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Abstract: The max-flow problem is a very
fundamental one in network optimization.
In view of the wide range of its
applications, this problem has been studied
extensively. Recenily there has been
considerable interest in designing efficient
parallel algorithms for the max-flow
problem. In this paper, we discuss an
implementation of Goldberg and Tarjan’s
pre-flow push algorithm on a cluster of
workstations using PYM.

L Introduction

In the last few years or so, there has
been an intensive interest in networked
computing. This can be attributed to the fact
that rapid advances in parallel computing
technology have made avajlable a number of
parallel programming tools for implementing
applications on a heterogeneous cluster of
workstations at a low cost. By interconnecting
computers in an orgamization and using
parallel/distributed algorithms, one can solve
efficiently several classes of problems whose
complexity is beyond the ability of any one
computer in terms of memory and computing
requirements. In addition, effective utilization
of computing hardware can be achieved.
Parallel Virtual Machine { PVM ) is one of
the tools used in building a2 number of parallel
applications. It is a software system that
permits a network of heterogeneous
computers to be used as a single large parailel
computer and hence the term Networked
Compulting.

Significant progress has been
achieved in the application of parallel
computing for numerical problems. Such is
not the case for problems such as network

_ optimization problems which involve non-

numerical computations. This can be mainly
attributed to the fact that until recently, most
computationally intensive applications have
all been mainly of the numerical nature.

Network optimization, a branch of
operations rescarch, refers to the class of
optimization problems defined on graphs or
networks. These problems include the
minimum cost flow probiem, the max-flow
problem, covering problems, the optimal
assignment problems etc. These network
optimization problems occur rouvtinely as
building blocks in designing efficient
algorithms for more complex problems. The
need for paralle] algorithms for the max-flow
problem and its variants is apparent when one
sees the range of large engineering
applications that can be modeled as a max-
flow problem [1]. Though parallel algorithms
have been developed for the max-flow
problem, none of them have been
implemented on the existing parallel tools
like the Parallel Virtual Machine.

Motivated by the above
considerations, this paper addresses issues in
design and efficient implementation of
paralle] algorithms for the max-flow problem.

IL. Parallel Network Optimization and the
max-flow problem

In the recent past there has been an
interest in designing and implementing
parallel algorithms for network optimization
and their applications {15], [16], [17], [2].
Banerjee discusses parallel algorithms for
problems which arise in VLSI physical design
[3}.

Of special interest to us is the max-
flow problem, which is a very fundamental




problem in network optimization. It provides
a link between operations research and graph
theory. Many network and graph optimization
problems can be formulated in terms of the
max-flow problem. As a result, there has been
considerable interest in designing efficient
algorithms for this problem [14).

Ford and Fulkerson’s Iabelling
algorithm [8] provides an elegant approach to
solving the max-flow problem. Edmonds and
Karp  [7]  suggested an  efficient
implementation of this algorithm using
shortest  augmenting  paths.  Further
improvements by Dinic [6] and Malhotra,
Pramod Kumar and Maheshwari [13] led to
an O(r’ ) algorithm for the max-flow
problem, where » is the number of nodes in
the network.

Most of the algorithms for the max-
flow problem are varations of Ford-
Fulkerson’s original approach based on
augmenting paths. Goldberg and Tarjan [9}
proposed a new approach leading to the
preflow-push algorithm. This algorithm is
also of complexity O(2® ). In addition it is
amenable for a  parallel/distributed
implementation.  References to  other
Implementations of this algorithm leading to
improved bounds may be found in [14].

In view of its importance, recently
Anderson and Setubal [2] proposed a shared
memory implementation of the preflow-push
algorithm. They propose a modification
where they use what is called a global
relabeling technique. In this thesis, we
consider implementations of this algorithm
on a networked cluster of workstations.

2.1 The Max-Flow Problem

A ftransport network represents a
model for transportation of a commodity from
its production center to its market through
communication routes. A flow network
consists of a connected directed graph N=(V,
E) with no self loops or parallel edges. N has
to satisfy the following conditions.

