2002

9

1-24

N
S
O

=

g

37
Q
-




QoS Routing in Communication Networks

Krishnaiyan Thulasiraman' and Ravi Ravindran? -
' 'University of Oklahoma, Norman, USA '
ZNortel Networks, Ottawa, Canada

Abstract

Graph theory and combinatorial optimization techniques play an important role in the design, analysis
and control of telecommunication networks. These techniques include algorithms for finding shortest paths, -
-determining a maximum flow, finding a minimum cost tree etc. Though most problems encountered in
telecommunication network studies are computationally intractable, the above graph theoretic algorithms
have served as building blocks in designing efficient heuristics for these computationally hard problems.
Finding a minimum cost delay-constrained routing is one such problem. In this paper we give a broad
overview of the current state of the art in this area. We give a detailed exposition_of two recent heuristics
and provide a comparative evaluation of these heuristics with certain other approaches.

L Introduction .

Recently, there has been considerable emphasis on designing communication protocols which
deliver certain performance guarantees. This has been the result of an explosive growth in applications such
as digital video and audio that require stringent quality of service (QoS) guarantees. In this paper we are
concerned with a study of algorithms than could be used in routing protocols for computing paths that
guarantee certain QoS requirements. These heuristics: can easily be incorporated into link state protocols -

- like OSPF and ISIS where there is.more need to source route using explicit paths in order to support

various traffic engineering schemes. One of the promising architectures has been MPLS-based traffic L

engineering. Specifically, we will be studying routing mechanisms that aim at minimizing the cost of a path
from a source to a destination node subject to the total delay of the path being within a certain limit, The
discussion is also applicable to paths involving other link parameters which are additive (along the path). .-
Several papers discussing different aspects of this problem have appeared 'in the literature [1}-[15]. We
shall now review the salient features of some of these algorithms. In designing QoS routing protocols two
min-cost path algorithms play an important role. They are: Dijkstra’s algorithm and the Bellman-Ford-
Moore (BFM) algorithm [16). Whereas Dijkstra’s algorithm is inherently sequential in nature, the BFM
algorithm is amenable for an elegant distributed implementation [17]. The problem we are interested in is
the design of routing protocols that satisfy multiple constraints: minimizing cost subject to the delay
requirement. It has been shown that this problem is NP-complete [2]. So.heuristics approaches and
approximate schemes have been investigated. Chen.and Nahrstedt [1] have given an overview of the
several heuristics for the QoS routing problem. Jaffe [5] presented a pseudo- polynomial time algorithm for
constructing paths satisfying multiple constraints. He also presented approximation algorithms and
discussed several theoretical issues."Hassin [8] presented a strongly polynomial e-approximation scheme
-which has formed the basis of later works [10-11] in  which approximation schemes with better time
complexity as well as schemes applicable to more general situations ha}e been reported. But the
approximation schemes in general have very high time complexity even for reasonable values of £. In a
recent work [12] a simple and efficient approximation scheme which improves upon Hassin’s algorithm is
presented. Reeves and Salama [4] discussed, perhaps the only, - distributed algorithm for the delay
constrained routing problem. Widyono {3] discussed several aspects of the design and evaluation of
multicast and unicast algorithms for the bounded delay min-cost path problem. Though this algorithm finds
the optimal paths it does not scale well with increase in the size of the network. A very efficient heuristic
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based using the Lagragian relaxation methiod is presented in [13]. Luo, Huang, Wang, Hobbs and Muinter
presented in [7] a heuristic which we call the LHWHM algorithm for the bounded-delay minimum cost
path problem. A heuristic based on the BFM algorithm is discussed in [14]. Several theoretical issues
relating to the constrained shortest path are discussed [15). - - .

In this paper we first present the LHWHM algorithm and examine in detail some of the factors that
impact the performance of this algorithm. We then present what is called the Multi-Depth-Heuristic, which
is a generalization of the LHWHM algorithm. These algorithms are adaptations of Dijkstra’s algorithm. We
then present the BFM-BDMCP algorithm [14] which is based on the BFM algorithm. Several issues arising
in the implementation of this heuristic are discussed. The BFM-BDMCP algorithm is also amenable for
distributed implementation. We conclude with an experimental comparative evaluation of these heuristics

with Hassin’s e-approximation scheme and the Lagrangian relaxation based heuristic LARAC of [13].
IL. Bounded Delay Min-Cost Path Problem (BDMCP)

