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" A theorem in the theory of determinants and the

number of spanning trees in a graph

L’utilisation d’un théoréme de la théorie des
déterminants pour établir le nombre
d’embranchements dans un systéme

By K. Thulaslraman and M.N.S. SWamy, Concordia University, Montreal, Canada.

A network-theoretic approach for counting the number of spanning trees of 2 graph is proposed. This approach is based on a theorem in the theory
of determinants. Following this approach, a recurrence relation for countingI',, the number of spanning trees in a mulfigraph ladder having (7 + 1)
nodes, is established. We then obtain a recurrence relation connecting the sequences {W.) and (T,} where W, is the number of spanning treesina
mulfigraph wheel having (7 + 1) nodes. The significance of the approach is further illustrated by giving simple proofs of certain well-known results,
in particular, the formula for counting the number of spanning trees in a cascade of 2-port networks.

La présente communication a pour but de soumettre une démarche théorique et systémique pour compter le nombre d’cmbranchenients dans un
graphique, Cette démarche est fondée sur un théoréme faisant partie de Ja théorie des déterminants. 1l s°agit d’abord d’¢établir une relation de fré-
quence en désignant par I", le nombre d’embranchements dans un systéme comportant (n + 1) noeuds. Nous obtenons ainsi une relation de fré-
quence entre les séquences{ ;) et [I'.] od W, constitue e nombre d*embranchements dansun systdme comportant (7 + 1) nocuds. La pertinence de
cette démarche est ensuite établic au moyen de preuves simples utilisant certains résultats bien connus, comme, en particulier, 1a formule pour &tablir
Je nombre d’embranchements dans une cascade de sysi2mes comportant deux sources. .

Introduction

Enumeration of the spanning trees of a graph has been a problem
of considerable interest to network theorists. In 1967, Myers
established a recurrence relation for enumerating spanning trees in
a cascade of 2-port networks.! Recurrence relations for
enumerating spanning trees in wheels and multigraph wheels have
been established by Myers® and Bose, Feick and Sun.” Myers has
also related the spanning tree enumeration problem to that of
enumerating partitions of an integer.** In addition, Myers has
presented, in reference 4, two enumerating functions for counting
spanning trees. One of these functionsis derived by removing an in-
cidence set from the given graph, and the other is derived by remov-
ing two disjoint incidence sets of a certain type.

In this paper, we propose a network-theoretic approach for
enumerating spanning trees. Our approach is based on atheoremin
the theory of determinants. In a later section, we obtain a recur-
rence relation for the number of spanning trees in a multigraph lad-
der. We also relate the sequences { W,) and {T",} where W, and T, are
the numbers of spanning trees in a multigraph wheel and a ladder,
each having (7 + 1) nodes. We conclude by giving a simple proof of
the results of reference 1. This proof is also based on the approach
given in the next section. Unless otherwise stated, we follow the
notatjon given in reference 6.

A network-theoretic approach for enumerating spanning trees

It is well known that the number of spanning trees in a connected -

(n + 1)-vertex graph G is equal to the determinant of the matrix
AA* where A is any n-rowed submatrix of the incidence matrix of
G.* Suppose Nis an electrical network having a graph which is iden-
tical to G. Further suppose that each network element of Nis a con-
ductance of 1 siemen. Then the determinant of the matrix A4’ is
also equal to the sum of the tree-admittance-products of N. Thus,
without any loss of generality, we may assume that our problem is
to evaluate the sum of tree-admittance-products of a network each
element of which is a conductance of 1 siemen. In this section, we
propose a new approach to evaluate this number. Our approach is
based on the following theorem.”
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Theorem 1:

Let Ybe an (7 X n) matrix partitioned as follows:

- nl — ‘—nz-‘
. 1
Yt = Y ny
Y= ' !
B
t t
Y. : Y - m
' i
Then

det(Y) = det (Ya,). det (Yo — Yau Y53 Yia)
= det (Y3;). det (Y, — Y, Y3 Ya). 1l

Let the nodes of the network N be numbered as 1,2,3,.....7,
1 + 1. Let A be the n-rowed submatrix obtained after removing from
the incidence matrix of N the row corresponding to node (# + 1).
Let the matrix Y = AA" be partitioned as in Theorem 1 so that the
rows and columns of Y;, correspond to the n, nodes 1,2,. ..,/ of
N, and those of Yz correspond to the m, nodess i + 1, m + 2,
....,nof N. Note that the matrix Y is the node-admittance matrix
of N with node (n + 1) as datum.

Let K beasubset of the vertexset ¥ = {1,2,....,n, n+ 1} of N.

