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Synopsis

A procedure for the realisation of a general Knetwork, which is a generalisation of the conveniicnal
2n-node network realisation of a dominant matrix, is given. It is shown that a set of dominant matrices
can be realised by 2s-node m-port networks having the same modified cut-set matrix. This technique is
used in evelving a procedure Tor the realisation of 2-element-kind r-port networks.

1 Introduction

1t is well known' that a real symrmetric dominant
matrix of order # can be realised as the short-circuit con-
ductance matrix of a 2#-node n-port resistive network which
contains a pair of equal conductances interconnecting the
terminals of every pair of ports. Recently, a generalisation of
this procedure was proposed by the authors,? and it is shown
that such a matrix can be realised as the short-circuit con-
ductance matrix of one of a class of 2a-node r-port networks
called Knetworks. Realisation procedures covering a subclass
of Knetworks, called constant Knetworks, have also been
given,

In a companion paper,® the propecties of the modified cut-
set matrix and the usefulness of the modified cut-set matrix in
formulating a new criterion for the proper parallel connection
of n-port networks and in establishing a general procedure
for the generation of a class of continuously equivalent net-
works for a given n-port network have been discussed. In this
paper, the results obtained in Reference 3 are used to evolve
a general procedure for the synthesis of resistive Knetworks.
It is also shown that this procedure can be extended to ebtain
a large class of realisations for a given short-circuit admittance
matrix of a 2element-kind #-port network when the residue
matrices of the given Y matrix are dominani. If the residue
matrices are not dominant, the transfer admittances can be
realised, within a multiplicative constant.

2 Knetworks and their properties

In this Section, the term Knetwork is defined,
and certain properties of Knetworks already reported in
Reference 2 are summarised.

Consider an #-pert network with 2 nodes. Let port / be
excited with a source of unit voltage and let all the other
ports be short-circuited. Then the potential factor X, refers
to the potential of the positive reference terminal of port §
with respect to the negative reference terminal of port £ X;
is therefore unity. A 2m-node p-port network in which the
relationship Ky = Kz = ... = Kj, ... = K, v =+ §, bolds
for every 7 is termed a Knetwork. The symbol K, used to
refer to thizs common value is termed the potential factor of
port § in the Knetwork.

Let the network configuration between any twe ports / and
7 be as shown in Fig. 1, where ay;, by, ¢y, oy, £, and g, Tefer to
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Conductances of the edges interconnecting ports i and f
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the conductances of the respective edges. That all these values
are finite is implicit in our assumption of a 2#-node network.

In a Knetwork with port  excited and all the other ports
shortcircuited, the short-circuited ports are at the same
potential, and the edges interconnecting the short-circuited
ports do not carry current, Hence the transfer admittance y;
between ports { and j depends only on the edges interconnect-
ing the ports 7 and j, and it is given by

yy =yl — K) — Kidy
= Kby — ayfl — K))

by ey )
ay + by + oy ¥ dy

1, the driving-point admitiance of port J, is obtained from

'y,-,- =jE](J’ﬁ)j + &
oo
(ay; + ebiy 4 i)
where (¥} day + by + e + dy

= Kithy + d;)
(@ +el—K) . - - . . . . {2

{yi), may be considered as the contribution to yy; of the
conductances of the edges interconnecting the ports § and J.
Certain important propetties of Knetworks are as follows,
Property 1. The potential factor K, satisfies the inequality
0< K;=; 1 for a network containing only nennegative
conductances,
Property 2. When two Knetworks N; and N, with the same
set of potential factors, i.e. the value of K; js the same in
N, and N, for every port i, and having Y; and Y, as the
short-circuit admittance matrices, are connected in parallel:

(a) the resuiting network is a Knetwork and the potential
factor of every one of its ports is the same as that of the
corresponding port in either of the constituent networks

(/) the short-circuit admiftance matrix ¥ of the resulting
network is given by ¥ = ¥, + ¥a.

Property 3. The short-circuit conductance matrix of a 2n-node
Knctwork containing only nonnegative conductances is
dominant.

