i Modificd cut-_set' matrix of an n-port network

hThﬁlasimman, B.E., M.Sc.(Eng.), and V. G. K. Murti, B.E., M.Eng., Ph.D.

Synopsis

The modified cut-set matrix of an #-port network is defined and its. properties are enumerated, The
importance of this concept in considering the parallel interconnection of #-port retworks containing R, L
and C elements is demonstrated. A procedure is obtained for the generation of a class of continuously
equivalent networks of a given RLC mport network. The class is characterised by the property that all
networks belonging to this class have the same modified cut-set matrix. Using this procedure, it can be
shown that, for a resistive a-port network in which every pair of vertexes is connected by a finite positive
conductance, a large number of continuously equivalent networks containing only nonnegative con-
ductances can always be obtained. The usefulness of this result in the synthesis of RLC n-port networks

is indicated.

List of symbols
n = number of ports

¢ = number of edges in the graph of the

network

¢ = number of vertexes

v; = number of external vertexes

v, = number of internal vertexes

¥V, = column matrix of Laplace transforms of
edge voltages :

V, = column matrix of Laplace transforms of

voltages of branches of a tree; sub-
matrix of ¥,

V., = column matrix of Laplace transforms of
port voltages; submatrix of ¥,

¥, = column matrix of Laplace transforms of
nonport branch voltages; submatrix
of ¥,

I, = column matrix of Laplace transforms of
edge currents

submatrices of ¥,

short-circuit admittance matrix

K = potential-factor matrix with the potential
factor K;; as entry in ith row and jth
column ’

I, = column matrix of Laplace transforms of
currents in the sources across the
.branches of a tree

I, = column matrix of Laplace transforms of
port currents; a submatrix of I,

Cp = fundamental cut-set matrix "

C, = submatrix of C, comprising the rows
corresponding to port branches

C, = submatrix of Cy comprising the rows
corresponding to nonport branches

C = modified cut-set matrix

.f:{é = entry in the ith row and jth column of C
€1, C? = submatrices of C

¥, = diagoral edge admittance matrix

¥, = column matrix of edge admittances

Y, = cut-set admittance matrix

T
¥y ¥io Yoy ¥z
Y

‘i Introduction

In network studies, an important role is played by the
cut-set matrix! which represents the constraints imposed on
the current variables by the topology of the network. If a set
of ¥ — 1 sources be connected across the branches of a chosen
tree, and Cj, s the fundamental cut-set matrix with respect
to this tree, Cy has the following important properties:

(a) It relates the edge voltages V, to the branch voltages V;
by
Ve=CV, . . . - . - . - . . .
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() 1t relates the currents f, in the sources across the
branches to the edge currents 7, by )

Fedtifa 2 0 2 2 8 % v ¢ = 5 u £)

{c) It relates the cut-set admittance matrix ¥, of the net-
work to the edge-admittance matrix ¥, by the congruent
transformation :

I % Ao R -

In the analysis of n-port networks connected to n inde-
pendent voltage sources, the relationship between the edge
voltages and the port voltages, the edge currents and the
port currents, and between the port voltages and the port
currents, as expressed by the short-circuit admittance matrix
¥, are important, If the number of ports # is equal tov — 1,
the n ports can be taken to form a tree, and the port voltages
¥, and the port currents I, can be identified with ¥, and J,
in eqps. 1 and 2, while the short<ircuit admittance matrix ¥
is identified with ¥, in eqn. 3. No matrix inversion is then
necessary to evaluate ¥, I, and f,. If the number of ports n
is less than v — 1, the sources across ¥ — nx — 1 branches of
the tree may be assumed to have zerc current, but the
evaluation of ¥, L, I, and Y is not so simple or direct as
befare. )