Then, we shall define the networks Ny and Ng as follows:

Ni = the network that results after short-circuiting all the nodes of
N which do not belong to X. : L

N = the network that results after open-circuiting or suppressing
all the nodes of N which do not belong to K. (Note: Suppres-
sion of a node can be achieved by the generalized star-delta
transformation at the node.)

With these definitions, we have the following interpretations for
the matrices Y, and Y2, — Y2, Y3l Yaa:
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=; the node-admittance matrix of the network Nx with node
(n + 1) as datum, : .

“ and

Yy — Ya: Y31 Y;; = the node-admittance matrix of the network X3
with the node (n + 1) as datum

where K = (1,2,....,n} and X isthe complement of Kin V, that is,
K = (n; + l,ng + 2,...,” + l]-

From Theorem 1, we obtain the following:
TWN) = TNy « TN - 0))

where T(N), T(Ny) and 7{N3) denote respectively the sums of tree-
admittance-products of N, N and Ng. Suppose K = {1}, then
T(Ny) is the sum of the conductances of the elements incident on
node 1 in N.

Letting
TWNy) = a . @
we obtain from Eq. (1)
TN) = g, « TIND) 3

whereL = {2,3,...,n,n + 1]. Notehere that L = ¥ — {1}. Follow-
ing the same arguments as above we get

TIN?) = a, « TINR) @
where a, is the sum of the conductances incident on node 2 in N?
and M = [3,4,5,...,n,n + 1} =.L — {2). Note that N% is obtained
from N? by suppressing node 2. This is the same as the network ob-
tained by suppressing nodes 1 and 2 of N.

Egs. (3) and (4) yield the following:
TIN) = a, « 2, » T(NY) ' )

Continuing in this manner, we eventually get
T(N)=al.az.'.an (6)

where a, is as defined in Bq. (2) and for 1< i< n,

a, = sum of the conductances of the elements incident on
node i in the networkN'fu, I+1,...,041)

Note that the application of Eq. (6) requires the determination of
a sequence of networks obtained by successive suppression of
nodes of N,

Suppose ¥, is the short-circuit admittance matrix of an RLC
n-port network N having P as its port-configuration. Let P, be a
spanning tree of N with P as its subgraph. Let N* be the network
that results from NV after short-circuiting all the branches of P, that
belong to P. Then we have shown that .

N
det(Y) = . .
= 7w ™
In th'e case of a one-port network, Y, isthe same as the driving point
admittance y,, and it is easy to see that Eq. (7) generalizes the well-

known result for y,, in terms of tree-admittance and 2-tree-
admittance products.$

We wish to add that Bq. (7-27) in reference 8 can be established
starting from Theorem 1. We also note that Bq. (6) has proved very
useful in arecent work on the computational complexity analysis of
a spanning tree enumeration algorithm.?® In the following sections,
we illustrate the application of Eqs. (1) and (6) in deriving certain
new results as well as simpler proofs of some known results.

Figure 1: Graph G.

Figure 2: Network N;.

‘We conclude this section with an example to illustrate the ap-

plication of Eq. (6). Consider the graph G shown in Figure 1. The
number of spanning trees of this graph is the sum of the tree-
admittance-products of the resistance network N, shown in Figure
2. We shall first compute a,, @, a; and a, as defined in Eq. (6).

To start with
a, = sum of the conductances of resistors connected to node 1
in the network N,
=3,

Suppressing node 1 (in other words, performing star-delta
transformation at node 1), we get the network N, in Figure 3.

a, = sum of the conductances of resistors connected to node 2
inM; :
= 11/3.

S P
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We shall follow the same notation that was used in the previous
section. Further, for 2< i < nlet,

A‘=a|.a;"'ag o . (8)

and T, = the number of spanning trees in a multigraph ladder hav-
ing (i + 1) nodes. Note that T, = A4,

. Consider the networks N°(,1+1,...,n+11 20d N4 4,.. . sy shown
in Figures 7 and 8. From these, we can obtain the following;

Z(P+ 1+ Pr

Zu= S s is -1 ©)
A=A Z,+ P), 2<isn 10
and
Figure 3; Network N;. li=4..2, 2=i=n an
Continuing as above, the networks N, and N, are obtained and
shown in Figure 4 and Figure 5. Also from these networks we get Using Eqgs. (9)-(11), we obtain
o= T=4,.-2 _
Pr
and = A (Zo + P [Zs(P+ 1) +. ]
Z.,+P
165
& = "7‘7— .
=A2Z o (P+1)+ As Pr
Now using Eq. (6) we get: )
=T (P+rN+A.aPr (12
Number of spanning trees of G o
= T(V,), sum of tree-admittance-products of N; Similarly
= a1 . az . a:' . a‘ .
= 75 I‘n—l= rz(P+r)+An-3Pr' (13)

A recurrence relation connecting I',,, I'-;, and I',-; can be ob-
tained from Egs. (12) and (13) if we have a relation connecting A,
and 4, without involving any Z,s. Such arelation can be obtain-
ed using Egs. (9) and (10) as follows: .