Consider a point-to-point communication network represented as a directed graph
N = (V, E), where V is the set of nodes and £ is the set of links in N. A link directed from node u to node v
is denoted by e = (u, v). Each link e is associated with two non-negative real numbers, cost c(e) and delay

d(e).. The link cost c(e) may be either a monetary cost or some measure of the link’s utilization. The link

delay d(e) is a measure of the delay a packet experiences when traversing the link e. We also specify two
nodes, s and ¢, as the source node and the destination node, respectively. An undirected network may be
viewed as a directed network with each link e = (u, v) replaced by two oppositely oriented links er=(uv)
and e; = (v, u). In this case c(e;) = c(ez) and d(e;) = de;). If e = (u, v), then c(e) and d(e) are also denoted as

cuvand d,, respectively.

" We define a path P ﬁém node v, to node v; as an alternating sequence of distinct nodes and links,\\sugh that
P(vo.v)=vo, €1, vy, €y....., €, v where ¢, = (v, v; JeE, . ' '
for 1 <i<k. The cost o(P) and delay &(P) of the path P are defined as :

o(P)=Y e(e) and

d(P)=Y d(e)

Suppose we are given a real number 7 which serves as a measure of the maximum allowable delay on any
s-¢ path in ¥, then we call an s- path P feasible if dP)<T.

The Bounded Delay Minimum Cost Path Problem (BDMCP) is to find a feasible s-¢ path, which has the
smallest cost. For example, in the network N in Fig.1 with delay constraint of T'= 5, the shortest 5-¢ path is
the path P, ={s, 2, 4, t}. But this path does not satisfy the delay constraint of 7= 5. The s-¢ paths P, ={s; 1,
4,t} and P,={s, 2, 3, {} are feasible with cost 5 and cost 8 respectively. P, is the feasible min-cost path. -

o), d(uy)
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III. AKey Technique in the Design of Heuristics for the BDMCP Problem

The heuristics discussed in the following three sections employ a simple, yet, powerfu] idea discussed

below. \ '

Given a communication network with source node s and destination node . For each node u, let us define
D(u) = the delay of a minimum delay path from u to 1. : o :

I other words, D(u) is the smallest delay of any path from the node # to the. destination node ¢.

-Consider a path P from node s to node u. Assume that Delay(P ) < T, where T is the upper limit on
allowable delay from s to ¢. At each step, the heuristics face the problem of extending the path P to a node
x (see Figure 2). To determine the node x, the following condition is tested.

Delay(P) +d(ux)+D(x)<T. we(1)
If this condition is not satisfied, it can be concluded that there exists no feasible s-¢ path which contains P
as a sub-path. Thus, in this case, the heuristics would not extend P to x. Othérwise, P will be extended to x.
Incorporating this idea in efficient min-cost path algorithms results in different heuristics. )

Note that satisfaction of the above condition does not guarantee the existence of a feasible s-¢ path.
The impact of this important fact on the quality of routes produced by the: heuristics will be discussed
extensively in section V. -

Delay(P) . , D(x)
\ delay(u, x) / '
PahP Fig.2

. IV. The LUO, HUANG, WANG, HOBBS and MUNTER (LHWHM) Algorithm

We now present and illustrate a heuristic for the Bounded Delay Min-Cost Path Problem (BDMCP)
proposed by Luo, Huang, Wang, Hobbs and Munter in [7], which is to be called the LHWHM algorithm,
The LHWHM algorithm is based on the well-known Dijkstra’s algorithm for the single source min-cost
path problem [16]. In adapting Dijkstra’s algorithm to find a sub-optimal solution, the LHWHM algorithm
first computes D(u), for each node . Recall that D (u) is the delay of a minimum delay u-# path. This
computation can be done easily by applying Dijkstra’s algorithm to the network N * which is obtained by
reversing the directions of all links in the given network , using the link delays instead of link costs and
using node ¢ as-the source. Note that in the case of undirected graphs each link can -be viewed as two
oppositely directed links connecting the end nodes of the link. ‘ T
The LHWHM algorithm assigns the variables CLABEL (), PERM(u) , PRED(x) and DLABEL(%)
to each node u. At any step in the algorithm, the value of DLABEL(u) indicates-the delay of an s-u path,
and the cost of this path is given by the value of CLABEL(4). We initialize these variables as follows. -
CLABEL (5) = 0 and CLABEL (z) = forall u =s; '
DLABEL (%) =0 for all u; C _—
PERM (s)=1and PERM (u) =0 for all u =s; ' '
If PERM( ) = 1, thén we call u as permanently labeled. Initially, the node s is permanently labeled.
It may be recalled that in Dijkstra’s algorithm, at each step at most one node is permanently labeled. Also,
once a node is permanently labeled, it is not considered for labeling again. With these preliminaries, we are
now ready to present the general step-of the LHWHM algorithm.
The general step in the LHWHM algorithm : : . o
From the nodes not yet permanently labeled pick a node, say u, which has the minimum CLABEL .
value. Set PERM(x) =1.Then, for each node v which is adjacent to node ¥ and which is not permanently
labeled, do: : : ’ : '
IfDLABEL(#) + d,, + D(v) < T and CLABEL(v) > CLABEL(4) + ¢,,, then set
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DLABEL(v) = DLABEL(u) + d,,,
- CLABEL(v) = CLABEL(%) + ¢,,, and
PRED(W) =u. . : _ '

