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ABSTRACT

Based on the theory of system level diagnosis pioneered by Preparata, Metze and
Chien [1], we study fault diagnosis of a ring of processors. We use the comparison
based model of Chwa and Hakimi [4]. It is shown that the processors in a ring can
be diagnosed uniquely if, and only if, the faults are distributed in a certain manner.
We present algorithms to diagnose the faulty processors when these requirements are
satisfied. These algorithms permit distributed implementation on both unidirectional
and bidirectional rings.

1. Introduction

Continuing advances in semi-conductor technology have now made available
large multiprocessor systems such as the hypercube systems. The increasing com-
plexity of these systems poses challenging problems in ensuring their reliability. The
problemms of fault detection, diagnosis and reconfiguration of multiprocessor systems
have thus become active areas of intensive research in recent years. Various models
of fault diagnosis have been studied and significant algorithms and related complex-
ity results have also been reported [1-6]. The pioneering work of Preparata, Metze
and Chien [1] continues to be the guiding force in all these studies.
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In multiprocessor systems, such as those implementable in very large scale in-
tegration (VLSI) and wafer-scale integration (WSI), the number of processors in
a system can be very large. Moreover, the commonly used system interconnection
networks such as the rectangular grids are very symmetrical and sparse. When such
a system is analyzed using the classical theory, the number of faulty processors per-
mitted is very small in comparison to the number of processors in the system. This -
shortcoming motivated the recent works on probabilistic diagnosis algorithms for
sparsely interconnected systems [7,8].

Most diagnosis algorithms are assumed to be executed on a single highly reliable
supervisory processor. A single supervisory processor is a performance bottleneck
in systems with a large number of processing elements. Distributed diagnosis algo-
rithms executed on the multiprocessor itself would be desirable. Works motivated
by this consideration may be found in [9,10). '

Our work in [11] is also motivated by the inadequacy of the classical approach

when applied to large sparsely interconnected systems, as well as the need for dis-
tributed diagnosis algorithms. In this work, we presented a theory of local diagno-
sis and introduced a class of locally diagnosable systems called t-in-L, diagnosable
systems. A system is t-in-L, diagnosable if all the processors can be uniquely
diagnosed as faulty or fault-free provided that there are at most ¢ faulty processors
in the local domain L1(u) U {u} of each processor u, where L (u) is the set of pro-
cessors adjacent to u. The main result of [11] is that regular systems such as the
hypercube, the rectangular, hexagonal and orthogonal grids in #-in-L diagnosable
for t = ||L1(u)}/2] + 1 for each processor u provided the number of faulty pro-
cessors is less than /2, where n is the total number of processors in the system.
Sufficient conditions for a system to be &-inL; diagnosable are also presented in [11].
. The local diagnosis algorithms of [11] can be executed in a distributed manner in
the multiprocessor itself. However, the results presented in [11] require that each
processor be adjacent to at least three processors, and this is not applicable when
the processors form a ring.

In this paper, we discuss diagnosis of a ring of processors under local, fault
constraints. Our diagnosis algorithms permit a distributed implementation. We
use the comparison based model of Chwa and Hakimi [4]. '

The paper is organised as follows. In Sec. 2, the basic model and definitions are
presented. In Sec. 3, we discuss a local diagnosis algorithm. We present in Sec. 4
the diagnosis of a ring of processors.

