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ABSTRACT

in the planning of dynamic architecture telecommunications
networks, considerations of sizing of the 1links 1lead to a
multi-commodity, ﬁulti-period flow probiem on the underlying
graph. A formulation based on the edge-chain representation of
the network reveals a structuré which can be exploited in two
steps. rFirst the generalized upper bounding (GUB) technique is
used to take advantaée éf the multtiommodity nature of the
problem by reduction to a working basis. Then the multi-period
aspect of the problem is further exploitedr by a decompésed
triangular factorizétion of the working basié. In each step of
the algorithm the problem is decomposéd into as many subproblems
as there are peridds, where each subproblgm has size equivalent

to that of a single peribd problem.

Keywords: telecommunications, nonsimultaneous multi-commodity

flows, GUB decomposition, working basis.
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RESUME

Lors de 1la planification d'un réseau de télécommunications a
architecture dynamique, la considération de la capacité des liens
conduit & un probléme de multiflot & plusieurs périodes sur le

graphe sous-jacent. Une formulation basée sur la représentation
aréte-chaine du réseau révé;e une structure qui peut étre
exploitée en deux étapes. D'abord, la technique de décomposition
GUB (Generalized Upper Bounds) est utilisée pour profiter du
caractére multiflot du prqbléme par la réduction & une base de
travail. Ensuite 1l'aspect multi-période du probléme est encore
exploité par une factorisation tfiangulaire décomposée de la base
de travail. A chaque étépe de ltalgorithme le probléme est
décomposé en autant de sous-problémes qu'il y a de périodes, ou
chaque 'sous-probléme a une taille équivalente a celle d'un

probléme a une période.

Mots-c1és : Télécommunications, multiflots non-simultanés, décomposition par

bornes généralisées, base de travail.



1. INTRODUCTION

The introduction of digital computérs to the technology of
felecommunications networks has made possible the dynamic
reconfiguration of the architecture of these networks. This
means that the topology of the network can be changed over time
in order to satisfy known poiht—to—point demands which vary over
a number of periods.

In order to satisfy éll demands in all periods, one must
allocate enough capacity to each link of the undeflying graph so
‘that the maximum numbér of circuits over all periods routed along_
a given edge can bé accomodated. Since the capacitx of an edge
is in fixed proportion to the maximum number of circuits using
the edge, we may identify the capacity of an edge with this
number.

The telecommunications network considered here may be
represénted as a non-directed graph where the nodes correspond
to the switches and the edges correspond to the pdssibility
of establishing a physical.link» between two switches for the
purpose of creating a circuit between them. Circuit demands
between any two switches i and j can be thought of as integral
flows of a commodity in the graph ’which may use any one or
several of the chains connecting nodes i and j in the graph.

If we assume that the only relevant cost inQolved in such a
network is a non-negative 1linear cost g, applied to the
maximum flow in any edge u, then the problem is to choose
patterns of | flow for the circuit demands between all

origin-destination (OD) pairs over all periods such that the



total cost of capacity is minimized. Minoux(1989) has referred
to this éroblem as a network flow model with nonsimultaneous
multi-commodity flow requirements, as the demands for each period
are satisfied independently of the demands for all other periods.
If there were just a -single period, then the bptimal
solution would be achieved by routing the demand for each OD pair
i and Jj along a minimum chain connecting i and j in the graph
with lengths of edges given by the g, (it is assumed that the
underlying graph is connected, but not necessarily complete).
When there are several timé periods of OD pair démands,
owing to different busy periods during a day or to time 2zone
changes for example, 'then the linear cost g, as defined above
will be applied’to the maximum flow over all time periods in edge
u. In this caée, using thé minimum chain solution for each
pefiod before calculating costé is no 1longer optimal as the

following two-period example shows.

20,15

Figure 1. A three node, two period example.

Figure 1 shows a three node graph with demands for periods
one and two, reséectively, between nodes i and j indicated next

to the edge (i,j) and cost g, = 1 for all u. If the shortest
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chain solution is used for each period and then the maximum flow
is chosen in each edge, then there is a total cost of
20‘ +7 + 7 = 34.
However, 1f 5 circuits are .reassigned from chain (1,2) to
the chain (1,3), (3,2), then the total cost beconmes
. 15 + 7 + 7 = 29,
a savings of 14;7%.