A Knetwork in which the potential factors of all ports are
equal is called a constant Knetwork. For such a network,
b;; = ¢y for all i and /, since K; = K. ‘

3 Realisation of a 2 x 2 real dominant
matrix
In this Section, the problem of realisation of a 2 X 2
dominant shori-circuit conductance matrix by a 2-port net-
work having a specified modified cut-set matrix is considered.
Consider the 2-port resistive network shown in Fig. 2,
where a, b, ¢, d, g, and g, refer to the conductances of the
respective edges.
Choosing the tree comprising the edges ey, €1,2) €2, 2
the fundamental cut-set matrix Cy is partitioned as

C
«-c]
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where the rows of C,; correspond to the port edges &;. ; and
ey, and the row of C; corresponds to the nonport edge ey 52

or[g]

€11 €12 Frl,z €),2 €2 £

t 1 1 0 0
=[o o 1 0o 1 1l . .
0 1 1 1 1 o

If K, and X, are the potential factors of ports 1 and 2,
respectively, the modified cut-set matrix of the 2-port network

Foo o +
3 — 2y
94 - b “ 9z
port 1 port 2
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Fig. 2

2-part resistive network

for the edge and port orientations shown in Fig. 2 can be
written® as

11 Sy dva g3 €1,z €12
1 kK K K -1 K —10
o K, 1-kK, K 1-K 1§° @

Let it be required to realise the following real symmetric
dominant matrix:

' Y=B“y'j s s 8 3 8 2 8 % 5 B
21 ¥r

as the short-circuit conductance matrix of a 2-port netwark
having the form shown in Fig. 2. :
Let

G = I ()

the edge conductance matrix, satisfy the two equations

CCE=Y wwwmme ¢ ¢ 8 ¢ 0D
and CGCi=0 . . . . . . . . . . {8

This implies? that the modified cut-set matrix and the short-
circnit conductance matrix of the 2-port network having G
as its edge conductance matrix are equal to C and ¥, respec-
tively. Eqns, 7 and 8 can be together put in the foliowing
form:

1 £, K 0 0 0 [3; Yu
00 I—K O 1-K 1 d Yz
00 KI. 0 Xl -10 b ¥z (9)
0 —Kz I - K2 { 0 0 c = 1Yz

0 K| Kl Kl —1 K: -1 0 a Q

(] _KZ 1 —K2 _K2 i ""K; 4] g ]

Given the short-circuit conductance matrix ¥ and the modified
cut-set matrix C, a unique solution of the six conductances
does not exist, since the coefficient matrix in these equations
has a rank of five. We can, however, choose one of the con-
ductances, say b, as an arbitrary parameter, and express the
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ather conductances g|, g4, @, ¢ and d in terms of b, X, K5,
Y115 Y1z and y5, as follows:

a-l=%K,

KZ .Kz
e BT o WIS
11—k, 17K
qu(l —K3) K —K,

CTROIRY T a—-xpK"m

K K
&1 =ru+ o —flb
2

K;
g2 =¥n + =k Y1z 1%, - 1)}

For a proper realisation, it is required that g;, g5, 4, ¢ and a
be nonnegative for a nonnegative b. This restriction leads
to the following inegualities, obtained by requiring that the
right-hand side of egn. 10 be nonnegative:

Y2
brvog
Y2
b> ¥
yu(X, — X3)
b 212K = K3 | an
= — K,

K.
b« yurt-l-ylz

bl yp

Kl+
o= Y12

If X, andd K, or, in other words, C, is specified, choosing a
nonnegative b satisfying these inequalities and using eqn. 10,
a proper 2-port realisation of ¥ having the specified modified
cut-set matrix € and the configuration shown in Fig. 2 can
be obtained.