2. Preliminaries

A multiprocessor system S consists of n independent processors U = {u,
43, ..., un}. In the comparison model of multiprocessor fault diagnosis [4], all pro-
cessors in S are assigned to perform the same task. Upon completion, the outputs of
neighboring pairs of these processors are compared. The collection of these outputs
is called a syndrome. The comparison assignment can be represented by an undi-
rected graph G = (U, E) where an edge e;; belongs to E if, and only if, the ontputs
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of u; and u; are compared. The distance in G between processors u; and u; refers
to the minimum number of edges in any path between u; and u;. The distance
between two processors u; and u; is denoted by d(u;, u;). A processor u; # u; is
said to belong to a local domain I, (u;) if u; lies within a distance k of u;. An
outcome a;; is associated with each pair of processors whose cutputs are compared,
where ay; = 0(1) if the outputs compared agree(disagree). Only permanent faults
are considered and as in [5] we assume that the outputs of a fault-free and a faulty
processor always disagree. It follows that a;; = 0 whenever both u; and uj; are fault-
free; a;; = 1 if one of u; and t; is fault-free and the other faulty; a;; is unreliable
if both u; and u; are faully. An edge that has a 0(1) outcome associated with it
is referred to as a 0-link(1-link). Np(u;) and N1(u;) denote the sets of processors
adjacent to u; and connected to u; by a 0-link and a 1-link respectively. For X C U,
No(X) = {ujlu; € No(u;) for some u; € X}, and Ni(X) = {u;|u; € N1(u;) for
some u; € X ).

"Paths starting from processor u; are said to be distinet if, and only if, they have
no vertex in common other than v;. A fault set F C U is a permissible fault set
for a set of fault constraints if F satisfies the requirements of the fault constraints.
Given a syndrome, F is an allowable fault set if, and only if, F is a permissible
fault set, and the assumption that the processors in F are fanlty and the processors
in U~F are fault-free is consistent with the given syndrome. The complement of a
set F' will be denoted by 7. :

We use the following notation for the figures: a dot within a circle represents a
fault-free processor and an z within a circle represents a faulty processors.

3. A Local Diagnosis Algorithm

Let S be a multiprocessor system with test interconnection graph G = (U, E).
Note that when the comparison model is used, G is an undirected graph.

Let u; be a processor in § with ¢ distinet paths of length 2 from u; - Ri(u;),
called a neighborhood of order t around t;, denotes the set of processors which
lie on these paths including ;. Intuitively, we can determine the faulty or fault-
free status of u; using only the comparison outcomes among processors in Ry(u;) as
follows. Consider the processors on a distinct path of length 2 from u;. Assaming
; to be fault-free, we can try to identify the faulty processors among the two other
processors on the path. If y; is actually fault-free and the path contains faulty
Pprocessors, then at least one can be identified as faulty. If u; is actually faulty, then
exactly one processor corresponding to each fault-free processor can be identified as
faullty. Each distinct path is treated similarly. Thus, if more than half the processors
in Ry(u;) are fault-free, then the status of u; can be determined; u; is fault-free if,
and only if, at most half the processors in Ry(u;) are identified as faulty.

Theorem 1. Let u; be a. Pprocessor in a system S with ¢ distinct paths of length 2
from u;. Let Ry(u;) denote the set of processors which lie on these paths including
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processor u;. If at most ¢ processors are faulty in Ry(u;), then u; is faulty if, and
only if,

PN Riw)| > ¢

where F(u;) is the set of processors which have a 1-link with u; or can be reached
from u; by a 1-link followed by a 0-link or by a 0-link followed by a 1-link.

Proof. Recall that Ng(u;) and Ny(u;) denote the sets of processors which are
incident to the processor u; by a {-link and a 1-link respectively. Then F(u;) =
Ny (us) U N1 (No(u;)) U No(N1(us)). We observe that if u; is fault-free, then F(u;) N
Ry(u;) denotes the set of processors which can immediately be declared as faulty.
Hence, if |F(u;) N Ri(w)| > ¢, then w; is faulty, for otherwise it contradicts the fact
that at most ¢ processors can be faulty in R;(w;). : 0

Now, suppose we assume u; to be faulty. Consider a pair (uj1, uj2) in Ry(u;),
with ;) adjacent to u;.

Case 1. uj; is fault-free and uj; is faulty: Cleatly uj is in Ni(u;) and hence
belongs to F(u;) N R:(u;).