Other authors have considered variants of this problem.
McCallum (1977) considers the single period problem where the
capacities are fixed quantities and there is a cost of
construcfing additional capacity plus a non-zero cost for ﬁhe
routing of circuits along chains in the objective function._ His
approach uses the special structure of the 1linear programmming
formulation of the problem to apply the generalized upper
bounding technique (GUB) of Dantzig and Van Slyke (1967), thereby
reducing the dimension of the ©problem to that of a
smaller "working baéis". _

Kortének and ?olak (1985) address the multiperiod problem
which they call ' the Deterministic Dynamic Routing problem (DDR).
Their problem is slightly more general, however, as they consider
flow through nodes as well as edges via the node-chain incidence
matrix and add a cost for this flow in the objective function.
The main difference bétween their problem and the present one is
in the nature of the démands. The present demands are constants,
whereas theirs are random variables. They proceed to solve the
Stochastic Dynaﬁic Routing problem (SDR) by Dantzig-Wolfe

decomposition.
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The only authors to consider explicitly the same problem as
ours are Minoux and Serreault (1981). Their problem formulation
was different in that the topology of the underlying graph as
well as the demands were allowed to vary from period to period.
1t will be noted that the method proposed in this paper applies
without change to the case of varying topology. Minoux and
serreault chose not to solve the problem directly by the simplex
algorithm, but to solve an equivalent problem using Lagrangean
relaxation and subgradient algorithms to optimize the dual
problems. Thus their method, while computationally efficient, is
not exact.

Finally; the problem presented in this paper can be
considered as a multi-commodity generalization of the network
synthesis problem studied by Gomory and Hu (1961).

This papef-is organized as follows. Section 2 formulates the
problem as a large-scale linear program and proves a proposition
which will provide useful information for the subsequent
decomposition of the problem. Section 3 briefly reviews the GUB
procedure, and' then shows how GUB applies to the problem. In
section 4 it is shown that the working basis of GUB can be
further decomposed in the light of the proposition of section 2.
Section 5 shows in detail how the method is adapted to each step
of the revised simplex. A conclusion dealing with the

complexity of the proposed method and possible extensions is the

subject of section 6.



5. FORMULATION

Let G, -the underlying graph of the telecommunications
network, be an undirected graph on N nodes having M edges and let
n be the number of chains connecting the K = N(N-l)/z distinct
origin- Destination»(OD) pairs in G. The ﬁroblem, as defined ‘in
séction 1, is a multiperiod (nonsimﬁltaneous), multi-commodity
flow problem. More precisely, we seek "chain flows fP exactly
satisfying demands between all OD pairs in H periods, such that a
non-négative weighted sum of the maximum flow on each edge over

all periods is minimized. This problem may be formulated as

min gTc
Afh <c
zeh ah for h=1,...,H ' (1)
fn = 0 and intéger.

where A is.the Mxn edge-chain matrix of G, E is a Kxn matrix of
ones and zefoes in staircase form, c is the véctor_of capacity
vafiables, gT denotes the‘transpose,of the dolumn vector g, and
dh is the Kx1 column vector of OD deméndsrfqrrperiod h.

Although the problem as stated is an integer LP, we choose to
ignofe the integrality constraint for the following reason. The
problem is  known as the "sizing" problem in the
telecommunications 1i£erature (see Rioux(1988)). This means
tha£ the optimal capacity variable values will constitute
benchmark values for subsequent routing algorithms which will use

other optimality <criteria, and hence that their optimal integer
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values may be approximated by their optimal LP values rounded up.
After addition of slack variables the LP corresponding to

(1) may be written as

M
min 2 g;cyg

i=

K : for i=1,...,M
k=1 jek
(2)
z fkjh R = dkh . for h = llooo,H
jEk ) : for k = l,o.o’K
. h .h > .. . .
fkj /Sit =z 0, for all i,j,h,k

where A = (aij) and kX' is the set of flow indices corresponding

to chains connecting OD pair k¥ in G. fkjh, c;, and s;b are

-referred to as the flow, capacity, and slack variables

respectively.

The solution presented in Section 1 constitutes an initial
basic feaéible -solufion to (1) and (2) and consists in sending
the demand for each OD pair k in each period along the shortest
chain, say 3j(k), in G (with respect to the lengths g; on the
edges). This gives HK flow variables in the basis. .The other HM

variables are the M capacity variables whose values are

K : K
c; =max { T ajs(k)frick hy = 3 251 (1)Frick hi, §i=1,...,M
L1, m ke SO TEIAD T T, O, T () TR ()

where h: is the period supplying the maximum flow on edge i, and

i
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(H-1)M of the slack variables whose values are

K

s;P = ¢ ’kilaij(k)fkj(k)h

1’-..,M
1'000’H

5 -

Since the sihi = 0, i= 1,...,M, ‘these slaék' variables are
declared non-basic.