If it is not possible to choose a nonnegative b satisfying
the inegualities in expr. 11, it only means that the given
dominant matrix ¥ cannot be realised with the specified
modified cut-set mateix, However, it can be realised with
seme other suitably chosen modified cut-set matrix,

We now consider the question of determination of an
appropriate modified cut-set matrix which leads to a
proper realisation of a given Y in the form of the network
shown in Fig. 2. One solution of this problem is adequate
for our purpose. It is shown in Appendix 8 that, if K, and
K, are chosen to satisfy the following restrictions, the require-
ments of eqn. 11 are met, and a proper realisation is possible:

Case (@): yy = yn
Choose X, > K, » 4, so that

o, K g

Dol ”1-K

Case (b): y22 = ¥,
Choose } 5= K| > K, so that

Yu . 1 - K I
" e ow e owow @ W@ e w k3
il K u»

Depending on the relative magnitudes of yy; and y,; in a
given ¥, K| and X, may be chosen to satisfy either eqn. 12
or eqa. 13 to ensure a proper realisation of the matrix ¥.
Since yoaflyia) 3 1 and »yJ|y5| 3 1, it is always possible
to do this. [t must be noted that there exists, in the general
<ase, a large number of sets of X, and Kj satisfying eqns. 12
or 13, and hence a large number of rzalisations for a given
¥ are possible.

The ideas presented here will be used in the Section 4 to
obtain a procedure for the synthesis of general Knetworks.
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4 Synthesis of general Knetworks
Definition 1. A real symmetric matrix ¥ = [y,] is said
n
E;El |7 for every i.
J#i
Definition 2. A real symmetric matrix ¥ =
L

to be marginaily dominant if y;;

{r;] is said to
be superdominant if y; = 3, |v;,| for every i.
1=

J&t
We now consider the problem of realisation of a real
symmetric superdominant matrix Y as the short-circuit
admittatce matrix of a Knetwork in which no two potential
factors are equal. Let

A;=}';,~~_§I[yu|‘ S ¢ T
o
and Jat
N R { £

The condition in eqn. 15 involves no loss of generality, since
any given matrix can be made to satisfy this requirement by
a simple interchange of rows and corresponding columas,
and such an inferchange results only in a change in the order-
ing of the ports.

It may be recalled that a Knetwork has the property that,
when any port i is excited with a voltage source and all the
other ports short-circuited, the edges interconnecting the
short-circuited ports do mot carry any current. Hence the
transfer admittance y,; depends solely on the conductances
of the edges interconnecting the ports 7 and 7, and can be
realised by viewing ports 7 and j as constituting a 2-port
network. To this end, we consider the 2-port dominant short-
¢ircuit admittance matrix;

(.V!); )’U:I
I:.Vr; (.V;)! oo (16)
where(y;);=|y;;|+n—&_*—l cowow v ow v o2 v B

. A,
and ()’1): i)’ui ¥ A
The realisation of this matrix can be effected by the methods
of Section 3 after an appropriate choice of potential factors X;
and K;. This results in a lattice structure between ports i and §
and two conductances {g,); and (g,), shunting ports { and j,
respectively. If the 2-port structure between every pair of
ports is thus realised, it is easy to see that the overall #-port
network has the specified short-circuit admittance matrix,
since

(18)

- .
DAy =(n
=1
Fl

The conductance in the final network-shunting port / is

given by

6’(=é(3;)j ow ow o ow o ow @ ow ow w W
=1 :

i

The problem of the realisation of the given ¥Ymatrix thus
reduces to the problem of realisaticn of a set of real sym-
metric matrices of order 2. It only remains to consider the
choice of potential factors for the ports, such that they are
all different and such that they are appropriate to the proper
realisation of every 2-port conductance matrix of the type in
eqn, 16, The following discussion is directed towards evolving
a suitable procedure for this choice.

Let € be the minimum of the set of values

)

for all i and j with j > /. We then have, for all / and / with
F= i,

Af
wl + =2
(-L)-‘==|Ul (n__'])ﬁl—i_
¥l 2 1)|J"u
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If we choose K| 5o that

T B<rrE @
we ensure that

t< 4+l —K)< Ky . . . . . . 2D
If X, K;, ..., K, are next chosen so that

Y<Ky <Ky <Ky Kg<(l+(1—K) . (23)

we proceed to show that the choice meets our requirements.