» There is only one node with zero
indegree; this is designated as the source
and is denoted as s,

* There is only one node with zero
outdegree; this is designated as the sink

‘and is denoted as ¢.

¢ Every directed edge e = {ij}in N is
assigned a non-negative real number <ijs
the capacity of (ij). cjj=0 if there is no edge
directed from i to j.

*» Every directed edge e=({i,j} in N is
also assigned a non-negative real number
called the flow fijon (ij).

A flow f through a transport network

- N is an assignment of non-negative real

numbers fj; to the edges (ij) such that the
following conditions are satisfied:

* capacity constraint: ) < fij s €ifs
for(ij) e E.

¢ conservation constraint: For each
node 7, except the source s and the sink ¢,
the flow transported into { is equal to the flow
transported out of {,

* The value val() of a flow f is
defined as

val(f = 3 fis,i) = T fi 1)
i i

A flow f* in a transport network N
is said to be maximum if there is no flow fin
N such that val ( £) > val ( f* ). The
maximum flow (in short, the max-flow)
problem is to find a maximum flow in a
transport network.

2.2 The Push-Relabel Algorithm

We now present Goldberg and
Tarjan’s max-flow algorithm.

Let N=(V,E) be a network with each
edge assigned a non-negative real capacity.
Without loss of generality assume that N has
no multiple edges. If there is an edge from a
node { to a node J, this edge is unique by the
assumption and is dencted by (ij). A
psuedoflow is a function £ E — R that
satisfies the following constraints:

fijScij, V (ij) € E ( capacity
constraint )

Sji = fip

antisymmetry constraint )

V (ij) € E (




We let ¢jj = 0 if (ij} € E. Given a
pseudoflow f; the excess function ef; V —R is
defined by,

efi) =3, fu

keV

Thus efi) is the net flow into i. A
node i has excess if efff} is positive. This
indicates that some amount of flow can be
pushed out from node i. A node i has deficit if
ef(i) is negative,

A pseudo-flow fis a preflow if effi)
2 0 for every node other than s and t. Given a
preflow f, let N = (V, Ep denote the residual
graph with respect to £ Each edge (ij) € E
induces an edge (i,j) e Eriff; <c;, and an
edge (j,i) € E; iff; > 0. Edges of Ny are all
called residual edges. In the former case (i,j)
€ E; is called the forward edge and in the
latter case (i) € E; is called a backward
edge,

LG =ci-f; if fy<cy

glbf)= fy iff>0

The push-relabel algorithm  of
Goldberg and Tarjan starts with a preflow
and a distance labeling, and uses two
operations, pushing and relabeling, to update
the preflow and the labeling, repeating them
until a maximum flow is found. For a given
preflow f, a valid distance labeling is a
function d from the nodes to the non-negative
integers such that dfs) = n, d(z) = 0 and d(i) <
d(j) + 1 for all the residual edges (i j).

A node ¢ is said to be active if | g
{s,£} and & (i) > 0. An edge (i,j} is admissible
if ¢/ (ij)> 0 and d(i) = d(j) + 1.

The push-relabel algorithm begins
with an initialization phase. The flow on each
edge leaving the source is set equal to the
edge capacity, and all other edges not
incident on the source have zero flow. For
each node j, the excess e7(j) is calculated. It is
clear that since some flow is pushed from the
source, there exists at least one node with
positive excess. So there exists at least one
active node. Each node j € V - {5} is
assigned an initial Jabeling d{j) = 0. For node
5, d{s) = n. Then an update operation is
selected and applied to an active node. This
process continues until there are no more

active nodes at which point the algorithm
terminates, with a preflow f with no active
nodes. fis 2 maximum flow at termination.

We next present the update
operations. The push operation modifies the
preflow f and the relabel operation modifies
the valid distance labeling d.

Push (i,j)
Applicability
i is active, ¢ (i,j) > 0 and
d(i) = dg) + 1.