Case 2. uj; is fault-free and u; is fault-free: Clearly uj; is in N1(u;) and uj2
belongs to No(IN1(u;)). Thus, both u;; and u;3 belong to F(w) N Ry(ws).

Case 3. uj; is faulty and u; is fault-free: In this case, since both u; and u;; are
faulty, 4;; may belong to either No(u;) or Ny(u;). If uj; isin Np(u;), then uy3 is
in Ny (No(u;)), and hence also belongs to F'(u;)} N Ry(w;). On the other hand, if u;1
is in Ny (u;), it itself rather than uj; belongs to F(u;) N Ry(u;).

Thus, in all three cases above, we find that if u; is faulty, then for every fault-free
processor in Ri(u;), there exists a corresponding processor in F(u;) N Ri(u;). Also
since at most ¢ processors can be faulty in R:(u;), there are at least #+1 fault-free
processors. As a result, if u; is faulty, then |F(%)N R:(u;)| > t. This completes the
proof. (]

The diagnosis result presented above permits correct diagnosis of a processor,
as long as a local neighborhood Ry(;) of order ¢ can be defined around u; and it
contains at most ¢ faulty processors. Clearly, the value of & can be different for
different processors. Moreover, the neighborhood can be defined in a variety of
ways. However, for regular interconnected structures it is convenient to predefine
a local neighborhood of the same order around each processor in a uniform way
so that an algorithm that works in a distributed manner can be implemented.
Tf the local neighborhood around each processor can be constructed to have-the
same topology, then each processor can execute a copy of the same local diagnosis
algorithm synchronously. Initially, each processor must execute the same job and
transmit the result to each of its neighbors so that the results can be compared
and the comparison outcomes generated. At this point the comparison outcomes
are available in a distributed manner with each bit of the comparison outcome



Distributed Fault Diagnosis of a Ring of Processors 199

being available at two sites, namely the processors involved in that comparison,
In other words, each processor has ¢ bits of comparison syndrome, corresponding
to the comparison tests with its ¢ neighbors. These are used to compute No(u;)
and Ny (u;). In order to compute Ny(N, (%)) and Ny(No(u;)), each processor must
receive some information from each of its neighbors. But depending on the the
pairing of the processors in &;(u;), only one bit of this information from each of the
neighbors can be of interest since we are ultimately interested in computing only.
F(u;) N Ry(u;). I the local neighborhood has the same topology at each processor,
the information to be transmitted by a processor to each of its neighbors can easily
be evaluated, using a syndrome decoding function.

As an example, consider the hexagonal grid interconnection with a local neigh-
borhood as shown in Fig. 1. Since the topology of the local neighborhood is the
same, and each processor executes a copy of the same algorithm, let the processor
under consideration be simply labeled u with the 1 neighbors of the processor la-
beled from 1 to ¢. It is clear that the central processor must route the test outcome
corresponding to its neighbor 1 to neighbor 4, the test outcome corresponding to
its neighbor 2 to neighbor 5, and so on, as illustrated in Fig. 1. In other words,
the syndrome routing function f is given by J(k) = (k+ 2) mod 6 + 1. Clearly, a
syndrome routing function will be one-to-one and onto on the set of neighbors and
will be dependent on the relative ordering of the adjacent processors and the chosen
local neighborhood.

v
N

e = e B

3
Fig. 1. A local neighborhood of order 6 in a hexagonal grid and-a syndrome routing function.

In order to implement the algorithm in a distributed manner, we assume the
existence of two #-bit registers A and B at each processor. Afk] contains the com-
Pparison outcome available at that processor corresponding to the kth neighbor. In
other words, A[k] = 1 if, and only if, k belongs to N;(u) at processor u. The:
register B will be used to receive information from the neighbors. Let B[k] cor-
respond to the comparison information sent by the kth neighbor. Now, observe
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Consider the following syndrome: a,; = 1, aj3 = 1, azz = 1, a33 = 1,
as5 = 1 and all other outcomes are 0. The fault sets F} = {u;, uz, uy} and
Fy = {m,, ug, 14}, two permissible fault sets under the given fault constraint, are
allowed faults for this syndrome.