First, in the realisation of the 2-port structure intercon-
necting port 1 and any other port §, we have (3); = (» .
since A;» A; from eqn. 15. For this 2-port realisation,
case {q} of Section 3, and hence eqn. 12, is applicable. Fram
eqns. 20 and 23, we have

o KX
1 €3 ——1—
[l T TTK,

and X, = K, > {, satisfying the requirements of eqn. 12.
Secondly, For the realisation of the 2-port structure inter-
connecting ports i and 7, f > i, we have (y; )4 - (y;);, since
A, A, from eqn. 15. Again, case () of Section 3 1s applic-
able, It is seen that the pertinent condition of eqn, 12 is ~
satisfied:

29

LY,
T-K,

K
=

(J"_,r); .

. {25)
| J’U|

l ez - -

Hence the choice of potential factors, as in egns. 21 and 23,
is appropriate for the proper realisation of the a-port network,

The steps in the procedure for the syathesis of general
Knetworks can be summarised as follows:

{g) Rearrange the rows and the corresponding columns of
the given tnatrix so that A, = A, for j > i. Let the matrix
after such a rearrangement be called the ¥matrix.

{#) Determine

€ = min {#} j >
CESVENid

Choosc
1 +¢ 1 4+ 2¢
2+£éK|{2+Ze

and . $ < K, <K,_;...Ki <K<+l —Kp

{c) Realise the 2.port short-circuit conductance matrix
relative te ports { and f, 7 = i, by the network shown in Fig. 2.
(i) Choose a nonnegative &,,, so that

v |y.;1 + A
Pl by < e (0 — K} +yy
(i) Determine the conductanoes of the other elements as
foltows: '
K Yu
W= —Iqb"f - K
' P & — b _ K — K
RO — K{) Y (1 — KK
d = (1 - K_;) Yy
1 (K_,‘) i Kj
K K;
(g = |y oD ) + 2 k" K, by
A,‘ {1 — Kj) (1 Kj)
R | e S b 26,
(g.v‘)r Iylf| _’_( )+ {I K) l} (1 U( )

(d) Repeat the procedure in step (¢} for all pairs of ports and
form the averall #-port network in which

H
33=El(§_a);, N ¢£) ]

y
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This completes the procedure for the synthesis of a super-
dominant real matrix by a Knetwork in which potential
factors may be chosen so that no two are equal. If the
Ymatrix is marginally dominant, i.e. € = 0, the choice is
limited to the conventional realisation of a dominant matrix,
in which, of course, all potential factors are equal to 1/2.

Example 1

We consider the realisation of the following short-circuit
admittance matrix ¥ by a 4-port Knetwork:

23 -5 & 2
-5 21 -3 4

Y=1 6 3 19 i
2 4 1 13
whence A, = 10, A; =9, A, =% and A, = 6, and
b8 9
Ay 15

- &4 —6 — —_
Nyl ~ 67 3paa] 1273yl 3
: A
ande=m1n{ s },forj}i,iso-j.
3|yyl
Choose

1 +¢ 1+ 2
P e

. 2

ie, 06 K < 3

Therefore choose X, =0-6, (1 + &)(1 — K)) =0-6, K; =
0-58, K3 =0-55and K, = 0-52.
The choice of b, is governed by
Yiy : 9{1)}(1 - K:) ;
1= KJ< b= A=K a7}
Applying this criterion, the following values of the & para-
meters are chosen; all the conductances are in siemens:
b]z =i b” = 13-5; bzg =12 b14 =153 b24 =:F b34 =13

The other conductances are obtained using egn. 26 and are
listed in Table 1,

Table 1
E0GE CONDUCTANCES OF THE NETWORK REALISED IN EXAMPLE 1
i i ag bi £ dyy {®iky ()
, 3 31 151 | 292 | 95 65
p) 2 8|2 | WO| ™
; 5 20 | 27 669 3 38 9
Ey B 44 2 EX) 16
5 80 0| n 4
L 2 | & | (R | W
208 204 | 350 8 27
I R SO I R Y O
61 2832 8 37 2
2 E ] | | % ]
13 127 1| 4 13
LN S w| B % | B

Conductances of the edges shunting the ports are obtained
using eqa, 27, and are

478 2289 393 58

£ “43171?’*’3:2M’33 =3

2368 547 1o

Realisation of a superdominant short-circuit conductance
matrix by a Knetwork offers flexibility in the choice of
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potential factors, and hence a range of equivalent networks
with different sets of potential factors can be obtained. Also,
once a Knetwork realising a given Y is obfained, a range of
continuously equivalent networks with the same set of
petential factors can be obtained using the simple procedure
piven in Reference 2, Thus it is possible to force some of the
edge conductances to have arbitrarily preassigned values. In
particular, some r» — 1 of the conductances shunting the
ports may be reduced to zero.