Note that the aEOVe basic | feasible solution
is optimal to (1) in two special cases: the single period case
(H = 1) and the multiple period case with a dominant period h,
that is, P = r for all kand r =1,...,H, r # h. For
multiple and undominated periods, however, problem (1) is
ndn—trivial. |

The above construction has shown that there is an initial
basic feasible solution containing all the capacity variables. in
fact, the capacity variables may be left in the basis as the

following proposition shows.

Proposition: At each iteration of the éimplex method, if a
capacity variable is eligible to leave the basis)‘then so is a
flow or slack variable. |

Proof: First, suppose a basis B of (2) contains capacity

variable c¢; at a positive 1level. Then according to the H

equations
K h ) h
z zai fk' _Ci+Si =0, h=1,000,H
k=1 jek' 3

at least one of the fkjh or sih must also be in the basis at a



non-zero level for each period h. Hence, if c; were eligible to
leave the basis and become zero; then so wéuld be these slack and
flow vafiables for each period h.

Suppose " now that the basis_contains capacity variable c; at a
zero level and that c; is the r‘:l;x basic variable. Suppose also
that non-basic column a, has been chosen to enter the basis and
that y, is the.transformed column, that is,

HM+HK
2 = BYc = T vyeRs

where the bj are the columns of the basis matrix B. Write the
pth equation in this expfession forp=41i,i + M,...,1 + (H-l)M,
and obser#e that

HM+HK
Ay = “Yer *+ T Yiebpse
pt . r j=1" J ,PJ
J#r

It must be shown that there exists at least one Yje > 0 for a
flow variable or a slack variable corresponding to c;. Now
ape = 0 and yrtb> 0 since c; is eligible to leave the basis.
Therefore, 7

HM+HK

j=1
JFr
and since all b,; z 0, we have that y;. > 0 and by; > 0 for at

least one j corresponding to a flow variable or slack variable.

This slack or flow variable whose value in the basis 1is
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necessarily zero may then be chosen to leave tha basis in the

place of ¢ ’- .

Next the variables may be scaled by dividing each demand

constraint by the corresponding demand. This gives

M
nin £ gj¢y
i=1
K _ for i=1,...,M
z E d_khaij fkjh - C4 + Sih= 0 for h = 1,-._._,H_
k=1ljek’

' (3)
2 -fkjh = l X for h = l,..-,H
- jek! fork=1,...,K

?gjh, s;# = 0, for all i,j,h,k

where fkjh = fkjh/dkh'afe the scaled variables.

The revised simplex is carried out on 7(3), but first note
that its structure is amenable to the generalized upper bcﬁnding
technique of Dantzig and Van Slyke - (1967). The following
approach to GUB resembles that of Lasdqn (1972) except that it
works with the triangularized form of a certain basis matfix and

not its inverse.
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3. GENERALIZED UPPER BOUﬁDF(GUB) DECOMPOSITION.

Any basis of the system (3) must include at least one
variable fkjh for each h and k. Choose one of these variables
for each pair h and k and éall it a key variable. Then a basis B
of the full system (3) takes the form

- Xkey columns non-key columns -
AHMxHK BumxuM

B(HM+HK) x (HM+HR) = '

IHRxHK : CHKxHM

B can be made upper block triangular by subtracting suitable
key columns from the ndn-key columns so as to reduce the matrix C
to a matrix of zeroes. This subtraction corresponds to

multiplying B on the right by the matrix

i :
IukxHK “CHRxHM
T =
OHMxHK - IuMxHM
giving
,( AgMxHK WByMxHM
'B' = BT = | ,
THkxHK OHRxHM
where the non-singular HMxHM matrix WB = - AC + B is called the

working basis.
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The "revised simplex solves two systems-involving'thé basis -
matrix: |

(1) the representation of the entgriﬁg column in terms of the

current basis, and

(ii) the computation of the dual variables.

We show now how GUB as applied to‘the problem of section 1 may
be used to simplify the calculations inQolved in solving these
systems.