Now, in this latter situation, i.e. n < ¥ — 1, it is desirable
to have another matrix which plays essentially the same role
as €, does for the case when n = v — 1 in relating the edge
voltages to the port voltages, the port currents to the edge
currents and the port currents to the port voltages by equs. 1,
2 and 3. Cederbaum?, in a recent paper on the equivalence
of resistive n-port networks, has defined such a matrix and
termed it the modified cut-set matrix C. If C, V, and f, are
used in place of Cp, V, and I, respectively, the formal
relations between the port and edge voltages, the port currents
and the edge currents and the port currents and voltages fit
exactly into the pattern of eqns. 1, 2 and 3. It may, however,
be observed that the modified cut-set matrix is not a topo-
logical matrix like Cy, in that it depends on the edge admit-
tances, and not solely on the topology, of the network. At
the same time, a5 shown by the authors,>* C assumes a
cancnical form independent of the actual admittance values
for certain classes of networks,

In this paper, certain properties of the modified cut-set
matrix C are stated and proved. Two important applications
of the modified cut-set matrix are highlighted. One is related
to the parallel connection of a-port networks. The preliminary
results on this topic already reported by the anthors® are now
generalised and given in a more complete form. The second
application is to the generation of equivalent n-port networks,
in the context of which the modified cut-set matrix was
originally discussed.? This work extends the proposals of
Cederbaum and the resulis reported in Reference 3. The
class of equivalent networks generated by this method is
characterised by the property that all the networks belonging
to this class have the same modified cut-set matrix. Using
this method, it can be shown that, for a resistive n-port net-
work in which every pair of vertexes is connected by a finite
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positive resistance, a large number of equivalent networks
containing only positive resistances can always be obtained.
The usefulness of this Tesult will be clear from the following.

The analysis and synthesis of n-port electrical networks is
important in such studies as the analogue representation of
muititerminal systems and the synthesis of active-filter net-
works with the active elements terminating certain ports of an
RLC multiport netwerk. The realisation of a resistive n-port
network is looked on as representing the first step in the
synthesis of RLC n-port networks, since such an RLC network
displays, for positive real values of the complex frequency
variable s, the properties of a resistive network. The properties
of resistive n-port networks with more than # 4 1 nodes
remains unsolved, although several methods are available to
synthetise resistive a-port networks with » 4 1 nodes. The
approach suggested independently by Cederbaum? and
Guillemin® to realise a real symmetric matrix Y as the short-
circuit conductance matrix of a resistive n-port network with
more than # + 1 nodes consists of twa steps. The first step
requires the determination of a resistive #-port N, having ¥
as its short-circuit conductance matrix. N; may have some
negative conductances. The second requires the determination
of a resitive n-port network N, having a zero conductance
matrix, so that the parallel combination of N and N; con-
tains only nonnegative conductances. The equivalent-network
generation procedure given in this paper offers a solution to
the second aspect of this problem.

The symbols /,, V), etc. used for currents and voltages are
Laplace transforms of the variables, Accordingly, when a
voltage source is said to have unit value, the Laplace trans-
form of its voltage is 1. For the case of resistive networks,
howevér, the symbols f,. ¥, etc. may also be interpreted as
the actual currents and voltages.

2 Definition and properties of the modified
" cut-set matrix

Consider an RLC n-port network with v vertexes. We
assume that the graph of the network is complete and that
the accessible poris of the network can be embedded in a
tree of this graph. Edges with zero admittance are permitted,
to provide for the general case where the actual network
graph is not complete.

If V, represents the column matrix of edge voltages and
¥, represents the column matrix of port voltages, we define
the modified cut-set matrix € of an a-port metwork as the
n x £ order matrix, whose transpose C’ transforms the
matrix ¥, into the corresponding matrix V., by the relationship

Vool g » 2 0 v u a8 & o« 8

When an r-port RLC network is connected to # specific
external voltage sources, except in degenerate cases, the
voltage across every edge is uniquely determined and is
linearly related to the voltage of each source. Excluding from
consideration the special cases, C' is determined uniquely for
a given network if its port configuration and the orientations
of the ports and edges are specified. f n = v — 1, the ports
constitute all the branches of a tree, and the edge voltages
are uniquely determined by the topological constraints. For a
general case, where r << v — 1, the port voltages do not by
themselves specify all the edge voltages, and hence C depends
both on the topology of the network and on the edge admit-
tance values represented by the diagonal matrix Y,. Following
Cederbaum,? we next proceed to obtain an expression for
C which illustrates this dependence,