Case 2.2. p=2, ¢=4.

Since n is even, let F be a fault set containing alternate processors in S. Then
the fault sets F and F° are allowable fault sets for the syndrome in which all
outcomes are 1.

Case 2.3. p=2, ¢> 5. .

We note that if there are at most 2 faulty processors in any consecutive 5 pro-
cesgors then for any processor u, La(u)U{u} which consists of 5 processors contains
at most 2 faulty processors. Thus, given a permissible syndrome, the local diagnosis
algorithm developed in the previous section can be used to identify all processors
correctly. Since the constraint p = 2 and ¢ = 5 permits all fault sets which are valid
when p = 2 and ¢ > 5, these values for p and ¢ admit the maximum number of
fault sets which can be uniquely diagnosed. (]

If a fault constraint permits a fault set F' and its complement F° to be per-
missible fault sets, then given a valid syndrome, the faulty processors may not be
correctly identified; the fault sets F' and F° generate a common syndrome. We note
that if initially one processor v is correctly determined to be fault-free or less than
half the total number of processors in the system are faulty, then for any subset F
_. of U, at most one of the subsets F and F* can be an allowable fault set for a given
syndrome. -

" Theorem 3. Let S be a ring of n processors in which one of the followin g conditions
is satisfied: .
(1) some processor is known to be fault-free and n > 5
(2) less than half the processors in the system are faulty and n > 7
(3) n is odd.
Then the values for p and ¢, which permit the maximum number of fault sets

which can be uniquely diagnosed in S under the local constraint of at most p faulty
processors in any g consecutive processors, are p = 2 and ¢ = 4 respectively.

Proof. It can be verified as in the proof of Theorem 2 that the case p > 3 and
the case p = 2 and ¢ = 3 may result in the syndromes which cannot be uniquely

diagnosed.

. -Assume p = 2 and ¢ = 4. We first show that if one fault-free processor v is
known to be fault-free, all other processors can be identified correctly. We assume
that the diagnosis procedure initiated at v proceeds clockwise. If a processor is
fault-free then the adjacent processor can be correctly identified. If two consecutive
processors are identified as faulty then the next processor can be correctly identified
as fault-free. Thus, only the situation shown in Fig. 2 could pose a problem.
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Fig. 2. DMlustration for Local Diagnosis Algorithm in a ring of processors.

Since there are at most 2 faulty processors in any 4 consecutive processors, there
are at most 2 faulty processors in A. Hence, B contains at most 2 faulty processors.
The processor w has at most 2 faulty processors in its local neighborhood Lz(w)U
{w}. Thus, again the syndrome decoding algerithm developed in the previous
section can be carried out with respect to processor w to determine its status.
Thus, if one processor is given to be fault-free or can be identified correctly to be
fault-free, then all other processors can be identified correctly.

We now show how one processor can be identified correctly if either (2) or (3)
is true. We note that if a valid syndrome contains the sequence of consecutive
outcomes 00, 011 or 110 then the processors adjacent to the 0-links are fault-free;
otherwise there is a sequence of 4 consecutive processors of which at least three are
faulty.

We now claim that for a valid syndrome, one of the following sequences of
outcomes 00, 011 or 110 occurs. Assume the contrary. Then the following syndromes
are the only syndromes which do not contain any of the sequences 00, 011 or 110;
the syndrome s; in which all outcomes have value 1 and the syndrome s3 in which
0 and 1 outcomes alternate.