(i) If a is a non-basic column eligible to enter the basis,
then we must solve By = a. Now T is non-singular since det T = 1;
therefore, if T-ly = z, then the system By = a is equivalent to

BTz = B'z = a, which is solved by

zi : = aHM_l_i i=1,..o,HK
ZHK+1 - HK _ _
and WB . .= q =.3 ziai' . (4)
. i=1
ZHK+HM |

where the Ei and a are the vectors of the first HM components of

key column a; and a respectively.

(ii) If ~ is the vector of dual variables and é§p the vector of -

basic costs, then we must solve

xIB = 53T, (5)

Now, 65 = (ép31,6pp) Where 6§57 = 0 is an HK+(H-1)M-vector
and égp = g is an M-vector (since we may suppose that the
Capacity variables constitute the 1last M basic variables

according to the proposition); hence (5) is equivalent to



xIBT = s5TT.

A WB
Now, 2#TBT = xTB' = (r1T,7pT)| I 0
I -C
= SBTT = (SB]_T,SBZT) 0 I
= (6517, #8327 - 6517C)
= (0,6p57).
Hence, =1TA + =3 = 0 , or |
.1I’2T = "‘ﬂ'lTX ’ (6)
and
1I‘1TWB = SBZT (7)

In both cases (i) and (ii), a system involving the matrix WB
of order HM is sufficient for solving the larger systems of order
H(M+K) . This already represents a substantial saving in
computation as K = N{N-l)/z is usually large compared with H and
M. Systems (4) and (7) are referred to as reduced s étems, and

it is with them that the steps of the revised simplex will be

carried out.
4 . TRANSFORMATION OF THE WORKING BASIS

Look more closely now at the working basis WB. By permuting
columns of WB such that flow and slack variables which correspond
to the same period are grouped together and such that capacity

variables correspond to the last M columns of WB, we obtain a.

matrix of the form
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rAl -I
.9} -I
WB = . . .
AH "I
. H )
where the A; are of order Mxq;, i = 1,...,H, Z g = (H-1)M, and
i=1

I is the identity matrix of order M. Each A; is of rank q; since
WB is non-singular.

Note that WB could be completely decomposed into H
independent submatrices were it not for the columns representing
capacity variables. On the other hand, the form of WB suggests
that a triangular factorization would be easier to obtain and
update than the calculation and update of the inverse of WB.
Indeed, considerations of speed and accuracy for the genéral LP
suggest th¢ use of triangular factorization of the basis matrix
as opposed to the use of its in&erse (Chvatal (1983), chapter 4).

In what follows, a transformation effecting a compromise
between complete decomposition and compleﬁe triangularization of

WB is used. The transformation is carried in two steps.

First multiply

QWB = . . .
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Ry -Q
Ry -Q2
= L ] L ] '
Ry —Qy
where the Q;, i = 1,...,H are MxM non-singular  matrices

triangulaiizing A;, that is, the R; are Mxqg; upper triangular
matrices with the last M-q; rows consisting of zeroes, and
each Q; is the product of q; eleméntary Householder matrices used
in the QR,EQctorization of A; (Strang(1986), chapter 5). The
zero rows may be permuted to the bottom_ of the matrix by.
multiplying on the left by a suitable permutation matrix P giving
rU1 | B 'Ql:-

U2 : —Q2

Q' WB = . . ’

U = PQWB
Uy -Qy

DT

where the U;, i =1,...,H are d;Xg; upper triangular matrices,
the -Q;' are g;xM matrices equai to the -Q; matrices without
theif' last M-g; rows and DT is an MxM invertible matrix. Note
that U is not in general upper triangular as DT is not in general
upper triangular, so that the factorization of WB is partial. A
full factorization of WB is not aftempted at this stage as. this
would alter the structure of the matrix DT which summarizes the
information concerning the periods.

It will be seen that D plays the role of the basis matrix for

, the revised simplex procedure in that when entering and leaving
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columns are exchanged in the basis B of the larger problem, then
corresponding leaving and entering columns are exchanged in D,
and that the work involved in solving the initial problem of rank

HM + HK is essentially that involved in solving H problems of

rank M.

5.THE REVISED SIMPLEX

The revised simplex procedure consists of the five steps:
A. Calculation of the dual Qariables;
B. Choice of fhe entering column;
C. Calculation of the transformed entering column;’
'D. Choice of the leaving column;
E. Update of the basis matrix.
We consider each of these steps as they apply to problem (3)
while using the reduction of the working basis giveﬁ in sections’

3 and 4 in steps A, C, and E.