Let
C
F g |
# [cj
- be the fundamental cut-set matrix of the n-port network with
respect to a tree which includes the edges shunting the ports.
Let the rows of the submatrix €, correspond to these edges
and those of the submatrix C; correspond to the remaining
v — n — 1 branches of the tree, Let the branches shunting

the ports be referred to as the port branches and the rest be
referred to as nonport branches. If F, is the column matrix of
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port currents and ¥, is the column matrix of10nport-branch
voltages, we have :

I v, C o
[Ep] = C“'Y'C"[T’f] L ®

_ [cl Y, GG Y, Cﬂ [[,] _ [Yu i le] [fi]
G Y. GG Y CiLY. Yy | YaullLV,

The second set of equations in eqn. 5 yields

Ve =¥t Y ¥, - . 0 . . o . {8
From. eqn. 6 and the following relationship:
V, = C{,I:;:] owow owm owm % % onmosm om0
we obtain :
V.= CiV, + GV, = [C] — GYy' Y]V,
=[c - y¥p'cly, - . o o o - &

Comparing eqns. 4 and 8, and recognising that the modified
cut-set matrix of a given network is unique, we have the
foliowing expression for C:

C=C—Yu¥3'C . . . .« .« . - 8

The inverse of Y,, exists, except in the singular cases
where the nonport branch voltages become indeterminate. In
the following, we assume that the inverse of ¥3, exists.

We next express the shoct-circuit admittance matrix ¥ of
the n-port network in terms of C and Y, From egn. 6 and
the first set of eguations in egn. 5, we obtain

L=YyV,+ YpV,= [¥1 — Ya¥a tulv,
= [y~ leYﬁlC'z]Y![Cl — leyz‘ilcz]’Vp
sl @ s 5 5 8 e v v s e a2 @O

In this expression, CY,{’ can be recogoised as the short-
circuit agmittance matrix Y of the n-port network.
We also have the following result:

1,=CYCV,=CYV,=¢Cl, . . . . . (Y

where I, is the column matrix of edge currents.

Eqns. 4, 10 and 11 represent the three fundamentally
important properties of the modified cut-set matrix, while
eqn. 9 may be used for its determination. We now state the
property implied by eqn. 4 in the form of a theorem, as it is
important in the discussions to follow.

Theorem 1. The element ¢;; of the matrix C is equal to the
voltage appearing across the edge corresponding to column j
when port / is excited with a source of unit voltage and all
the other ports are short-circuited.

Theorem 2. For the special case of the n-port network with
nonnegative resistances, the magnitude of every entry in its
modified cut-set matrix is less than or equal to 1.

Proof. The entry ¢, represents the voltage across the edge J
when port 7 is connected to a unit-voltage source and all the
other ports are short-circuited {theorem 1). Since a resistive
network with positive resistances has the well known no-
amplification property, the magnitude of any edge voltage
in the abave cannot exceed 1, Hence the theorem.

Theorem 3. 1f M = [m;;] be a matrix of orderz x {v—n-—1),
such that

(@) myy is equal to the voltage appearing across the jth non-
part branch when port { is excited with a source of unit
voltage and all the other ports short-circuited

{5) the column ordering of M corresponds to the row order-
ing of C, then
Ya¥p!=—M

Proof. Let M, be the ith row of matrix M. Now consider
port § to be excited with a source of unit voltage and all the
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other parts to 5e short-circuited. We have ¥, = M, and
also, from eqn. 6, we have

g
0

M; = V" = — Yﬁlyzl Vp = - YZ_ZIYZI * ith row

= - T

= - {ith column of ¥5'Y;()
ar
M, = — (ith row of Y, ¥z
Similarly For the other rows of M, and hence the theorem.

Theorem 4. If ¥, is the edge-admittance matrix of a given
n-port network, and C its modified cut-set matrix,

@ CY,C,=0and (b)) CY.C; = ¥
Proof. We have
CYeCi = (Cl - YIZYZ_ZICZ)YGCZ’
CY.C— Y ¥5' 07,0 = Vg = Yia ¥ ¥ip= 0

I

(12)
Furthermore,
Y= CY,C
e o o0 o g
= CY,C}
since C,¥,C; = 0 from eqn. 12 P ¢ )

Theorem 5. Given the modified cut-set matrix of an #-port
network having specified edge and port orientations, the
matrix ¥);¥5;! is uniquely determined.