. This general step is repeated until PERM()=1. o o .
Note the modification to the general step in Dijkstra’s algorithm to arrive at the general step of the
LHWHM algorithm. Basically the LHWHM algorithm, before extending the s-u path to a neighbor v,
checks to see if there exists a feasible s-r path through » and v. In doing so, it uses the value of D(v)
computed at the beginning of the algorithm. K

V. The Multi-depth Heurlistic for the BDMCP Problem

In this section we shall first discuss the factors which impact the performance of the LHWHM algorithm
introduced in the previous section. Based on these factors we shall first present some improvements and
variants to. the basic LHWHM algorithm. We then propose a new heuristic called the Multi-depth Heurlstlc
which is an extension of the LHWHM algorithm. ' ' '

'S.1 Variants of the LHWHM algorithm

We now present two factors that impact the performance of the LHWHM algorithm and suggest
schemes that will provide partial remedies. )
Factor I: ' '
Consider Fig.4. Here, Py and P, are two paths with equal costs but with delay of P, much higher than the

delay of P,.
. v Py _ _
— = ()"
) u

P, : -
Fig 4

Suppose there is no feasible s-f path along P, and that there is an optimum feasible s- path, which has

P, as a sub-path. Assume that at some point u gets labeled along P, and that in some later iteration it is

detected that there is no feasible s-f path along P;, This means that the labeling of u along P, has not served

any useful purpose. But it is now too late to correct the situation, because the LHWHM algorithm does not

allow relabeling of u along P, (note that the costs of P, and P, are assumed to be equal). Hence the

algorithm will .not be able to look for the optimum feasible path containing P,. Thus the LHWHM

- algorithm would fail to find an optimum solution. This could be remedied if we allow the LHWHM

algorithm to relabel a labeled node  if it is approached by another path of equal cost but with lower delay.
This requires a simple modification to the general step of the LHWHM algorithm. B :

Factor 2;

Consider again the situation in Fig. 4. Suppose that node u gets permanently labeled along Py and that
because of the delay constraint no relabeling of any neighbor node of u is possible. Since node i is
permanently labeled, it cannot be relabeled again along P,. This means that node u blocks the search for
optimum paths along P,. This can be remedied if we incorporate “ node unlabeling” in the LHWHM
algorithm. Node unlabeling requires setting CLABEL(x) =, DLABEL(x) =0, PERM(x)=0 and PRED(¥)=
u, once it is detected that no update of the Iabels of the neighbor nodes of u is possible .
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The question that we need to answer is whether the revised version of the LHWHM algorithm
incorporating node unlabeling is an improvement over the original LHWHM algorithm, Unfortunately this
is not so. We can construct an example to demonstrate this, This is not surprising, since fot any heuristic
one can construct an example where the heuristic performs very poorly. Improvements are possible if the
node unlabeling operation is modified as follows. ‘ : : :

If no update of the labels of the neighbor nodes of the permanentljz labeled node u is possible, then set
_ CL.:!BEL(u) = Immediate past value of CLABEL(u) and, 5
DLABEL(u) = Immediate past value DLABEL (u).