- Action

send & = min(es (i),c¢ (i.j)
uaits of flow from i to j;
fii e f“ +8 H
fﬁ — f“ - 8;
er (i) & e; (i) - §;
e () — e G} +

Relabel (i).
Applicability

iisactiveand V je V,

ce (i,j) >0 = d(i) s dg).

Action

dii) e«  min  {dG)+ 1)}

e (Lj) >0
( If this minimum is over an
empty set, d(i} « o= ).

An efficient implementation of the
push/relabel algorithm is discussed next. In
this implementation, an unordered pair {ij}
such that (i) € E or (i) € E is an
undirected edge of N. Each undirected edge
{i.j} is associated with three values c;;,

Push/Relabel (i),
Applicahility
i is active.
Action
Let {£/} be the current edge
of i,
if push(i,j) is applicable then
push(ij)
else
if {i,j} is not the last edge
on the edge list of ¢
then replace {i,j} as the
current edge of i by the




next edge on the edge
list of i;
¢lse begin
make the first edge
on the edge list of i
the current edge;
relabelfi);
end.

¢i and f; . Bach node i has a list of the
incident edges {ij}, in fixed but arbitrary
order. Thus each edge {i,j} appears in exactly
two lists, the one for { and the one for J. Each
node i has a current edge {i,j} which is the
current candidate for a pushing operation
from i. The max-flow algorithm repeats the
push/relabel operation until there are no more
active nodes. The push/relabel operation
combines the basic push and relabel
operations.

In a parallel implementation of the
push-relabel max-flow algorithm, the nodes
perform in parallel the following pulses or
phases (sets of sequential instrctions) in that
order;

» Push/Update

* Relabel, if necessary,

These pulses are repeated until
termination. It should be ensured that
relabeling is done only after all the nodes
have completed the push operations. For this
reason, the push/relabel operation as
described above is not appropriate for use in a
distributed environment. Furthermore, on the
completion of push operations by the nodes,
each node should have information about the
flows pushed- into itself from the adjacent
nodes. This is essential to update the edge
flows and to compute the excess flow at each
node. This means that during a push/update
pulse, each node should consider all incident
edges for a possible push operation and
inform the adjacent nodes about the flows
pushed, These issues are taken into
consideration in the presentation of the
distributed max-flow algorithm described in
the next chapter.

As  regards  termination, the
algorithm may be terminated when there are
no active nodes at the end of a push pulse. An

alternative termination detection scheme
based on the following theorem is more
elegant. It is this scheme we have used in our
algorithm development.

Theorem 1

If at any pulse, the total flow out
from the source is equal to the total flow into
the sink, then at that pulse and all subsequent
pulses there will be no active nodes.

I Parallel Virtual Machine

The PVM  (Parallel Virmal
Machine) provides a uniform framework
within which large parallel systems can be
developed in a straightforward and efficient
manner. It allows a collection of
heterogeneous machines on a network to be
viewed as a general purpose concurrent
computation resource.

The PVM system {4] is composed of
a suite of user-interface primitives and
supporting software that together enable
concurrent computing on loosely coupled
networks of processing elements, Several
design features distinguish PVM from other
similar systems. Among these are the
combination of heterogeneity, scalability,
multilanguage support, provisions for fault
tolerance, the use of multiprocessors and
scalar machines.

The PVM system is composed of two
parts. The first part is a daemon, called pvmd,
that resides on all the computers making up
the virtual machine. When a user wants to
run a PYM application, he executes pvmd on
one of the computers which in turn starts up a
pvind on each of the computers making up
the user-defined virtual machine. The PYM
application can then be started from a Unix
prompt on any of these computers.

The second part of the system is a
library of PVM interface routines (libpvm.a).
This library contains user callable routines for
message  passing, spawning  processes,
coordinating tasks, and modifying the virtual
machine. Application programs must be
linked with this library to use PYM.

IV Implementation




In this section, we describe the
implementation details of the pre-flow push
algorithm for the max-flow problem,

4.1 Graph generation and partitioning

Graph generation is the first step in
our fmplementation of the max-flow
algorithm, We have used two different graph
generators in studying our implementations :
NETGEN and Washington generators.
NETGEN is a program which is used for
generating a variety of network problems.
This program was originally developed by a
group of researchers at the University of
Texas at Austin.