The proof of the theorem follows from theorems ! and 3.

Theorem 6. Let C be the modified cut-set matrix of a given
n-port network N, Tf any diagonal matrix Y, satisfies the
equation CY,,C; =0, the modified cut-set matrix of an
n-port network N, with ¥, as its edge admittance madtrix
and having the same port configuration and edge orientation
as N, is also equal to C.

Proof. From theorem 5, it follows that the matrix Yo ¥n' =
— M of the network N, is uniquely determined. Its modified
cut-set matrix is then equal to C; + MC,, Since N; has the
same port configuration and edge orentation as N,, the
topological matrices C; and €, are the same for both net-
works. We now have, for N, v

CY 0 = (C) + MCPY.C;
= C] Y,2C£ + MC;Y,;C;
=0
‘We then obtain
(<, YQQC-‘:)(CZY,;CE)"‘ = — M

The matrix on the left-hand side of the above equation is
recognised as the ¥, ¥53! matrix of network N,. Hence its
medified cut-set matrix is C; + MC; and is equal to that
of N].

Theorem 6 is useful in the generation of equivalent »-port
networks to be discussed later.

Definition 1. The potential factor X, in an n-port network is
defined as the potential of the positive reference terminal of
port j with respect to the negative reference terminal of port f,
when port { is excited with a unit source and all the other
ports are short-circuited,

It follows frem the definition that X, is unity. In general,
K,; is a function of the complex variable s, but, for a resistive
network, K, is a real number.

Definition 2. An internal vertex of an n-port petwork is a
vertex which is not the terminal of any port.
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Definition 3. A vertex of an n-port network which is not an

- internal vertex is an external vertex.

Let the number of externa! and internal vertexes in an
n-port network be v, and v, respectively. Obvicusly,
n+ 1< v < 2n. We partition the matrix C as [C'|C?], 50
that the columns of C! correspond to all the edges which
are not incident at an internal vertex and the columns of
(2 correspend to the rest. Thus an edge joining an internal
and an external vertex belongs to the second group.

In the analysis of #-port networks, it is possible to eliminate
the internal vertexes by a generalised star—mesh conversion
and consider an equivalent p-port network without internal
vertexes. Similarly, in synthesis, if a physically realisable
resistive network with internal vertexes exists, another similar
realisation without internal vertexes is also possible. Therefore
it is permissible to omit any consideration of internal vertexes
in n-port-resistive-netwark studies. However, in the following,
the presence of internal vertexes is permitted in the interests
of generality. With this approach, the results obtained may
be applied directly to any a-port network, without first having
to eliminate the internal vertexes. For the particular case of
networks without internal vertexes the meodified cut-set
matrix C itself takes the place of the submatrix C! in the
theorems that follow.

Theorem 7. Each element of the submatrix C! of the modified
cut-get matrix C of an a-port network is a linear combination
of, at the most, two potential factors X;;. Farthermore, for
every K,(j = I) thete exist at least two elements of C! equal
to K.

Preof. Consider the complete graph formed by all the external
vertexes. This is a subgraph of the network graph, and the
columns of ! correspond to the edges of this subgraph and
the n ports of the network can be embedded in a tree of this
subgraph. If port { is excited with a source of unit voltage, and
all the other ports are short-circuited, it is clear that the
voltage across every edge of this graph which is not short-
circuited and which is not connected to the negative terminal
of port i can be expressed as the difference of two potential
factors. An edge incident at the negative terminal of port §
joins this terminal to the terminat of some port . If f= |,
the voltage across it is equal to Xj;, i.e. 1. If j # §, this voitage
is equal to +X;;, depending on the edge orientation. Since
we have assumed a complete graph, there exist two edges
joining the negative terminal of port i to the other port j.
This, in conjunction with theorem 1, constitutes the proof.