. Implementation of this new version of node unlabeling will require maintaining at each node pest label
values and thus the space complexity of the algorithm will be increased considerably. Time complexity will

number of times a node is allowed to be uniabeled. : .
Summarizing, node unlabeling does not necessarily result in an improvement over the LHWHM
algorithm. This is because, though node unlabeling allows new paths to be explored, these new paths
themselves may block certain paths that would have otherwise been explored by the original LHWHM
algorithm. However, except in some rare cases, node unlabeling did not help improve upon the cost of the

produced by the LHWHM algorithm,

. 8.2 Multi-depth Heuristlc: A Generalization of the LHWHM Algorithm

We next draw attention to yet another factor which causes the LHWHM algorithm to produce non-optimal
solutions, and then propose methods to remedy the situation. First, we note that once a node u is
permanently labeled in the LHWHM algorithm, then there exists a unique s-u path containing only
permanently labeled nodes. We call this the s-u tree path. The LHWHM algorithm, before labeling a node x

‘from a permanently node u, first checks to see.if there exists a feasible s- path containing the s-u tree path
and the edge (u, x). This is done by testing (condition (1) in section IT )if ’ o
DLABEL(¥) + d,,+D(x)< T w (2) o) ' :

If this condition is satisfied, then it is concluded that there exists the required feasible st path passing
through u and x, and so the algorithm proceeds to label x, provided the cost condition is also satisfied.

Let us now examine condition (2). Recall that D(x) is the minimum delay of any x-t path in the original
network N, In condition (2) what we really need , in place of D(x), is the minimum delay of any x-f path
containing no permanently labeled nodes at this stage of the algorithm. Since D(x) is only a lower bound
on the minimum delay of any x-f path containing no permanently labeled nodes, satisfaction of this
candition alone would not guarantee the existence of the required feasible s-f path passing through u and x.
Thus we have two important conclusions summarized in the following theorem,

. Theorem 1,

a) If condition (2) is not satisfled, then there exists no feasible s-t path
containing the s-u tree path and the edge (u,x).
b) Satisfaction of condition (2) does not guarantee the existence of
a feasible s-t path described in (a) above//.,

Condition (b) in the above theorem means that the LHWHM algorithm, on the satisfaction of condition
(2), may conclude that the required feasible s-¢ path exists and hence will label x, but detect infeasibility
in several iterations later. To remedy the problem we have the following options,

OPTIONS : S

Suppose u is the most recent permanently labeled node. Let x be a neighbo_r of u not yet permanently

labeled. Let PL be the set of nodes permanently labeled at this stage, and N be the network containing
. node x and the nodes not in PL along with the links connecting them,
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Option 1 (See Fig. 5(a) ):

Perform’ Dukstra s algorithm on N" with x as the source node, rand using link delays determine the
delay of a minimum delay paih from x to the destmatnon t in the network N'. ThlS gives the new value of
D(x) to be used in condition (2).

Option 2 (See Fig. 5(b) ):
Run the LHWHM algorithm on N with x as the source node and tas the destination node. Also let us
initialize two new variables CLABEL' and DLABEL as follows.
CLABEL'(x) =0,
DLABEL'(x) = DLABEL(x) + d,u )
CLABEL*(v) =  and DLABEL'(v) = 0-for all ve PL and v # x,
where DLABEL(u) is the current delay value of u in the LHWHM algorithm applied on N. Note that the
D(v) values to be used'are the same as those used for the LHWHM algorithm running on N, If the
algorithm on N* is run to completion and at termination the node ¢ is permanently labeled then this would
guarantee the following: : :

a

There exits a feasible s-t path containing the s-u tree path and the edge (u,x) So, In this case,
returh to the original LHWHM algorithm and label x from u.

On the other hand, if the LHWHM algonthm running on N terminates without labelmg t, then this would o

mean the following: L

If the node x gets permanently labeled ﬁ'om u, then the LHWHM algorithm running on N would detect =~ -
" infeasibility at some later iteration. So, in this case, the LHWHM algorlthm should not label x from u.

PL= Set of
permanently
labeled nodes

A PL= st of
permanently
labeled nodes

CLABEL'@=0
Y') = DELAY(4) + e

Find the min-delay from x to ¢ in - . * Runthe LHWHM algorithm on N* with labels
N and use this value in place of ‘ of x initialized as above.
D(x). - . ' Fig.5(b)
Fig.5(a) .