5 Synthesis of 2-element-kind n-port net-
works

It has been suggested in literature* ¥ that the realisation
of the shart-circuit admittance matrix ¥ of an RLC n-port
network can be carried out by realising the residue matrices
or the parameter matrices of the given ¥ matrix, and con-
necting in parallel the appropriate networks, realising the
component matrices of Y. To prove successful, this approach
requires that the parallel combination of the component
petworks be proper. In the light of the resuit obtained™ ® on
the necessary and sufficient condition for the proper parallel
combination of a set of #-port networks, realisation of the
Y matrix of an RCL network by this approach leads to the
problem of synthesis of a set of resistive n-port networks
having the same modified cut-set matrix.

Several methods are available for realising resistive n-port
networks with # + 1 nodes, and, for such networks, the
fundamental cut-set matrix with respect to the tree constituted
by the port edges is the same as the modified cut-set matrix.
Hence, synthesis of RLC n-port networks with » + 1 nodes
can be easily carried out if the same port configuration is
maintained in the realisation of the component matrices.
However, the synthesis of RLC p-port networks with mote
than n + | nodes is not as simple as this. This has fed
Guillemin to remark:?

Although of some academic interest, this more general problemn
(2n-node network realisation) does not have the practical
significance that attaches to (r + 1)-node realisation method. As
is pointed out in another paper,? the latter technique is not
merely a method for the synthesis of single-element-kind network,
but is readily extended to the synthesis of RLC networks through
appropriate interconnection of separate singfs-clement-kind
realisations, . . . A 2n-node realisation procedure, although
possessing greater realisation potential for a single matrix, has
no value in the more general mulli-clement-king synthesis
problem,

However, in this Section we proceed to show that we are
not completely helpless {as surmised in the quotation} in the
synthesis of RLC n-port networks with mote than » 4 1
nodes, Since it is always possible to realise a set of real
dominant matrices by Knetworks having the same modified
cut-set matrix, the task can be easily accomplished if each
residue matrix iz real and dominant, Furthermore, when all
the matrices are superdominant, a number of different sets
of potential factors can always be found, We now consider
the application of this method to synthesis of 2-element-kind
n-port networks, since, for this class of networks, real residue
matrices can be conveniently set up. It must be noted that,
when the residue matrices are not real, the parameter matrices
for a given Ymatrix should be obtained. The same methods
can be used for the realisation of the parameter matrices, but.
determining the parameter matrices is not always easy.

Let it be required to realise a set of nth-order real super-
dominant matrices ¥;, ¥, . . . ¥, by Knetworks having the
same modified cut-set matrix. In the discussion that follows,
a guantity pertinent to matrix Y; is distinguished by the super-
script (k). It is assumed that, for each matrix ¥z,

AR s AW foraltjandj(j>>8) . . . . . (28)

et €, be the minimum of the set of values

&=
{r — DI

for all i and j {; = 7), and let €, be the minimum of the set
of values {e,} for all & = 1, , .., p. It is clear that the set of
potential factors K, X, . . ., K, chosen to satisfy the following
inequalities meet, for each matrix Y, the requiremenis of
eqn. 12, and hence it forms an appropriate set of potential
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factors for the proper realisation ot all the given super-
dominant matrices:

14 em,,,g ) 26,
2.4 €pin =32 + 2€uin .
P K< Ky o K< (1 + e ) — KD . (29

If it is not possible to arrange the rows and colutms of the
matrices as given, to satisfy the requirement of eqn. 28,
we can always split up a matrix ¥y as ¥ + ¥;', where ¥’ is
a diagonal matrix having positive entries y;; along the
diagonal and Y} is a suitable superdominant matrix satisfying
the requirement of eqn. 28. We then consider the set of
matrices ¥; for the purposes of determining an appropriate
set of potential factors. After a network realising ¥}, is found,
the shunt conductance of each port / is increased by yi} to
obtain the realisation corresponding to ¥,. It is obvious that
this new petwork has the same modified matrix as the one
realising Y.

