00 01

is realizable with 6, 7 or 8 nodes but can not be realized with more than 8 nodes. These results of Lempel
and Cederbaum motivated the work of Reference 2 in which it was shown that if a matrix is realizable by
an (n +1)-node resistive n-port network containing no zero conductances, then it can alsg be realized by
an (n +2)-node n-port network. It was also shown that for such a matrix a large number of continuously
¢quivalent realizations can be obtained. We continue our pursuit in this paper and establish sufficient
Conditions for the (n +p)-node, p > 2, realizability of Y-matrices realizable by (n +1)node n-port net-
Works. We shall also show that these conditions generalize the previously known conditions for p = 2 and
P =n.
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2. (n+p)-NODE REALIZABILITY OF Y-MATRICES OF (n +1)-NODE n-PORT NETWORKS

We choose, for our discussions, the dominant matrix Y with all off-diagonal entries negative. Note that
such a matrix is realizable by an (n + 1)-node n-port network having a star-port configuration. This choice
would involve no loss of generality, since the (n +p)-node realizability of any other (1 + 1)-node real-
izable matrix can be tested by first converting it to a dominant matrix with all off-diagonal entries negative
and then applying the conditions to be derived in this section.

Let the given matrix Y be required to be realized by an n-port network having the port configuration T
shown in Figure 1. Let Ty, T, . . ., T, denote the p connected parts of T. Let Ty be a tree of N so that T is
a subgraph of To. P, will denote the kth port in T;, while i, and i, are respectively the positive and
negative terminals of port P;,). yiw).itm) Will denote the transfer conductance between ports Piw) and P;,,,,.

Network N can be considered as a parallel combination of two n-port networks—the network of
departure N, and the padding n-port network N,.* Properties of N, and N, are discussed in Reference 4.

Let gi;., denote the conductance connecting vertices i and j,, in N. (8irjm)a and (gi,;,.), will denote the
corresponding conductances of Ny and N, respectively. Let further

Sii = > Birims %
me=0Q
Si= 2 Suj
k=0
=Y S ij=12..pi#] T
m=0

(Siuida, (Siidp» (Sij)a and (Sy), will denote the corresponding quantities of Ny and N, respectively. It can be
seen that

Bixim = (8itjm)d + (Zirjim Ip»
Sii = (Sij)a +(Sii)p (2)
Sii = (Si)a +(Si)p
It is shown in Reference 4 that for any &
(Sij)a=0 foralliandj,i#j
Thus we have
Siej = (Suj)p
and
Si =(Si)y (3)

Let ki«,; denote the potential of the set of ports in T} with respect to the negative reference terminal of
port Pik;, when Pi, is excited with a source of unit voltage and when all the other ports of N are
short-circuited. Note that under such a condition, all the ports in T} will be at the same potential. )

Our approach to obtain the conditions on Y for its (n +p)-node realizability will be a combination of
those of References 2, 5 and 6. Thus we assume that the required network N satisfies the following
conditions:

(i) For any i and k

kir; = kiw)m for all jand m, j #m 4

(i) 8. =0 foralliandj,j#i and for all m #0

The first condition means that when P, is excited and all the other ports are short-circuited. nv
current flows in the conductances connecting vertices in T; and T, for all j and {,j #1+#i Thisis, in fact. 3
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generalization of the approach followed in References 5 and 6. The conditions are necessary to obtain
simple conditions for the (n + p)-node realizability of Y.

The conductances of N, can be obtained starting from its cutset admittance matrix Ya. Yq will be as
shown below.

Y | 07"
Yo= [ o].z_l (6)

In Yq the rows and columns of Y correspond to the branches of T and the remaining rows and columns of
Y, correspond to the branches of To— 7. Conductances of N, do not, of course, depend on the choice of
To. We can choose Ty as consisting of T and those branches indicated by dotted lines in Figure 1.
Realizing Y, by an (n +p — 1)-port network having the port configuration T, will yield the conductances
of Na. These conductances can be easily obtained following the procedure given in Reference 7. They are
as follows:

(8irim )t = Yidirjim)s Li=1,2,...p

k = 1, 2,. . N
m=1,2,...n
m#k, when i=j (7)
(gikio)d= - Z—x (gikjm)d
= Z=ly,-(k),,-(m) i.f=l,2...,p
J#i (8)

(irio)a = Yi)ity ™ Z_‘, : (it )a

m#k
= Yitk)itk) ™ Z_Il | Vicky.icm)l 9
mek
n n
(8iojo)a = 2 1 kgl [Yige) jomy] (10)

‘The conductances of N, can be obtained by using the formulae given in Reference 8. These formulae
reduce to the following after using equation (4).