Case 1. Less than half the processors are faulty and n > 7. _

In this case S contains two consecutive fault-free processors. Hence, there exists
at least one.O-link and the syndrome s; cannot occur. Since at most 2 of any 4
consecutive processors can be faulty, the syndrome s2 corresponds to fault sets in
which two faulty processors are followed by two fault-free processors and vice versa.
But this contradicts the assumption that the number of faulty processors is less
than the number of fanlt-free processors.
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that A{k] XOR B[k] = 1 if, and only if, the corresponding neighbor of w’s kth
neighbor belongs to the intersection of No(Ny(u)) U Ni(No(u)) and R,(u). Thus
the computation of |F(u) N Ry(u)]| can be carried out very efficiently through simple
logical operations at each processor. Clearly, this syndrome decoding can be done
in constant parallel time.

As stated in the introduction the development of the local diagnosis criterion
has been motivated primarily from the viewpoint of its application to regular in-
terconnection structures such as rectangular hexagonal and octagonal grids with
wraparound in two dimensional structures, binary n-cube connected cycles, and
hypercube connections.' In these architectures each processing element is connected
to the same fixed number of other processing elements with perfect symmetry with
respect to interconnections. Thus, it is easy to observe that each of these archi-
tectures permits the construction of local neighborhoods of order ¢ around each
processor, for t is equal to the number of neighbors of any processor.

We wish to note that for regular interconnected structures, the local diagnosis
criterion developed in this paper permits the correct diagnosis of fault patterns
which cannot be handled by the classical t-diagnosis. However, the ‘question still
remains as to whether or not a local neighborhood of order # can be constructed
around every unit in an arbitrary I-diagnosable system so that the local diagnosis
approach can be used. Unfortunately, this is not so. But it has beeir shown in [12]
that every system S for which a local neighborhood of order £ can be defined around
each processor is t-diagnosable under the comparison model.

4. Diagnosis of a Ring of Processors under Local Fault Constraints

In this section, we analyze the implication of imposing local fault constraints
on a ring of processors. Specifically, we determine if, given a syndrome, we can
uniquely determine the set of faulty processors as long as at most p out of any ¢
consecutive processors are faulty.

Theorem 2. Let S be a ring of n processors where n is even. Given that at most
P processors are faulty out of any g consecutive processors, the values for pand g
which admit the maximum number of fault sets that can be uniquely diagnosed are
Pp=2and ¢=5.

Proof. Let {uy, u, ..., u,) be the ring processors.

Case 1. 3<p<n.

We show that in this case, the set of permissible fault sets cannot be uniquely
diagnosed. Consider the following syndrome: an3 = 1, a;2 = lasa=1las3=1
and all other outcomes have value 0. Both F; = {uy, us, ug} and Fy = {u1, us)}
are allowable fault sets for this syndrome. - ' :

Case 2. p=2,¢2>3.
Case 2.1. p =‘2, g=3.
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Case 2. n is odd.

In this case, the syndrome 52 cannot be present. Since at most 2 ont of any 4
consecutive processors can be faulty, the syndrome 51 corresponds to fault sets in
which faulty and fault-free processors alternate; this is not possible since n is odd
and § is a ring of processors. '

This shows that one fault-free processor can be determined if either (2) or (3)
is true. 0

The diagnosis algorithms outlined in the course of the proofs of Theorem 2
and Theorem 3 can be executed in a sequential manner on a host processor. Ag

may have to execute the syndrome decoding algorithm to determine its status. If
more than one fault-free Processor are identified in the first phase, then all these
Processors can initiate phase 2 simultaneously. In the worst case, phase 2 may take
O(n) time. -

It can be easily seen that the message complexity of the above distributed di-
agnosis algorithms for a ring is O(n). We wish to note that these distributed
algorithms can be made to run on both bidirectional and unidirectional rings.

5. Summary and Conclusions

tributed implementation. It has been shown in [1 1] that the maximum value of ¢
for which most regular interconnected systems are #-in-L; diagnosable is given by
= % + 1, where A is the node degree. It follows from the proofs of Theorems 2
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