Theorem 8. The €' submatrices of the modified cut-set
matrices of all r-port networks having identical port con-
figurations, edge and port orientations and potential factors
are equal if the submatrices have identical row and column
orderings.

Proof, From theorem 1, every entry of C! equals the voltage
across a particular edge under appropriate excitation con-
ditions. This voltage can be expressed in terms of potential
factors in the same way far all a-port networks which have
identical port configurations and identical orientations for
ports and edges. Since these potential factors are the same
for all the networks considered, it follows that all the asso-
ciated C! submatrices are also the same.

Thearent 9. Given the submatrix C' of the modified cut-set
matrix C of an a-port network with specified edge and port
orientations, the potential factors are uniquely determined.

Proof. The proof of the theorem follows from theorem 7.

3 Parallel connection of n-port networks

Consider two s-port networks N; and N, with T, and
¥, as their short-circuit admittance matrices. By the parallel
connection of the two networks, it is implied that the positive
reference terminal of every port in N is connected to the
positive reference terminal of the coiresponding pert in Ny,
and similarly for the negative reference terminals. The
intarnal vertexes are left unconnected. If the parallel com-
bination of N and N, has a short-circuit admittance matrix
Yequal to ¥, + Y, we shall refer to if as a proper parallel
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connection of N; and Na. If X and X’ are the matrices of
potential factors of Ny and N, we have, on extending the
well known criterion for the proper parallel connection of
two 2-port networks, that a sufficient condition for the
proper parallel connection of N, and N; is that K = K.
This can also be shown to be necessary if positive R, L and
€ elements only are permitted.” In the following, we assume
this to be the case whenever this necessary condition is used.

We now proceed: to give an alternative criterion for the
proper parallel connection of twa a-port networks N; and N,,
We first prove a preliminary theorem.

Theorem 1. For a proper parallel connection of Ny and N,
it is mecessary that the number of external vertexes ¥, of
both networks be the same.

Proof, Consider the subgraph of N, consisting of only the
edges shuating the ports. This subgraph may be in more than
‘one part, but it has no circuit. Now consider any two potts
i and j in the network Nj. In the subgraph under considera-
tion, port j may be connected to port i through the positive
reference terminal of the latter, or port j may be connected to
port i through the negative reference terminal of the latter, or
no path may exist between ports j and i. The potential factor
Kyisthen I, 0or x{x =1, x # 0), respectively, depending
on the port configuration. Since, for a proper paraliel connec-
tion, the potential factors of N; and N; must be identical,
it i clear that the configuration of ports / and j in N and
N, must be alike, Since this is true for every pair of ports {
and j, we conclude that the subgraph of the edges shunting
the ports {the port configuration) must be identical in both
networks. It follows from this that the number of external
vertexes v, in both networks should be the same.

Let Cp, and Cy, be the modified cut-set matrices of the
two networks and Cl; and €l be the submatrices corre-
sponding to the edges in the complete graph formed by the
external vertexes in each network. An e¢dge in one of the two
networks is said to correspond to an edge in the other net-
wotk, if, in the process of paralleling the two networks, the
two edges come in parallel. Let Ck; and C}; be so formed
that two corresponding ports and edges have, respectively,
the same row and column positions. We now give a new
criterion for the proper parallel connection of N; and Nj.

Theorem 11.* A sufficient condition for the proper parallel

connection of two n-port networks N, and N, is that the
submatrices €l and Cj; of the modified cut-set matrix of
the two networks are equal if the ports and edges are
similarly oriented. This i3 also neccssary if positive RLC
elements only are permitted.

Proof

Sufficiency. From theorem 9, it follows that, if Cly = Ch.,
the potential factor matrices X and X’ are equal. Hence a
proper parallel connection of & and N; can be made.

Necessity. If a proper parallel connection is possible, the
two networks have the same number of external vertexes
and the same port configuration. Furthermore, X = K.
Therefore, from theorem 8, it follows that C}; and C};; are
equal, which proves the theorem.