Sij X Sj,.i ., -
(gihjm)p=LS"#a ',]=1y2~--ypsl#] (11)
k=1,2...,n;
m=l,2...,n,-
P SiiSi;
(8iimdp=— 2 Z. = (12)
oS
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i, Figure 1. Port-configuration T

It can be shown that under the conditions imposed by equation (4)

ﬁfl v (3
S,‘,'

kiwy)j =

atrix

We shall next establish the constraints imposed by equations (4) and (5) on the elements of the m
Y.
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By equation (5)
8ivio = (Girjo)at (8irjo)p

=0 (14)
Using equations (8), (11), and (13) we then get from the above
n; SiiSis
mz=l [Yickr.iom] = ;i.'m
= ki) jSjoi
= ki) i8joio (15)

The last step in the above equation follows from the fact
Sjoi = Z_' 8joim T Bjoio

= gjoin» SinCe each gj,;,. =0 by equation (5).

After defining Ay, as

Aiwy; = Y;n [Viwyiom) (16)
we get from equation (15)
Aigeyy
kigyj = =M (17)
gioio

Since by equation (4)
ki = kiym for all m #j
we get from equation (17)

Aic); Aicorm .. '
__(k)‘l-_-&;— l’]’m=192""p’

8iojo 8iomo

i#j#m
k= 1, 2. P (]
or
8iojo = Ai(k)J (18)
Biomo  Dikym
Since equation (18) has to be true for all k, we get the following condition on the entries of Y:
A W Ai(r).j ..
=L jim=1,2..., (19)
Ai(k).m Ai(r).m ] . p
i#Zj#m
kr=1,2...,n

The problem of determining the network N realizing Y involves the choice of suitable nonnegative

values for S,;’s and S;’s so that each g, = (8irjm)a + (84j.n)p is NONNegative. We shall show that such a
choice is possible if the matrix Y satisfies equation (19).

By equation (5), the conductances 8ijo's Of N are zero. From equations (7) and (11), it can be seen that
the conductances (8 )a's and (gi;. )p's i #j, m # 0 and k # 0 are nonnegative. Further by equation (10),
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(8wid)a’s and by equation (11), (gio)p's are nonnegative. Thus all the conductances gi;.'s i #j are
nonnegative as long as S,;’s and S;;’s are nonnegative.

It can be seen from equations (7), (9) and (12) that all (g, )s’s are nonnegative while (gi..)p’s are
nonpositive. Thus, it is in making the sum of (g, )a and (gi.i..), nonnegative that the choice of S;;’s and
S;'s matters. We shall next proceed to show how such a choice can be made.

From equation (18) we have

Biomo = ————- 8o  forsomek (20)

Thus
for some k

_ Aigy o Ajm).i

X 8142, for some k and m
Ai(k).l Al(m).2

A
= 0j81020

Note that a;3 =1
It then follows from equation (17) that

A,' k)j 1
k‘_ L= (__(_i) W
i a;j 81020
AB_ Y __1__ (22)
“ 81020

Thus all the potential factors k;«);’s can be expressed in terms of a single parameter, namely, g120-
Consider next equation (12). This can be rewritten using equation (13) as

P
(8iim)p = — _2! kigo) iKiom)iSij m#k \
i=

=i
m#0
k#0
P
(Biriolp = _Z:I ki) iSioj
i
P
==Y ki) iiojo k#0 (23)
j=1
j=i

Hence evaluation of (g,.,.),’s requires an expression for S;’s in terms of g;,2,.
By definition

= i Sij T+ Sioj
k=1

1
= kgl Siki + 8iojo
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Dividing both sides of the above by S;;, we get using equati_bn (13)

1= Y kigwy 1 Bioo
k=1

Sii
_ i Ai(k).i_*_@ o
k=1 Biojo Sij
From the above we get S;; as
Si' = giiio
Biojo— Ayj
- a‘%g ;"020 25)

@i81020 ™ Aij

where
n;
A;= kz Biwy
=1

Using equations (17) and (25) in equation (23), we get

Ai) jBitm) g

(B = —igl Ggrze—by’ g 9
: m#0
k#0
and
(gudo =~ 5. By qex)

j#i

Consider equations (27) and (9). We get from these
Bixio = (gikio)d + (giu'o)p

[ ]
=Ykt~ L L |Viceriom]
ji=1 m=1
mr k., when
=i

= a nonnegative number, since Y is dominant.