1n a general case, a number of different sets of potential
factors satisfying the inequalities in egn. 29, and hence a
range of different modified cut-set matrices, can be found,
As pointed out in Section 3, when one af the matrices of the
given set ¥, ¥..., ¥, is not superdominant, €, = 0, and
the choice is hmlted to K1 K, = =K, =4

Mext we consider the question of synlhesm of 2-elernent-kind
#-port networks, Each entry p,,(s) in the short-circuit admit-
tance matrix ¥ of a 2-element-kind netwotk can be expanded
as follows, in a general case;

The nth-order real matrices [Y], [»%], . . ., [»P] are
termed the residue matrices. When the residue matrices are
dominant, they can be realised by resistive K networks having
the same mxlified cut-set matrix by the procedure outlined,
All the admittances of the network realising a particular
residue matrix are then multiplied by the appropriate function
of 5, and the resistive network is converted into a 2-efement-
kind network, The parallel combination of all these networks
will have a short-circuit admittance matrix equal to the given
Ymatrix.

If the residue matrices are not dominant, the admittance
level of some or all of the transfer admittances may be first
scaled down by appropriate factors so that the residue
matrices are dominant. An #-port network having this modi-
fied Ymatrix retains the same poles and zeros for the driving-
point and transfer admittances as specified. However, the
transfer admittances are realised with appropriate scale
factors.

Once a network realising a given ¥matrix is obtained, a
range of continucusly equivalent a-port networks can always
be obtained. For this purpose, the general method given in
Reference 3 or, preferably, the explicit formulas applicable
to Knetworks as given in Reference 2 may be used. An
example is next worked out to illustrate the synthesis pro-
cedure for 2-element-kind r-port networks.

Example 2

We consider the realisation of the following short-circuit

LCnetwork admittaace matrix ¥
by 4 2B 8 s
)'(,“(-f)=)'(.’:5+T'+r§3_;i+—w3 [ 85t 217 + 5 3¢ — 1 26 4+ 852 42 ]
Rinetwork S s 9 +s
e rl
oy =y + 2+ 3 2 Y= —32—1 642082 +5 —st+ 67 41
F=38 + O, 5 s34 £
RCnetwork “ ¥ ‘ 5 i 5
p s 25* + 855 2 —8% + 65 b 1 55% 4 23472 4 4
pe— | L2y I .
»if(8) = Vs + o +2’s—-—0’ s+ sS4 s+ 5 )l
1 63/179 2
—_—
T a7/s I
port 2
Pt 273m
I 3 |
& B3 112 jd
# 3 ‘ e 1
23081300 = T wrE ¢ T ~N3 ettt R nfas
2l s T 5/8 Ty Sl |
T3 & L Yefet L 12424 3
21’1 £ s1/13 2 / l
1l
1k
- WAL o’
! . 13f29
12
m 2
V£ 12 112 sf2
3 63f24 5 100/21
%
2
21100
15 355/336r N
4f251
25184
3 wafa 7 3
;;art 3
Fig. 3

Y-part network realising the matrix ¥ of example 2
PROC. IEE, Vol 115, No. 9, SEPTEMBER [968
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This can be split up as follows:

8 -3 75 -1 2
Y=3|-3 6 ~1|+2|-1 51
2 -1 5 SL2 104

4 0 .2

+—,£ 05 3]

#+112 3 7
1 .