A = An-a (Zn-l + H

=T\s+ Ao P. (14)
Then we obtain from Egs. (12), (13) and (14) the following recur-

Figure 4: Network Nj. rence relation to count I',.
| 5 I.=@P+ T, - PT., %)

The natural choice for I'; and I'; are:

165 Ty=r I=2Pr+ 7. (16)

7

4

Figure 5: Network N,.

Enumeration of spanning trees in multigraph ladders

. Bose, Feick and Sun have obtained in reference 3 a recurrence
relation for enumerating the spanning trees of multigraph wheels.
They have also obtained an expression for W,, the number of span-
ning trees in a multigraph wheel having (7 + 1) nodes. We shall
establish in this section a recurrence relation for counting the
number of spanning trees in multigraph ladders. Thus, our pro-
blem is to find an expression for 7(V) for the network N shown in
Figure 6. In this figure, P and r denote respectively the conduc-
tances of the series and shunt arms of the ladder. Wigure 6: Muyltigraph ladder N.
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" Figure 7: N°
L+l it ...

P i+2 - P -1
i+l ] n-2 n P n

Figure 8: N*°
{i+1,i+2,...,n+1).

If we choose I'o = 0, then Eq. (15) will become valid forn = 2.

We can solve Eq. (15) for I', and obtain I, as

L= 5 o= f) an
where
P+ DN+ \JAaPr + °
2
and
g= @P + 1) -—2\/,37’?+7"_ 19

Note that o8 = P2..

A recurrence relation between { W} and (I',)
Let W, denote the number of spanning trees in an (# + 1)-node
. mnlngraph_\yheel in which P is the multiplicity of the rims and ris
- the multiplicity of the spokes. In reference 3 it is shown that
W= QP+ 1) Wiy — PWisy + 2P™r, n= 3. 19
It is easy to sce that
Wi=rand W, = 4Pr + .

Choosing W, = 0, we can see that Eq. (19) becomes valid for n = 2.

Eq. (19) can be solved for W,, which is given below:
W.=a"+ f~ — 2P | 20
where o and B are as defined in Eq. (18).
The similarity between Eqgs. (15) and (19), and between Eqs. (17)

and (20) suggests that a felation connecting { W} and {I',} may ex-
ist. This is indeed true and we establish this now.

Using Eq. (17), we obtain the following:

I‘n-x—PZFuq:;[a'"—B'""Pd"l'fpﬁ""]

a-p
- D) - -
=75 [ - -6 G - )]
=+ /)
=r(W, + 2P"). @1)

Thus, we get from Eq. (21)
W= Qs = PTo) - 2P. @

The above relation is valid for all » = 2. This result also generalizes |
a similar result given in reference 2 for the special case of simple
wheels and ladders.

Number of spanning trees in a cascade of 2-port networks

In reference 1, Myers obtained several interesting relations for
counting spanning trees in a cascade of 2-port networks, In proving
these results, he used some very ingenious but involved com-
binatorial arguments. In this section, we give a simple proof of one
of these results (Bq. (11) in reference 1). All the other results in
reference 1 can be proved in a similar manner. Our proof here is
based on the approach used in the second section of this paper and
some well-known network-theoretic results. .

Consider a cascade C, of n arbitrary 2-port networks Gi, Gs, . . -5
G, connected in that order as shown in Figure 9, with (0,0”) the in-
put terminal pair of G; and (%, k¥’) k = 1,2,...n, the output ter-
minal pair of G, in C,. We shall follow the same notation as in
reference 1. Thus, we shall denote by g, the graph of G, and let

n, = an arbitrary spanning tree of g,

X = an arbitrary spanning 2-tree Tjx-13,1x-1)° Of &

¥ = an arbitrary spanning 2-tree 7, ,- of g,

Z, = an arbitrary spanning 3-tree Tiu-s) s,i0-11%'3
Tia130’ =11 Tia-1ymai=1y " %3 OT Tpamsgns 1117 2 of &

With
N, = the sum of admittance-products of spanning trees
X = ’t'i:sg:n of admittance-products of spanning 2-trees
Y. = fhh;.;ﬁ;n of admittance-products of spanning 2-trees
z,= {ﬁgggl of adm'ittanoe-products of spanning 3-trees
25 10 gy .

Note that X,, Y, and Z, are respectively the sums of tree-
admittance-products of the networks in Figures 10(a), (b) and (¢).




, ' i 3 2 . n-1, 5!
£ 2 &
3 AN 2' (n1)' | n'
o—1 —---0—]

Figure 9: C., cascade of n arbitrary 2-port networks Gu, Ga. «.., Ga.

