RELATIONSHIP BETWEEN CUTSET AND NODE-PAIR TRANSFORMATION MATRICES

Indexing terms: Matrix algebra, Network topology

In the letter, a necessary and sufficient condition for a cutset matrix to be a node-pair transformation matrix is established.

In this letter, we answer the following problem posed in Reference 1:

Find the necessary and sufficient conditions that a cutset matrix Q must satisfy if, in

$$V = Q^t V_p$$

the variables in V_n are to be node-pair voltages; i.e. when is a cutset matrix also a node-pair transformation matrix?

Consider a network N. Let G be the linear graph of N. Let the column matrix of edge voltages of G be denoted by V. Let Q be a cutset matrix of G corresponding to a set of v-1 independent cutsets, where v is the number of vertexes of G. Then $V = Q^t V_p$. Let row i of Q correspond to cutset q_i .

We assume, without loss of generality, that G contains no

parallel edges.

Consider the complete graph G^* constructed on the vertexes of G. Then $G \subseteq G^*$, and the vertex set of G is the same as that of G^* .

Let the vertex set of G be separated into two mutually disjoint subsets A_i and B_i when the edges of q_i are removed from G. Then it is well known that each edge in q_i has one vertex in A_i and the other vertex in B_i . Let the set of edges of G^* which connect vertexes in A_i to vertexes in B_i be denoted by q_i^* ; then $q_i \subseteq q_i^*$. Let Q^* be the cutset matrix of G^* corresponding to the cutsets q_i^* , i = 1, 2, ..., v-1. Since $q_i \subseteq q_i^*$, Q is a submatrix of Q^* . It should be noted that, given Q, Q^* is unique.

Theorem: The variables in V_* are node-pair voltages if, and only if, Q^* (of which Q is a submatrix) is a fundamental cutset matrix of G^* which is a complete graph constructed on the vertexes of G.

Proof of sufficiency: Let Q^* be a fundamental cutset matrix of G^* with respect to a tree T^* . Let the column matrix of voltages of the edges of T^* be denoted by V_i^* . Then

$$V = O^{\dagger}V.* \qquad (1)$$

The edge voltages of the tree T^* of G^* can be identified with a set of v-1 node-pair voltages of G. Hence

$$V = O'V_n$$

where the variables in V, are node-pair voltages.

Proof of necessity: Let the variables in V_p be node-pair voltages of G. Each node-pair voltage of G can be identified with the voltage of an edge of G^* , since G^* is complete. Let the subgraph of such edges of G^* be denoted by G_s^* . G_s^* contains v-1 edges, and it contains no circuits, since the node-pair variables in V_p are independent. Hence G_s^* is a tree of G^* . Let the column matrix of voltages of the edges of G_s^* be denoted by V_s^* . Then

$$V = (Q_1^*)^* V_t^* (2)$$

where Q_1^* is a submatrix of the fundamental cutset matrix Q_f^* of G^* with respect to the tree G_s^* and the columns of Q_1^* correspond to the edges of G.

$$Q^{t}V_{t}^{\bullet} = (Q_{t}^{\bullet})^{t}V_{t}^{\bullet} \qquad (4)$$

Since eqn. 4 is valid for all values of V_i^{\bullet} ,

$$Q_1^{\bullet} = Q$$

Hence Q is a submatrix of the fundamental cutset matrix Q_f^* of G^* . Thus Q is a submatrix of both Q^* and Q_f^* .

 Q^* and Q_f^* are cutset matrices of G^* having v-1 independent rows. Hence they are related by a nonsingular matrix

Reprinted from ELECTRONICS LETTERS Vol. 7 No. 10

 $Q^* = [Q|X] = DQ_f^*$ = D[Q|Y] (5)

where X and Y are submatrices of Q^* and Q_{I^*} , respectively, corresponding to the edges of $(G^* - G)$.

Since the rows of Q are also independent, it follows from eqn. 5 that D is the unit matrix. Hence

Hence Q^* is a fundamental cutset matrix of G^* . Thus necessity of the theorem follows.

K. THULASIRAMAN

14th April 1971

M. N. S. SWAMY

D as

Department of Electrical Engineering Sir George Williams University Montreal, Canada

Reference

1 seshu, s., and reed, м. в.: 'Linear graphs and electrical networks' (Addison Wesley, USA), p. 294