—3Y1+;Yz+s—z‘ﬁ}’3

To make A, 5= A, for j >  for all the matrices, we split ¥,
as follows:

5 —1 0
Y,=Y;4+Y'=|-1 4 1[+]01 0
2 14 000

We next consider the realisation of ¥y, ¥; and ¥, by Knet-
works having the same potential factors €,,;, = 1, and we
choose Ky = 058, K; = 0-52 and K; = 0-5. The following
conductances for the resistive 3-port networks realising ¥,
¥; and ¥, are then obtained:

2s

Network I realising ¥,

47 1 1% 81
2= b =3.6n =13+ %z g
16 100
a3 ='2’1'-le =4, cq3 =—2T-d13 =0
63 1 5 5
an ==, by =3 Czs.=§-dzs =5
2309 355

81 = 399> 82 = 04 8 = 3

Network 2 realising Y
179 1 191 25

@y = gx b =j3.cn =i du=g
16 100
ﬂ13=2—1',b|3=4, €13 m'ii"'-dl.i =0

I 50
a1y zﬁ,bzs =2, t33 =§,d23 =0

e 74 29
£17 G582 T 57508 T 5

Network 3 realising ¥
A==y =dip=0

16 100

413 =5’1',le =d,cy3 = E!T’dﬂ =0
1 25

a3 =3+ =6, 05 =4 =0
42 47 251

£ =2_5’32:-2'§’g3=ﬁ

The network realising ¥; = ¥; + ¥;’ can be obtained from
network 2 by coanecting an additional conductance of 1
across port 2 of network 2, The networks realising 5Y|, and
Yafs and 25f(s? + 1)/¥3 can be obtained by converting the
conductances of the networks realising ¥;, ¥, and ¥, into

the appropriate admittance functions. The overall 3-port -

network realising the short-circuit admittance matrix ¥ is
shown in Fig, 3.

6 Conclusions
While the techniques used in the synthesis of resistive
networks, as illustrated by example 1, are useful from the
point of view of their extension to general RLCnetworks,
the synthesis of resistive networks is in itself important in
electrical analogue representations of nonelectrical systems,
e.¢. mechanical systems, ;
The method of synthesis of a ¥matrix of an RLCnetwork
as iliustrated by example 2 would be useful in situations
where the voltage-ratio transfer functions between some
specified pairs of ports are specified, e.p. in filter networks.
In such cases, 2 suitable ¥matrix may be chosen to satisfy
these specifications and to permit the realisation of the net-
work by the method used in example 2. Furthermore, a
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3-port network, if terminated by certain prescribed active or
passive elements at one or two of its ports, reduces to a
Z.port or l-port network. If the l-port or 2-port network
specifications require that the 3-port network shall consist
of only a certain class of passive elements, e.g. LCelements
only, the given specifications may be used to form a suitable
Ymatrix for the 3-port network, and the 3-port network may
be realised,

The usefulness of the concept of the modified cui-set
matrix in the problem of synthesis of RLC n-port networks
is thus demonstrated. The method given to realise a real
symmetric dominant matrix by a Knetwork and its extension
to the realisation of 2-element-kind #-port networks com-
pletes the generalisation of the realisation procedure originally
given by Foster.
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L] Appendix
Case A

Let the y parameters and potential factors satisfy the
following relationships:

Y= e K = K= dand (01 — K)) = Klyi4

Then the following inequalities hold:
yiz <@

Yiz Y12
-5 K,

¥l — Ky}
4 — Ky
ryuksy
K,

naKy — Ky)
K1 — Ky

= 0=

Ty + y12

Yiz> 0 .
Yol — K} _yia .y

KA R K ST-B<

yall — Ky}
1 - K,

¥k
+ryizs % T ¥z
A nonnegative b, such that 1
bt Yol — Ky}
1 - K, 1—~K
satisfies the constraints in eqa. 11.

< b

+ ¥z

Case B
Let the » parameters and potential factors satisfy the
following relationships:
Y=yt K= Kpand y Ko = (1 — K)pal
Then the foliowing inequalities hold:

ya<0
Y1z Yz yia(Ky — K3 K,
712 FI2ART C 0 2
Ky o (k) e
1 oo
+J‘12€)‘:331£‘“_*K—l) +r2
yiz>0 2
izlKy ~ Kp) Y1z 2 L)
0 (i — K, Q] wKngléynxl
y(l — K}
'LJ"|2< _zil__K : + Y12

A nonnegative b such that
Y12 K3
242 - p 22
K1< QJ’||K[+}’|2

satisfies eqn. 11.
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