Running to completion the LHWHM algorithm on N' will involve excessively large amount of
* computation time. So we propose to terminate this phase after the algorithm has labeled k nodes of ¥
- permanently. If the algonthm stops after labeling k nodes permanently or labeling ¢, then we would let

LHWHM algorithm running on N label x from u. Otherwise, x will not be labeled from u. We call this

heuristic the k-depth heuristic for the BDMCP problem, '

Replacing the general step in the LHWHM algorithm as discussed above, we get the k-deprh heurimc. It IS:

easy to see that the time complexity of the k-depth heurlstic is Ok ).
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- VL. The Bellman-Ford-Moore Based Heuristic for the
'BDMCP Problem

As we pointed out earlier, there are-two algorithms for the single source shorteést path problem:- Dijkstra’s
algorithm and the Beliman-Ford-Moore (BFM) algorithm. The LHWHM heuristic for the BDMCP problem
is based on Dijkstra’s algorithm. We present in this section a heuristic based on. the BFM. algorithm to be
called the BFM-BDMCP algorithm. We first present thie BFM algorithm. We then pres¢nt the BFM-BMCP
algorithm. This is followed by a discussion of certain fundamental characteristics of this heuristic which
‘distinguish it from the LHWHM algorithm and also certain fundamental implementational - issues that arise
because of these unique features. Finally, we prove that the BFM-BDMCP heuristic does find a feasible
path, if one such path exists. 0

6.1 The BFM Algorithm

As in Dijkstra’s algorithm, the BFM algorithm associates‘ with each node u two variablés ‘CLABEL(u) and
PRED(x). Initially CLABEL(s) =0, CLABEL(s) =  ,forallu € V and u # s and PRED(u) =u forall v €
‘l. .

The general step in the algorithm

" Pick any link (u,v) such that CLABEL(u) #o and CLABEL(v) > CLABEL(x) + ¢, .
Set CLABEL(v) = CLABEL(w) + ¢,, and PRED(¥) =v. :
If no such link is available, the BFM algorithm terminates.

At termination CLABEL(?) gives the cost of a minimum cost s-f path. This path can be traced starting at
PRED(f) and-working backwards towards the source node s. - : ’

We next present an efficient O(m n) implementation of the BFM algorithm [16].
In the following discussion scanning & node u means examining all the edges (y,v) and labeling the
neighbor nodes of u, if possible. A sweep of the BFM ealgorithm réfers to the process of scanning all the
. nodes as 1,2,3,......n in that order. . | o )

- Following is an implementation of the BFM algorithm using the concept of the sweep.

The BFM ALGORITHM

1. (INITIALIZATION) Set CLABEL(s) = 0, CLABEL(x) =, for all ¥ € ¥ and
u#s and PRED(u)=u, forallu e V.

2. Performa Sweep. ' S

3. If no node CLABEL value gets updated, STOP. CLABEL(Y) gives the cost of the min-cost shortest s-¢
path. Otherwise, repeat Step 2. S ’

It can be shown that after performing n sweeps the BFM algorithm will terminate, resulting in the time
complexity of O(mn). The above implementation of the BFM algorithm permits two choices which are .
presented below. - - ' : . ' '

Version 1 (Asjnchrohous) o ' » ' R
While scanning a node u during-a sweep, use the current value of CLABEL(x) to label the neighbors of
node u. : : ) :

Version 2 (Synchronous) : ‘ _
While scanning node u during a sweep, use the value of CLABEL(x) at the end of the previous sweep for

updating the labels of the neighbors of node u. : .
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‘Asynchronous distributed implementation of BFM elgorithm uses Version I and synchronous distributed

implementation distributed implementation uses Version 2 [16], [17]. So these two versions will be referred

to asynchronous and synchronous versions, respectively.
6.2 BFM-BDMCP HEURISTIC

The BFM-BDMCP heuristic is based on the BFM algorithm. As in the case of the LHWHM algorithm,
we first compute D(v) for each node v where, as we may recall, D(v) is the minimum delay of any v- path,
Again-each node v is associated with the variables CLABEL(v), DLABEL(») and PRED(v). Initialization of _

the BFM-BDMCP algorithm is as follows.

~ CLABEL(s) =0, CLABEL(#) = , forallu €'V andu s, and
DLABEL(u)=0 forallu e V.

For reasons which will be made clear later, we are not at this point specifying the initialization of PRED(v)
values or the mechanism for the update of these values as the algorithms proceeds. Scanning a node u
involves the following: ‘ : o '

For each neighbor v of ¥ do: .
If DLABEL(y) +d,, + D(v) < T and CLABEL(v) > CLABEL(4) + ¢,y then set CLABEL(y) =
CLABEL(¥)+ ¢,y . . ‘

A formal presentation of the BFM-BDMCP algorithm is as follows

BFM-BDMCP Algorithm _ .