NETGEN [11] program can be
divided into two main parts. The first part
Creates what is called the skeleton network
and is concerned with obtaining the proper
number of nodes of each type, insuring the
correct total supply, and guaranteeing that the
resulting problem will be connected and
feasible. The second part completes the
problem while insuring that the remaining
specifications are met, such as total number
of arcs, cost range, upper bound range, and
percentage of arcs capacitated.

The other program which is used for
generating graphs was developed at the
University of Washington. This program can
generate Mesh, Square Mesh, Random level
graphs etc. Graph generators produce graphs
in what is known as DIMAC’s format.

Let G = (V, E) be an undirected
graph, where V = { v, V2, wuis Yy }is the set

of n nodes, and EC V x V is the set of edges
between the nodes. The graph partitioning
problem is to divide the graph into disjoint
subsets of nodes, such that the number of
edges between the nodes in the different
subsets is minimal, and the sizes of the
subsets are nearly equal. The subsets are
called partitions.

METIS is a package which provides
high quality partitions and is extremely fast
when compared to similar packages available
[10] . METIS uses Muliilevel recursive
bisection algorithm o perform graph
partitioning.

4.2 Slave/Slave Communication

For our implementation we use
Slave/Slave communication model. In thjs
model, there exists a process termed as the
Master process. This Master process spawns a
number of Slave processes based on the
number of partitions of the given network.
But, unlike the Master/Slave Communication
model, in the Slave/Slave Communication
model, the Slave processes communicate

- among themselves if they need any

information instead of requesting the Master
process. The Master process is used only for

. Synchronization among the Slave processes.

This reduces the excessive traffic between the
Slave processes and the Master process.
Figure Fig 4.1 below illustrates this model in
more detail,

MASTER

v f v
SLAVE 1 SLAVE 2
e

Fig 4.1 Slave/Slave Communication Model

4.3 Psendocode

We next present the pseudocode for
the parallel max-flow algorithm in the
Slave/Slave communication model. The
implementation has two different programs to
deal with, One of them is called the Master
program and the other the Slave program.
Following the pseudocode, we have a bref
description of what each program is intended
to achieve.

Algorithm Master
{ This code corresponds to the Stave/Slave
Communication model }

Program Master()




{ main program }
{ Allocate memory for all the
variables used }
AllocateMemory()
{ Read the Graph }
ReadGraph()
{ Convert the Graph from the
DIMAC’s format to the METIS format }
NetToMetis()
{ Call the METIS package to
partition the graph }
PartitionGraph()
{ Get the partitioning information
from METIS }
GetPartition()
{ Spawn the Slave processes based
on the number of partitions required }
PymSpawn()
{ Send the graph information to each
slave process }
SendGraphlnfo()
{ This is the main loop of the Master
program }
While(totalinflow # totaloutflow) do

{ Receive the totalinflow
from the SINK node }

RecTotInflow()

{ Receive the totaloutflow
from the SOURCE node }

RecTotOutflow()

{ Inform the Slaves to
terminate once the totalinflow = totaloutflow
}

InformSlaves()

End While
{ Get all the Timing information }
GetTimerInfo()
{ Free the memory that has been
allocated }
FreeMemory()
{ Exit PVM and also the program }
ExitAll()
End Program Master

Algorithm Slave
{ This code corresponds to the Slave/Slave
Communication model }

Prog_ram Slave()

{ main program }

{ Allocate memory for the variables
used }

AllocateMemory()

{ Register with PVM }

RegisterPVM()

{ Receive the graph information
from the Master } ]

ReceiveGraphlInfo()

{ Initialize all the variables used }

Initialize(}

{ Start the Max-flow algorithm with

| the SOURCE node }

StartWithSource()

{ Main loop of the Slave program }
While (TRUE) do

{ Perform the Push
operation for the nodes )