A. Calculation of the dual variables.
~As shown in section 3 , the equation
xIB = 55T
reduces to
7 TWB =-55,T = (0,gT)

- (8)
and noT = -x1TA

Now set
ﬂlTQ'°1 =vTl, ' (9)
where Q' is, as above, the invertible matrix of order HM

transforming WB into U. Then,

x1TWB = vIQ'wB = vIu = (0,g7).
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After partitioning'v into variables corresponding to the rows

of the U; and DT, we have

FUl -0,
U -Q2
VTU = (vlT’VZT,...'VHT,VDT) 3 . .
UH -QH
DT
L J
But v;TU; = 0 implies v; = 0, i = 1,...,H, and vpIDT = ¢T
implies Dvp = g.
Finally, the system

can be solved by triangulafization of D. It is assumed that the
initial  matrix ©D has been triangularized and that this

factorization is updated at each iteration.

B. Choice of the entering column.

For a minimization problem,  the sufficient optimality
!

criterion 'is that all non-basic reduced costs be non-negative.

Since according to the proéosition, all non-basic variables are

flow or slack variables, this criterion becomes —
-ﬁTat 2.0

for ali t non-basic whére a. is a flow or slack column of the

constraint matrix of formulation (3) of section 2.

Let

Tt = (my,mp) = (wll,wl 2,...,WlH,Wzl,ﬂ22,...,ﬂ2H)

14

where

mh o= (rpgPompaP e mpy®)

h=l’.I.’H

P = (ma1Pimgpl e mog™)
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h h=1’...’H

mol = (n21h,n22h,...,ﬂ2Kh) .
At optimality , all the variables »; will be non-positive, as
the optimality criterion applied to the slack variables gives
-szih = '"lih = 0
or =q4 B< O,
for slack variables s;B, h =1,...,Hand i = 1,...,M.

If the current basis is not optimal, then at least one value
-xTa, < 0. A column generation method thét will find such a
value if it exists, and recognize optimality when it does not
exist is now proposed. It will be noted that the basis entrance
criterion 1is not the usual one of choosing the minimum reduced
cost column;

Start by looking at reduced‘ costs corresponding to flow
variables.

-nTay = qPs(-nysB) - 7y,

iek(J)

where column a, corresponds to flow variable fkjh and k(j) is
the set of edges i in chain j connectinngD pair k. Thus, each
reduced cost for a non-basic flow variable fkjh is equal (up to
a positive affine transformation) to the length of a chain in the
graph G connecting OD pair k.

For each period h assign lengths ‘"1ih to every edge i such
that "1ih < 0. If *1ih > 0, then assign to edge i a large

M .

positive length L > Z|min(xy;",0)|. Then for each period h and
i=1 :

each OD-pair k solve a minimum chain problem between the nodes of

OD-pair k; call this value Mckh. Then calculate
h

MC = min(dkhMCkh-ka ’ -ﬂ‘lih ),
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and if MC = 0, then optimality is attained.

If MC = dg;h*Mck*h* - my#D* < 0, then choose the flow
variable for period h* and OD pair k* to enter the basis. If
ﬁc = '"lih* < 0, then choose the slack variable si*h* to enter
the basis.

Note that if there are positive "lihl then the shortest chain
calculation will not consider the true value of some reduéed
costs, as the corresponding chains have artificially inflated
edge lengths. This means that the smallest non-basic reducéd
cost for flow variables is not necessarily calculated at a given
iteration. However, in this case, there is always a slack
variable eligible to enter the basis. |

. The reason that a slack variable is not immeditely entered in
the basis when a "1ih > 0 is that the initial basis éontains all
but M of the slack variables and the minimum number of flow
vafiables, and this criterion permits flow variables to enter
more quickly. Of course, when all ”lih are non-positive, then
the above 'calculation picks the smallesf reduced cost‘and when

this reduced cost is non-negative, then optimality is achieved.

C. Calculation of the transformed entering column.
Suppose column a. corresponding to a flow or 'slack variable
has been chosen to enter the basis. We seék the transformed

column y,. satisfying the system

Bye = 3¢ o ' (11)

From section 3 equation (4), recall that system (11) is
equivalent to the system

WBz, = a, -.gxaHM+itEi ’ (12)

i=1
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where Et énd the Ei are vectors of the first HM components of a.
1'\ and the 1ith key column respectively, and 2z, is the last HM
components of the vector zt.= T ly..