From equations (26) and (7), we get

2. Aig)jBigm) '
ixim = | Yilk)itm)| (28
g Iy (ke )ig )l ]§] aiig102o_Aii )
Vgl

Nonnegativeness of g, requires

| = § BigyjBigmys
Yitk)itm)] = ’
i=10581620— Ay
jri

m#k 29)

Since in the above g,,2, appears in the denominator and all other terms are positive it is always possible
to choose a suitable positive value for g,,2, so that inequality (29) is satisfied.

Such a choice for g2, Will ensure that the conductances of N are nonnegative. This value for g;42, can
be used to evaluate S;’s (using equation (25)), gi,'s (using equation (21)), and (g.;..),’s (using equations
(11) and (12)). The sum of (gi;..), and (gi;..)a will then yield a nonnegative g,;,..
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If for some i and m #k, |yi).im) =0, then it is clear from equation (29) that g,,2,~ 0. In such a case
the resulting network will be an (n + 1)-node realization of Y.

If p = n, then condition (19) does not arise at all and hence any dominant matrix Y with all off-diagona|
entries negative is realizable by a 2r-node network. This, in fact, is a result already well known.’

If p =2, again condition (19) does not arise and.the results of this section will then reduce to those of
Reference 2. '

" Te main result of this section is summarized in the following theorem.

Theorem 1

A real symmetric dominant matrix Y with all off-diagonal entries negative is realizable as the s.c.
conductance matrix of an (n +p)-node, p = 1, resistive n-port network containing no negative conduc-
tances provided that the entries of Y satisfy the following:

Bigrg _ B Ljim=12...p

i#£j#m,
k,r=l,2...n.~
k#r

Ai(k )m Ar'(r).m

We shall now illgstrate these discussions with an example.

Example
Consider the matrix Y given by
[ Py P | Pany | Pay ]

Pl(l) 8 "‘2 "3 “2
Pl(z) ""2 14 —‘6 —4

Y=
Py -3 -6 13 -3
Py(1){ —2 -4 -3 12 ]

Let this be required to be realized as the s.c. conductance matrix of a 4-port resistive network having the
port-configuration of Figure 2. The rows and columns of Y are designated suitably as shown above.
We then obtain the following

Am2=3 Aa=9
Ams=2  Ayps=3
Ai2=6 Ay, =6
Ai3=4  Ayp2=3

Ap=9 Ai3=6

It can be seen from the above values of A;x,;'s that the matrix Y satisfies the conditions of equation
(19).
a;'s are then obtained using the definition given in equation (2

S i AT e
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Figure 2. Port-configuration for the Example

Inequality (29) gives rise to the following:
Ainy2dia2a i + Aunshigsais
a1281020— 812 X1381020— D13
__3x6 2 X4(5)
81020—9 (%)g lo2o ~ 6
32
__ 18 e )
gIOZO_9 (5)g1020—6
A choice of 24 for g4, will satisfy the above inequality. With this choice we obtain the following

yimaa| =22

g1030o= 16; Si2=1%; S;=%
g2o3o=8; SlB= ga

kim2=kins=

1l

ki@2=kias

. kzu).x = kzu),s =

Wi O D OO

k3(l).l =k3(1),2

The network of departure Ny (using equations (7), (8), (9) and (10)) is obtained as in Figure 3. The
padding network is obtained (using equations (11), (12) and (13)) as in Figure (4).
The parallel combination of Ny and N, is shown in Figure 5. This network realizes the matrix Y.

3. CONCLUSION

In this paper we have established the conditions sufficient for the (n +p)-node realizability of Y-matrices
of (n +1)-node resistive n-port networks. The realization procedure given in Section 2 generalizes the
ones known already for the cases of p=n and p =2.%*%” In fact, the conditions implied by equation (19)
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Figure 3. Network of departure for the Example
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Figure 4. Padding network for the Example