1. Initialize the variables CLABEL(v), and DLABEL(v) for all nodes v € V.

2. Perform a Sweep. - ,

3. If no node CLABEL value is updated during & sweep, STOP (the value of CLABEL(Y) gives the cost
of the final feasible s-f path and is a sub-optimal solution to the BDMCP problem). Otherwise repeat
Step 2. : _ C '

We can use the synchronous version or the asynchronous version while iniplementing the Step 2. We .neit _
proceed to highlight certain characteristics of the BFM-BDMCP algorithm. . :

Suppose while labeling from node 4, the CLABEL(v) of neighbor node v is updated . We can view this as
“node u initiating a wave to node v", Basically this means that node u has extended a current s-u path to an
s-v path. In the case of the LHWHM algorithm, during an iteration only one node (the most recently

permanently labeled node) is scanned. Thus at most # new waves (equivalently, paths ) are initiated. And -

only one of these waves gets chosen for propagation of waves in the subsequent iteration. In fact, at most »
waves will get a chance to propagate new waves during the entire algorithm . On the other hand, in the case
of the BFM-BDMCP algorithm, an iteratlon corresponds to a sweep, that is, the scanning of all the nodes of

the network. This means that during a sweep a number of waves are initiated. Therefore a large numbor of

paths become considered for further extensions to feasible s —¢ paths. This is because every node whose
CLABEL gets updated during a sweep gets & chance to initlate a wave (a new path) for exploration and
does not have to wait until it becomes permanently labeled as in the case of the LHWHM algorithm. It is
for this reason that we expect the BFM-BDMCP algorithm to outperform the LHWHM algorithm. ‘This is
illustrafed further next. Consider again Fig, 4, Suppose node u is updated along path P, with new labels
CLABEL(x) = x; and DLABEL(4) = y, .This causes a new wave, say WAVEL], to be initiated by #. .
Suppose at a subsequent sweep node » is updated along path P, with new CALBEL(4) = x, and
DLABEL(%) = y;. This causes a new wave, say, WAVE2, to be initiated by node u. Clearly x3 < %1,
Suppose y; is much larger thain.y;, then WAVE2 may detect in a subsequent sweep that it cannot extend
itself to a feasible s-¢ path. On the other hand, WAVE!, because of the ‘}ower value of y, may be able to
reach ¢ and label jt, thereby finding a feasible s-¢ path, In the case of the LHWHM algorithm, WAVEL
would not even have been initiated, thereby loosing an opportunity to discover a feasible s-¢ path, - ‘

We now examiné the impact of the above scenario on the tracing of the s-¢ path using the PRED values,
starting from node’s and moving backwards towards s. -
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scanning node J. If we use this scheme for updating PRED values, then in the scenario (Fig.4) we have just
considered PRED() will be first set to k& ( the node preceding u in the path P;) when u:is:labeled by k
along path P,. In a subsequent step PRED(x) will again be reset to w, the node preceding  in P,, WAVE1
reaches ¢ and labels it. But WAVE2 does not reach 7. So, when we trace the s-¢ path from ¢ we reach node u
- and find node w as a predecessor and not k which was the cause for initiating WAVE1 and labeling ¢. Thus,
using the scheme used in storing and updating PRED values as'in the LHWHM algorithm, will not help in
correctly identifying the final s-¢ path. So we now propose an alternate scheme to remedy this problem,

In our scheme PRED(v) is a list of entries. Each entry in the list has three components * 5

(x, y, 2). Initially PRED(v) for every node v has only one entry, namely (v,0,0). When the labels of a node v
are updated by node  then an entry (x,,2) is added to the list PRED(v) where x ,y and z are defined as
follows. : : _— C

x =y,
y =CLABEL(y), and
z =DLABEL(u).

With this initialization of PRED() lists, our scheme for tracing the find's-t path is :

1." Let the final entry in PRED(¢) be (x,y,2). Note that ¢ received its labels from node x, and that yand zare,
respectively, the values of the variables CLABEL(x) and DLABEL(x) when x labeled ¢ Also note
that x is the predecessor of ¢ in the final s-¢ path. - .