If a, corresponds to flow in period h connecting OD pair Kk,

then it can be written

ap = = |=m——————- p
€(h-1)K+k

where e(H_l) k+k is the ((h-1)K+k)th unit HK-vector, that is,
1 if i = (h=-1)K + k
BuM+it T )
0 otherwise
In this case, equation (12) can be written
HK

WBzy = a¢ = Z apmM+ied;
1=1

= a; - ach.1)k+k ° = 8¢ (13)

——

that is, a, is reduced by the first HM components of its
correspondihg key variable in the basis.

If a, corresponds to the ith slack variable of period h, then
a, = -==|

"where e; is the ith ynit HM-vector. Consequently, in this caée;

agm+it = 0, i =1,...,HK, and equation (12) can be written
_  HK _
Wth = at -.ElaHM+itai = at = ato (14)
1=

For both cases, if equation (12) is multiplied on the left by.

. matrix Q', derived in section 4, one obtains
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Uz, = Q'WBz, = Q'a.,
that is,
- 1T _ -
U, -0 z3 W 0
U,y -Qy ' zy .
. - - = 0
. . . a g, ~vector
L ] - L] o
UH "QH ZH .
1 ' DT z L g | M -vector

This system is equivalent to
Dlz = 8 or zTp = gT and
Ujzy = Q;'z, i=1,...,H, i #h
Up2p = Qp'z + 2.
It is supposed,as usual, that D is triangularized initially,
and that the factorization of- this triangularization is updated

at each iteration.

D. Choice of the leaving column.

Given the coluﬁn a. chosen by step B to enter B', choose the
leaving column a, of B' by the usual hinimum ratio criterion
using the current value of the basic variables and the components
of Yy¢ calulated in step C. We may assume,‘according to the

proposition of section 2, that a, is a slack or flow column.

E. Update of the basis and the basic solution
Recall from section 3 that a basis B of the full system (3)

can be transformed into the equivalent matrix

A WB

I 0]

P L o
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- where

.and’ that WB can be further transformed by row operations into the

matrix

The update is carried out on B', but as it has been shown
that the steps of'the revised simplex depend on WB and more
specifically on D, the effect of the exchange of entering and
leaving columns on the R;, the -Q;, and D will be examined.

It is assumed that at each iteration of the revised simplex
the matrix D is in triangulaf form bD, and that if there is an
exchange of columns in -D, then update of the triangular
factorization 6f D is carried out using one of the usual
techniques (see for example Chvatal (1983), chapter 24). The D of
the initial solution given in section 2 can be shown to

correspond to the negative of a permutation matrix and can be

easily factorized into the negative of the identity matrix of

order M.
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‘The notation &, to represent the vector of the first HM
components of the (HM+HK) -vector a. after subtraction of the
first HM componénts of its key variable has been introduced in
step C. If 4. 1is a slack or flow column from period h entering
or leaving WB, then by an abuse of notation we say that &. enters
or leaves A, even though it is the M components in 1locations
(h-1)M+1 through hM of &, which do so.

Recall that the fifst HK columns of B' are the key columns,
flow vectors represehting each period h and each OD pair Kk,
h=1,...,H and k=1,...,K. Steps B and D of the revised simplex
have determined columns a, and a, as entering and leaving columhé
respectiveiy for the present iteration.

i) Removal of column a, from B'

If a, is a key variable representing period h and OD pair k, then
since a, is to leave the basis, it must be replaced iﬁ the basis
by another key variable in order to maintain the canonical form
of the basis matrix. Let S = (ajla; = a; + ap, &; € A, and a; is
a basic variable representing a flow in period h between OD pair
k}. |

If Ss=¢, then a, is the only column of B' representing the
demand &' between OD pair k in period h. Therefore, the
entering éolumn a, must also represent OD pair kK and period h;
otherwise the updated basis matrix would contain a zero row and
be singular. In this case,.simply replace column a, by a, in B'
and there is no effect on WB.