If C. denotes the cascade of the first k 2-port networks

G,,Gs,. . .,Gr,then let

Nia,...» = the sum of admittance-products of spanning trees
of the graph of Gy

Yia,...» = the sum of admittance-products of the spanning
2-trees T, of the graph G,.

Our problem is to find a recurrence relation relating Ma......,
M,z,...,-—l, M.z,...,u—zs Nn an N.-l, Xn—j, Y.—a and Z,.-;. We shall
first determing M, ,... », using Eq. (1). To do so, we shall let X =
the set of nodes of G, except (n—~1) and (n—1)’. Then short-
circuiting the nodes not in X, we get the network in Figure 11. As

" mentioned earlier, the sum of trec-admittance-products of this net-
work is X..

Suppressing the nodes in X, we get the network in Figure 12
where D,, is the driving point admittance of G, across the terminal
pair (n—1) and (n—1). It is known that*

Nn
Di. = X. 3
k
——w0
Gy
kl
__—'.—-O
(a)
k-1 k
0.__—_—
Gy
‘P———' ] | P,
(k-1)" k!
' (b)
k-1 k
Gy
(k-1)" k'

(c)

Figure 10: Networks derived from G,.
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n-1 n
(D)
G.
n
_--__O
(n-1)* ' n'

Figure 11: Network derived from G, by short-circuiting all the nodes not in G,.

Also, the sum W, of admittance-products of the spanning trees of
the network in Figure 12 is given by

VV: = Nl,z,...a-l + D, Yl,z....,-x

since MV, a,... -1 isthe sum of admittance-products of spanning trees
of C,; and Y, ,,... ~1 is the sum of the admittance-products of the
spanning trees of the network obtained from C.., by short-
circuiting the nodes (n— 1) and(n—1)’ . So using Eq. (1), we get

M,z,...,- = Xl * u’l
Nl

= Xn e (_Nl.ﬂ,...,r.l + ‘f Yx,z,...,-—:)
_ =X, eNys,..p1+ Nao Y2, (23)
Similarly,
M.z,.—..,rx = An1 ’M,z....,.—z + Ny ® Y:,z....,n-z- (24)

If we could eliminate ¥, ... .1 a0d Y; 5, o2 from the above equa-
tions, we can obtain the desired recurrence relation. To do this, we
shall evaluate Y; ... .; using Bq. (1). By definition, Yi,...,.1 is
the sum of admittance-products of spanning trees of the network in
Figure 13. If we again let X = the set of nodes of G, except (n—2)
and (n—2)’, we can proceed as before and express Yi,,...,.t i
terms of the sums of admittance-products of the networks shown in
Figures 14(a) and (b) as,

Yig.;o1=Zea*Nig,.ooma t+ Yoi° Y402 (25)

Using Eq. (25) in Eq. (23) and eliminating Y, ,,.....2 from the
resulting equation as well as Eq. (25), we get the following.

-Nl.i,...,u Nn—l
=(Nl-1X- + Yn—l Nu) Nx,z,....-: +
(er Z‘-l - Xn—l Yn—!) M,z....,-—z Nl'

The above is the same as Bq. (11) in reference 1.

All the other formulas derived in reference 1 can also be
established using the approach given in the second section.

n-1

(n-3)*

Figure 12: Network derived from C, by suppressing all the nodes of G, except
(n—1)and (n-1)'.

[1 1, S—— g ——

& & 841

00— i -

n;‘l

00—
5 5, €p-1

0'O~— .

{n-1)2

. Figare 13: Network derived from Cu., by short-circuiting the nodes (n—1) and

n—1).




n-1

(n=2)*
(2).
o . ) . n-1
o— : -
B ' ’ : Yp-1
.8 L& Epe2 L)
Ot

o' : B (n-1)"

(b)
Figure 14: fa) Network derived from the network of Figure 13 by short-circuiting all
* .the nodes not in G..s; (b} Network derived from the network of Figure 13 by sup-
pressing all the nodes in G, excépt (n—2) and (n—2)’.
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Conclusion

In this paper, we have given a network—theoretic approach, bas-
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+ -ed on-a theorem in the theory of determiﬁant‘s, fot counting the
- number of spanning trees of a graph. We have ‘éxamined the

significance of this approach by presenting some new results and
giving simpler proofs of some knO\gvn results.** Though for pur-
poses of illustration, we have established only one of the formulas

in reference 1, all the other formulas given in that paper can also be

established in a similar manner. We would like to add that this ap-
proach has proved very-useful in a recent work on the complexity
analysis of a spanning tree enumeration algorithm.® These results
highlight the generality of the new approach as well as the insight it
provides.
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