It may be observed here that, if two networks can be
properly connected in parallel but the orientations of two
corresponding edges do not match, the entries in the corre-
sponding columns of C}, and CJ;, are equal in magnitude
but opposite in sign. In such cases, it is obvious that the two
submatrices C4; and C}, can be made equal by a change
in the crientation of one of the edges.

4 Generation of equivalent n-port networks

In connection with the realisation of a given ¥Ymatrix,
Cederbaum? proposed a method of generating equivalent
n-port networks for a given m-port network, making use of
the modified cut-set matrix C. It was subsequently shown by
the authors that Cederbaum’s procedure in the form given
by him can lead to an equivalent network only if the modified
cut-set matrices of the original and the incremental networks
* A asimijlar condilion was obulained recently for the special case of networks
containing no internal vertexes.?
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are the same. With this modification, the generation of
equivalents for a class of networks was discussed in
References 3 and 4. In this Section, we give an extension of
this pracedure applicable t¢ a more general case.

Let an #-port network Ny having ¥, as its diagonal edge-
admittance matrix be given. Let C = [C'|C?] be the modified
cut-set matrix of N;. From theorems & and 4, any diagonal
matrix Y, satisfying the equations

CYaCi =10 O Y
and CYpCi=0 . . . . . . . . . . (%

represents the edge-admittance matrix of an r-port network
N, having its modified cut-set matrix equal to € and its
short-circuit admittance matrix identically equal to zero, It
is also seen that a new network Nj;, obtained by putting every
edge of N, in parallel with the corresponding edge of Ny,
has the following properties:

(@) Y,s=Y,,+ ¥,5. where Y,5 is the edge-admittance
matrix of Nj.

{h) the modified cut-set matrix of N; is egual to the modified
cut-set matrix C of N, by theorem 6, since

CYE:;C; = C(Yel + Yc2)C‘; = CY&ICE o CY?ZC; =

{c) The short-circuit admittance matrix ¥, of Ny is the same
as the short-circuit admittance matrix ¥; of Ny, since

¥y = C¥aC) = C(¥u + Y)C] = CY,C) + CY,C}
. Y] + 0= Y1

Thus, for every diagonal admittance matrix ¥,; which

“satisfies eqns. 14 and I35, an equivalent network N, having

the same short-circuit admittance matrix as. Nj, can be
generated, It is to be noted that, in this procedure, no dis-
tinction is made between internal and external vertexes.

If, however, it is desired to have N, with v, external
vertexes corresponding to those of N and no internal vertex,
the following equations have to be solved:

C'WalCly =0 . . . . . . . . . (U6
CYACH =0. . . . . . . . . . UD

where Cland €] are the submatrices of C and C, correspond-
ing to the dv(r; — 1) edges in the complete graph formed
on the v, external vertexes, and C] and CJ, together form a
fundamental cut-set matrix of this complete graph. From the
discussion in Section 3 it is clear that, by joining the corre-
sponding pairs of external vertexes of N| and N,, a proper
parallel connection is obtained, yielding an n-port network N,
having its short-circuit admittance matrix equal to that of
N,. In this case, ¥,, is'a diagonal matrix of order 4 (v, — ).

For a proper realisation of Y|, each entry in the edge-
admittance matrix ¥,; of Ny in either of these procedures
should be a positive real function. This restriction, however,
does not apply to Y,;. While the results of this Section are
generally valid, it is difficult to apply them directly to generate

port 3«

Fig. 1
Given 3-port neiwork with some negative conductances
PROC. {EE, Vol 115, No, 9, SEPTEMBER 1968



equivalent RLCnetworks, However, in a separate paper® the
usefulness of these results in the synthesis of 2-element-kind
n-port netwerks is demonstrated. For the resistive n-port-
netwark case, however, the results can be conveniently used
to generate a class of continuously equivaient networks.!?
The following example serves to illustrate the procedure.