If S # ¢, then before taking a, out of the basis, we replace

a, by one of the ajx € S. This amounts to replacing éj* - 4, in

r
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A, by &, - éij* = ‘(5j* - &) and for all other a; € S, to
replacing éj - &4 ., in 2 by aj - aj* = éj - &4, - (éj* - &,).
Since the matrix U is obtained.from WB by row pperations
only, then the effect on U of making ajx @ key variable in place
of a, is to perform the same column operations on Uj as just
performed on A,. In order to keep U, upper triangular after
these column operations, choose aj*es such that aj* ~ 4, is the
leftmost column of A, with aj*es. Then subtraction of éj* - &,
from éj - 4, for all aj € S leaves U, in upper triangular
form. Now remove &, - & from the basis as described below.

r j*

Without loss of generality, one may assume now that the
leaving column a, corresponds to a flow or slack variable such
that &, is in AH for some period h. In this situation a, will
leave A, and &, representing a flow or slack variable from some

) period i, 1 = i < H will enter a;.

Suppose 4, is the jth column of A, 1= j = qy. Then.
rembving &, from A, makes A, of order Mx(g,- 1) and corresponds
to removing the jtP column from Ry, and thus to removing one row
from the new -Q,' obtained from retriangularization of R, . This

row then-becomes the entering row of the matrix pT, that is, the

entering column of D.

Specifically, the changes inQolved are the following : first
remove the jtB column 4, from R, giving the matrix ﬁh. Then
permute row j of ih to the qhth row while moving up by one row
the rows j+1, j+2,...,q / this is summarized by multiplication
of R, on the left by a permutation matrix P,. Now make the gth
row of the resulting matrix zero by multiplication on the left by

A

! a lower triangular matrix I. Thus, R, = LyP,R, is the new
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upﬁer' triangular matrix for period h and the corresponding MxM

A

matrix in the last M columns of WB is -Q, = LyP,(-Qy). Indentify
the qutP row of '&h as a possible entering row of DT (rows qp+1,
ap+2,...,M OFf 'éh are already rows of DI). It might not enter DT
as will be seen below.

ii) Entry of column a, into B'.

a, being a column from period i to enter B', enter Et' = Q;4,
after the last column of R;, making the new matrix [R;,a.'] of.
rank g;+1 . Consider two cases depending on whether the entering
and leaving columns are from different or the same periods.

(a)’ Suppose i # h. Then one .of the components q;+1,
g;+2,...,M of a.'must be non-zero; otherwise the matrix [Ri,E;'].
would havé rank q; instead of g;+1. By definition, the rows q;+1,
qi+2,..;,M of Ry correspond to the same numbered rows of -Q;,
which are also rows of DT. Thus, - retriangularization of‘
[Ri,gt'], which involves permuting a non-zero pivot element in
Et' to the (qi¥1)5t place and then subtracting multiples of row
q;+1 from rows gi+2;...,M, effects the saﬁe row operations on -Qy
and DT and corresponding column operations on D and Up, the
triangular factorization of D. |

Let P = {j] g;+1 =j = M, Ejt'f 0} . Then in order to keep
Up in upper triangular form, we choose the pivot element in Et'
such that its corresponding column k in Up is leftmost (after
permutation of the pivot element in Et') among all columns of Up
corresponding to a j € P. Then the column éperations on Up which
reflect the retriangularization of ([R;,a,'] amount to

subtracting multiples of column k of Up from columns to its
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right, thus preserving the upper triangular form of Up.

A

At this point there is an entering row of DT in row dp, of -9

A

and a leaving row of DT in row'qi +1 of -Q; (-Q; after the above

row operations). Exchange of these columns in D is brought about
by the update of the current triangular factorization of D.
(b) Suppose how that 1 = h”(the entering and leaving columns

of B! represent the same period). Then LhPhEt' is added as

A

column g, to the matrix R, obtained in i) above.
If the components gqu+1, Q,+2,...,M of thhgt' are all zero,

then the qhth component of this vector must be non-zero or

A

otherwise the matrix ¢, = [R,,I,Pha.'] would be of rank q,-1
instead of q,. Hence, C, is already upper triangular so that the

matrix. -Q, is unchanged and its qhth row which we identified

above as being a possible addition to DT remains in its place and

'is identified as the leaving row of DT also. In this case, update

of B' amounts to the deletion and addition of columns in A; with
resultant changes to R, and -Q; but to no qhange of D or Up.

If one of the components gp+1, gu+2,...,M of LyPya.’' is
non-zeré (the qhth component may be zero or non- zero), then
proceed to retriangularize C, as in step (a) above. The leaving
row of DT is found in row qy of the updated matrix ’éh and the
entering row of DT is the former qhth row of '&h after
transformation by the retriangularization of C,. Again exchange
these fows in DT by updating the current triangular factorization
of D.

iii) Update of the basic solution.