2. Search in the PRED(x) list for an entry (x/ y /z ’) such that -

y=y’'+cix : .

z=z’' +d;, _
Thén x ' is the predecessor of x in the final s-¢ path. Next set

x=x' _

y=y’

z=z’

- 3. Repeatstep 2 until x=s. _ ' _
It appears that to implement the above scheme for tracing the s-¢ path we need to store a large number of
entries in PRED lists. This will be the case only if we keep adding an entry to PRED(v) list every time v is
updated. This is not necessary because we need to keep only those entries which cause node v to propagate

- new waves. This means that during each sweep at most two new entries need to be added to each PRED(v)
( In a careful implementation we need to add at most one new entry to PRED(v) ).Thus the size of each

PRED(v) list is at most O(n). Hence the space complexity of the algorithm is O(n’). Since the BFM

algorithm is known to terminate in n sweeps, the BFM-BDMCP algorithm also will terminate in 7 sweeps.
-Hence the time complexity of this algorithm is O(m n). . '

Wé now prove that the BFM-BDMCP algorithm, at mﬁom finds a feasibie s-t'path if one such path
exists. In the following we call a node u unlabeled if its CLABEL(x) = co. .

Theorem 2 :
- The BFM-BDMCP algorithm terminates with & feasible s-t path, if one such path exists.

PROOF -

Proof is by contradiction. Assume that at termination of the BFM-BDMCP algorithm, node f is unlabeled,

Let L be the set of all labeled nodes at termination and M be the set of all unlabeled nodes. So, s € L and ¢
€ M, Also every node u in L is a labeled node with CLABEL(u) # co. Recall that for each labeled node u
there exists an s-u path containing only labeled nodes, which can be traced by the PRED array entries. This
path is called the s-u tree path. '

Since there exists a feasible s-¢ path , select a min-delay s-¢ path P. Let v be the last labeled node in P as we
traverse P from s towards 7 Thus all successors of v in P are in the set M. Let u be the predecessor of v.

This means that node v received its final CLABEL and DLABEL values while scanning node u. So,
DLABEL(4) +d,,+D(v)< T, and
. DLABEL(u) + d,, = DLABEL().
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Suppose we initialize PRED(i)= i for all i € V‘and set PRED(i) = J whenever i gets updated while -




Since P is a minimum delay s-¢ path it follows that for everynodexonP,
" D(x) = delay of the x-t segment of P. -

Let y be the node nextto v in the s-¢ path P. Note that y belongs to M. Then
- DLABEL(v) +d,, + D(Y) = DLABEL(v) + delay of the v-f segment of path P
" = DLABEL(t) + dy,+ delay of the v-f segment path P
= DLABEL() + dy,+ D(V) ; -
<T

So y is eligible for labeling from node v. That is, y satisfies the delay constraixﬁ while scanning node v.
Thus while scanning node v, node y must have received a finite CLABEL value, and would have become
labeled. This contradicts our assumption that node y € M. Hence the theorem//.

The proof employed in the above theorem is also applicable to all the heuristics presented in earlier sections
. of this paper. In fact all these heuristics can be extended to cover cases involving multiple non-additive
constraints such as bandwidth, besides the additive cost and delay constraints thatwe have already
considered. In such cases, these extensions will still have the property proved in Theorem '4.1. However,
the theorem is not applicable if more than two additive constraints are involved because the problem in that

case is NP- complete [2].
VIL Simulation and Performance Evaluation

In this section we first present an evaluation of the performance of the LHWHM and the BFM-BDMCP .
algorithms and compare them with the performance of the LARAC algorithm [13). We only report results

for the regular graphs Hin proposed by Harary [16). Here k refers to the vertex degree and # refers to the -

number of vertices. The edge costs and delays are selected as follows: _
Edge costs are randomly generated in the range 1 to 50 and delays are assigned values as follows: d;; = 50

—Cip
The motivation for this choice is to test the heuristics under what we believe to be a worst-case sc_'enariq._'

To generate the optimum solutions -we- used a dynamic programming’ algorithm. The results of the
experiments comparing the LHWHM, BFM-BDMCP and LARAC " algorithms are presented in Table 1.
The simulations were carried out by generating source and destination nodes randomly for each graph. The
delay T for the algorithms has been selected to be 10% more than the shortest delay path value. It is
observed that for smaller networks all the three algorithms generate nearly optimal solutions, but as the.

_graphs gets bigger the pumber of feasible paths also increase, in this case the BFM-BDMCP algori '
outperforms the LHWHM algorithm. Since the BFM algorithm inspects many more paths than the
LHWHM algorithm, the time taken for the algorithm is also seen to increase. LARAC returns paths closer
to the optimal in most of the cases, but the time taken for computing the paths was generally more than that
taken by the LHWHM algorithm by a factor of 10, The OPT column in the tables refers to the optimal cost. .
We wish to note that the LARAC algorithm may not produce a feasible solution in all cases.