Consider the 3-port network given in Fig. 1 and having the
following short-circuit admittance matrix ¥

39 25 —
Yy=125 a1 -
-4 —4 32

The network contains negative resistances, and we wish to
genetate an equivalent metwork with all positive elements.
Adopting the convention that the column headed by if refers
1o the edge jeining vertices ¢ and 7, and choosing the tree
constituied by 12, 23, 34 and 45, we have

12 13 14 15 23 24 25 34 35 45
1 1 1 1. 0 0 0 0 0 O
;=10 1 1 1 L 1 ' 0 0 ©
09 00 1 0 0 i 0 1 1
CG=[0 0o 1 1 0 1 1 1 1 ¢
i 8§ 5 5 0-3—-3-3-3 0
C=-/0 8 3 3 8 3 3-5-5 0
8lo 0-4 4 0-4 4-4 4 3

To generate an equivalent 3-port network, we seck a
network N satisfying eqns. 14 and 135. If the columa matrix
¥z represenis the edge conductances in this network, with its
rows ordered to correspond to edges in the same way as the
columns of €, €| and C,, the two equations can be put in
the following form, after taking the symmetry of the matrix
C¥_,C| into account:

0 5 5 0-3-3-3-3 0
[g 0 3 3 0 3 3-5-5 o] Yoy =0
0 0-4 4 0-4 4-4 4 0

8 8 5 5 0 0 0 0 0 O

0 8 5 5 0-3-3 0 0 0

¢ 0 0 5 0 0-3 0-3 0|y,=0
0 8 3 3 8 3 3 0 0 0

¢ 0 0 3 0 0 3 0-5 0

0 0 0 4 0 0 4 0 4 8

There are nine equations in ten unknowns, and hence a
solution can be found taking an arbitrary value for one of
the unknowns. Hence a range of continuously equivalent
networks can be found by varying the value of this unknown
in a continuous manaer, A particular solution for y,; is

- 127
18
—-24
—24
12
Yer = —16
—16
—24
~24
32 |

The network N, eobtained by putting this network N, in
parallel with N, is shown in Fig. 2.

If we now wish to generate another network equivalent to
the network shown in Fig. 2, we can seek another solution
of the same set of equations as above, 10 represent the incre-
mental conductances, A possible solution y,; in this case is

- 4 -
—6

8

8
—4
Yer = IG!3
163
g

g
| —32/3
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- When the conductances in Fig. 2 are increased by these
amounts, the equivalent network shown in Fig. 3 resuits.

This example illustrates the technique of equivalent-network

generation. It also illustrates the possibility of generating

Flig. 2

Fig. 3
Another 3-port nerwork equivalent to networks of Figs. 1 and 2

equivalent networks with all nonnegative conductances from
one with soime negative conductances. For an a-port network
with ¢ > » + 1, it can be shown that the number of inde-
pendent equations represented by eqns. 14 and 15 is atways
less than the number of unknowns, and the fexibility of
choosing one or more incremental conductances arbitrarily is
always available, It may be noted that the class of networks
obtained by this method is characterised by the property that
all networks belonging te this class have the same modified
cut-set matrix. It is also seen that, using this method, a large
number of continnously equivalent networks containing only
positive resistances can always be obtained for a resistive
n-port network in which every pair of vertexes is connected
by a finite positive resistance,

5 Conclusion

It is shown that the modified cut-set matrix of an
a-port network which is a generalisation of the conventional
cut-set matrix of graph theory has many interesting and
significant properties in connection with the analysis of n-port
networks. Some of these properties have been used to establish
a new criterion for the proper parallel connection of two
r-port networks. In the synthesis of RLC #-port networks by
the paralle! connection of & resistive nefwork, an inductive
network and a capacitive network, or by the parallel connec-
tion of networks realising the residye matrices, such a test is
useful. This new criterion requires, for the network under test,
the inversion of a square matrix of order v — n — 1 for the
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determination of C, whereas the conventional method of the
determination of potential factors by node analysis requires
the inversion of # such matrices. 3

The methods of Section 4 enable the generation of a range
of continuously equivalent n-port networks for a given n-port
network, particularly for resistive n-port networks. This would
be advantageous in situations where one or more gonductances
of the network to be realised are required to have some
initially specified values. This procedure is also potentially
useful in the general r-port-network synthesis problem, in
that, starting from any realisation with some negative con-
ductances, one may seek a proper reatisation through the
equivalent-network approach.
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