Push(}

{ Synchronize with the
Master by waiting for ail the Slaves to finish
}

Synchronize()

{ Send the information
regarding Push to the Slaves }

SendPushlInfo()

{ Receive information
regarding Push from other Slaves }

ReceivePushlInfo()

{ Update the flows }

Update()

{ Synchronize with the
Master by waiting for all the Slaves to finish
}

Synchronize()

{ Perform Relabel operation
if required }

Relabel()

{ Send the label
information to the other Slaves }

SendLabelInfo()

{ Receive the label
information from the other Slaves }

ReceiveLabelnfo()

{ f I am the SOURCE
node, then send totaloutflow to the Master }

SendTotalQutflow()

{f If T am the SINK node,
then send the totalinflow to the MASTER }

Send TotallnFlow()




{ Wait for the signal from
the Master whether to terminate/proceed }

GetSignal()

{ If signal is to quit then
compile the timing information and quit }

If ( signal = quit ) then

CompileTiming()
Qnit()
End If
End While
End Program Slave

4.4 Implementation Using Synchronizer

A synchronizer is a mechanism that
helps simulate a synchronous communication
network on an asynchronous one. The use of
synchronizers for asynchronous
communication networks was studied by
Lakshmanan and Thulasiraman [12].

In the first implementation, we used
the master process for synchronization. But,
the master waits for the signal from all the
slave processes before it allows them to
proceed with the next phase. This problem is
overcome in our second implementation
wherein we use a synchronizer. We partition
the original graph into a number of subgraphs
and store these subgraphs in a processor. The
slave program will be working on these
subgraphs. For example, let us consider that
we have 4 partitions. It may so happen that
partition 1 does not have an edge connected
to partition 2. In such a case, there is no need
for the master process to wait for a signal
from all the slave processes. It can go to the
next pulse of its operation if it has computed
its present pulse and all its neighbour slaves
have compieted their curremt pulse of
operation. Thus the synchronizer helps some
of the slave processes to go to the next phase
instead of waiting for all the slave processes
to start the next phase at the same time. We
believe that such an implementation would be
very efficient if we have a large number of
partitions. The change we have made in our
Master program to  incorporate  the
synhronizer is indicated in Fig 4.2.

{ Synchronizer }
While( not received the signal from all the
slaves )
begin

{ Receive signal from any slave
processor }

ReceiveSignal()

{ Check if all the adjacent slave
processes to a slave have sent a signal }

CheckAdjacent()

if ( Check is TRUE )

{ Send a signal to that slave

‘| process to go ahead }

StartWork(}
end if
end

Fig 4.2 The modified code to incorporate
the Synchronizer in the Master Program

4.5 Implementation of Push and Relabel
phases

In order 0 reduce  the
communication overhead we implemented the
push and relabel phases as follows.

First, for each partition we first
identify nodes which are connected to at least
one node in another partition. These nodes
will be called the border nodes. The other
nodes will be called the internal nodes.

The push phase in each processor (or
partition) is implemented as in [9] using a
queue. During a push phase the border nodes
are relabelled at most once. The push phase
terminates when all the internal nodes
become inactive. Only the information
pertaining to the border nodes is sent to the
other processors. It has been observed [2) that
the preflow-push algorithm is slowed down
by the excessively large number of relabel
operations. In order to reduce this Setubal and
Anderson [2] suggest what is called global
relabelling, Since the labels of the nodes are
estimates of distances to the sink or the
source, they suggest using exact distance
labels periodically and proceed with the
algorithm using these exact labels, These
exact labels are calculated by a backward BFS
from the sink and assign the distances as the
labels of the nodes from which the sink can
be reached. Next another backward BFS is




conducted to calculate the distances of those
nodes which could not be labelled in the BFS
from the sink. The labels of these nodes will
be their distances plus n. In our
implementation global relabeling is done after
every n/2 or n/4 or w/8 push operations.

We have access to a network
containing 40 workstations. Evaluating our
implementation using this cluster is in
progress. Preliminary results indicate good
performance for large graphs.
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