The results of our comparison with Hassin’s FPAS (fully polynomial time approximation scheme) aré
presented in Table 2. We first ran the BEM-BDMCP algorithm the graphs mentioned above. For each
graph, using the optimal values we computed the e-value. These & values are given as inputs t0 Hassin’s
algorithm [8]. Note that for a given value of ¢, Hassin’s algorithm guarantees a solution which is within
(1+€) of the optimum value. In Tablé 2, T1 refers to the time -taken by Hassin’s algorithm as proposed
originally, and T2, refers to the time taken when the solution produced by the BFM-BDM heuristic is used
as an upper _boulid_ in Hassin’s algorithm. Though, as expected, Hassin’s algorithm takes a considerably

longer time than the BFM-BDMCP algorithm, it produces optimal solutions in most cases. This means that

for small values of € the algori_thm produces optimal solutions. If we first run the BFM-BDMCP algorithm
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and then use the result as an upper bound in Hassin’s algorithm, the time taken (T2) gets reduced to a
considerable extent, -

BFM-BDMCP |BFM-BDMCP

NODES LHWHM | (Async) (syne) | - LaRAc - | opT

2000 }3801] 0.028 [ 3801 | 1.60 | a4s0 13.00] 3127 | 0.84 | 3100 500 | 0.15 | 5157 | 4855 | 2050 | 1382

— o _ odes [Eps(e)] BFM- |, . FPAS OPT
cost | (sec) cost | time | cost | time cost | time | cost : .

100 1168 11.54E-04] 168 |.0023] 168 | .0055| 168 |.00104 ] 168 cost [cost | T [T2 [eost

250 | 198 |7.05€-04) 198 |.0268| 198 [0.048| 198 | 00514 | 198 | : (sec) |(sco
400 | 552 |2.086-03| 552 |.0282| 522 [0.314| 533 | 0.098 | so0 | |00 | OM6| 401 [ 350 17316 ] 206 | 350
- " 1 200 ]0.033] 1553 1503 1020 | 306 1503
550 12650 17.60E-03| 2650 |.0086 | 2501 {1.648 | 2423 | 0.233 | 2400 350 [0.056] 737 | &7 | deT T Toe T3
800 | 950 16.30E-03| 050 J0.145] 807 | 1.83 | s00 | 0.088 | 751 300 [ 0.6 | 1851 | 1250 | 737 | 31550
| 1000 | 5651 13.25€-02] 5550 | 9.75 | 5451 12.281 4702 | 0.68 | 4701 350 [-0.13 | 3056 | 2703 1533 | 471 2703
1400_|10750] 0.089 | 10400 | 41.12 | 10100 4884 1 8765 | 1.91 | 8750 | {7400 |0.151| 1256 | 1051 | 1693 | 298 | iooi
1800 116200 01709 | 14600 | 74.77 | 14600 100.8 13107 | 2.17 |12800| [450 1001 | 855 1 837 806 | 603 | 851
4475

2500 | 97 [4.70E-02) 97 |2347| 97 33.15] o7 004 | o7
3000 '296_ 8.80E-02| 206 |41.91| 208 178.15] 206 | .100 296 |

Table 1 . : Table 2

VIIL Summary

In this paper we discussed one of the QoS routing problems formulated as the bounded delay minimum cost
path problem (BDMCP). We presented a broad overview of the different heuristics and algorithms for this
problem. We gave a detailed account of two recent heuristics called the LHWHM and BFM-BDMCP
algorithms. We also provided an experimental evaluation of these heuristics in comparion of the LARAC
algorithm of [13] and Hassin’s approximation scheme. We summarize our conclusions as follows,

1. The LHWHM algorithm performs very well for sparse graphs, '

2. Inall cases, the BFM-BDMCP algorithm produces results better than those produced by the

- LHWHM algorithm, - ' .

3. The e-approximation scheme of Hassin is computationally very expensive; but produces results

- 'very close to optimum for small values of . - C '

"4. If the cost of the final path produced by the BBFM-BDMCP algorithm is used as the initial upper
bound in Hassin’s algorithm, then the computation- time of the approximation scheme is
considerably reduced. ’

5. Even if a large value of ¢ ( for instance, ¢ = 0.9 ) is used , Hassin’s algorithm still produces
results very close to the optimum in a significantly short time, But the execution time is still very
excessive compared to that of the BFM-BDMCP algorithm. Due to space limitation the
corresponding table is not included. '
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