Replace the current basic solution xp by xp - 4y, and x. = 8,

where
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6 = min(Xpy/Yie, Yie >0
i=1,..., (H-1)M+HK

was calculated in step (D) of the revised simplex.

6. CONCLUSION

The two-fold decompositioﬁ procedure outlined in this paper
addresses an LP problem with a basis of size HK+HM and solves it
as if it were H problems each with a basis of size M. The
reduction in computational complexity is made evident by
comparison of the number of operations necesary to carry out the
steps of the revised simplex, first on the GUB working basis WB,
and then on WB using the partial decomposition of this papef.

First note that step D, pivoting, is the same in both cases
as this step does not involve the basis matrix. Without taking
into consideration the structure of WB, the factorization of the
initial basic solution of section 2 would be of order O(HM).
Steps A and C, both require O(H2M2) calculations, and update of
the triangular factorization of WB would be of complexity
0(H2M2) also.

By contrast, the procedure outlined in this paper would
initially factorize H rectangular matrices A, of order Mxq,, and
the negative of a permutation matrix of order M taking O(HM3)
operations. In step A; equation (10), O(M2) operations are
involved in calculating the vector vp and Q(HMZ) in recovering
the dual variables »; in equation (9). The dual variables =, are
recovered in equation (6) by O(HKM) = O(HM2) calculations owing
to the special structure of the matrix A. Step C requires O(HMZ)

calculations to obtain the vector z. from equation (13) and O(HM)
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‘additions to recover y. from the equation y. = Tz,, owing to the
} special structure of the matrix T.
As for the basis update, all row and column operations are
carried out on a maximum 6f three matrices of order at most M.
Moréover, matrix multiplication is restricted to multiplication

of columns on the left by lower triangular matrices differing

from the identity matrix Iy by one row whose elements can be
calculated in .O(Mz) operations. Hence, total computations for
the update require O(Mz) operations.

Periodic refactorization of WB is necessafy in order to avoid
excessive cumulative round off errors. Refactorization of WB
without partial decomposition into periods has complexity O(H3M3)
whereas the method of this paper refactorizes H + 1 smaller
matrices _of' size at most MxM for a complexity of O(HM3) per

) refactorization. Moreover, sinée at most 3 such submatriceé out
of H + 1 are changed per iteration, at least vy = (H + 1)/3
iterations are necessary before all H + 1 submatrices are changed
at least once. If refactorization is done every v; iterations
with partial decomposition and every v, iterations without it,

E then the number of operations due to refactorization over Vo

| | iterations is (vz/Ql)O(HM3) = O(M3) for partial decomposition
versus O(H3M3) without it. |

Finally, note that if one did not have the result of the
proposition of section 2, .then testing of optimality (column
generation) for each of the capacity variables would require

O(HM) more calculations than.the proposed method.

Of course, as for any algorithm, the real test of this method

,)will be its actual performance as a computer-coded program.
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Although this coding has not yet been carried out, it is believed
that the increase in calculation due to the extra bookkeeping
required, especially in the update step of the revised simplex,
will be more than compensated for by the computational savings
obtained in the decomposition of the working basis.

Note that the technique of this paper would apply,with little
modification to a problem where not only the capacity variables,
but also the flow variables have non-zero costs. Only the column

generation scheme would have to be élightly modified.

This technique is made possible by two observations: the

capacity variables can be left in the basis, and
triangularization of the Dbasis matrix leaves intact the
multi-period structure of the problem, whereas inversion ‘ of the
basis!matrix would destroy suéh structure.

It is hoped that this approach can be appiied, perhaps in
modified form, to the multi-period version of the probiem

proposed by McCallum (1977). This problem could be formulated

as
H n h M
mn E -Ekj fj +.§ gizi
| h=1j=1 i=1
afh + sh - 2 = ¢
Efh = gh h=1,...,H

fh, sh, zZ >0 all h

where kj is the unit cost attached to flow along chain j in g,
the 2z; are the capacity expansion variables for edge i, and all
other notation is the same as in this article, except that c is a

vector of constants. Here the proposition, at least as proved
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in . sectioq 2, would not apply to the capacity expénsion
variables, and thus the last M columns of a basis matrix mighﬁ
not keep a constant structure. However, such a problem may yet
lend itself to a similar partial decomposition of its basis
matrices, given that the structure of its matrix of constraints

is the same as in this paper. -
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