,%'gr

—_— - \
TNy

Algorithms on marked directed graphs
Algorithmes sur graphes orientés definis

By M.A. Comeau and K. Thulasiraman, Facuity of Engineering. Concordia University, Montreal.

Marked directed graphs are a special case of Petri netsd introduced by Carl Petrias a model for information flow in systems exhibiting asynchronism
and parallelism. Commoner, Holt, Even and Pnueli® have studied several structural and algorithmic aspects of marked graphs using graph theory
and network flow algorithms. Subsequently, Murata® has studied these graphs using a circuit-theoretic approach. In this paper, we combine the
ideas of both these works and present algorithms for certain problems on marked graphs. In particular, we introduce the concept of scatter in firing
sequences and present algorithms for determining minimum scatter firing sequences for different classes of graphs. We also present an approach for
the general case and conclude with a lowerbound on the scatter of any firing sequence leading from an initial marking to areachable final markingon

a given marked graph.

Les graphes orientés définis constituent un cas spécial des Petri nets/ introduits par Carl Adam Petri comme un modtle de circulation de I'informa-
tion dans les systémes présentant des caractéristiques d’asynchronisme et de paraliélisme. Commoner, Holt, Even et Pnueli® ont étudié plusicurs
aspects structurels et algorithmiques de graphes définis en employant 1a théorie des graphes et des algorithmes de débit de réseau. Par la suite,
Murata® a étudié ces graphes en utilisant une approche théorique sur les circuits. Dans cette étude, nous conjuguons les idées de ces deux travaux et
présentons des algorithmes pour certains problémes sur des graphes définis. En particulier, nous présentons le concept de 1a dispersion dans les
séquences d*amorgage ct présentons des algorithmes pour déterminer les séquences d'amorgage  dispersion minimum pour différentes classes de
graphes. Nous présentons également une approche pour le cas général et concludns par une limite inféricure sur la dispersion de toute séquence
d’amorgage menant d'une marque initiale 3 une marque finale réalisable sur un graphe défini donnd. :

Introduction

A Petri net® is a general abstract algebraic structure originally
developed by Carl Adam Petri as a model for information flow in
systems exhibiting asynchronism and parallelism. Petri net model-
ing has applications in computer communications, ‘operating
systeins, operations research, artificial intelligence, as well as in
physiological models of the brain. The generality of the Petri net

"kes modeling of complex networks possible. However, the

sibility of analysis becomes questionable and, in many cases, the
problems are NP-complete, with solutions sometimes undecidable.
The Petri net is a bipartite graph structure in which there are two
groups of nodes called transitions and places, and an edge set con-
necting transitions to places and vice versa.

Marked directed graphs are a restricted class of Petri nets in
which only transition nodes are present. The places are absorbedin
the edge set of the graph. Thus, a Petri net reduces to a marked
directed graph if every place in the Petri net has exactly one input
transition and one output transition. Being a special class of Petri
nets, marked directed graphs are more amenable to analysis, yet
they retain enough generality to model systems of parallel process-
ing, queueing networks, resource allocation schemes and many
other related problems. Existing analysis techniques are essentially
based on graph theoretic properties of the underlying directed
graphs. This paper combines a circuit theoretic approach following
that of Murata® with an algorithmic approach following Com-
moner—Holt; Even-and-Pnueli to-present-al gorithms for certain

least one token on each of its input edges. The firing ol such a node
is called a legal firing. If the firing of a node represents the activa-
tion of some process and the input edges represent necessary condi-
tions for the process to occur, then anode which can belegally fired

. is equivalent to a process with all of its input conditions satisfied.

Here, tokens represent flags or Boolean variables indicating
whether or not a condition is satisfied. Thus, multiple tokens on an
edge in a marked directed graph may be redundant or meaningless
in some models. In such cases, node firing can be redefined, or
topological constraints can be imposed on G, so as to restrict the
token count on every edge to a maximum of one. Marked directed
graphs with this property are called safe.

A marking M, is said to be reachable from a marking M, if alegal
firing sequence exists which transforms M, to M,. Consider any
two markings M, and M, of a marked directed graph G such that
M, is reachable from Mo. Let AM = M, ~ Mo. We shall refer to
AM as the differential marking. Murata has shown? that aM
satisfies KVL equations. Thus, if B, is the fundamental circuit
matrix of G, then B,AM = 0. So, we can consider the elements of
AM as the voltages of the corresponding edges of G. Using well-
known, network-theoretic results, we can determine the node
voltages a,, 0, ... of Gsuch thato, —. 0 = AM(e) where e is the
edge directed from vertex i to vertex j and AM(e) is the component
of AM corresponding to e.

Let T denote the column vector of a,’s. Weshall referto L as the
firing count vector. If T has any negative elements, the same

problems on marked directed graphs. In particular, the following
problems are considered: exccutability of a firing count vector and
generation of a minimum scatter firing sequence for a given ex-
ccutable firing count vector. First, the basic definitions and ter-
minology are established. .

A marked directed graph is a directed graph G witha marking M
defined as a nonnegative integer vector associated with the edge set
of the directed graph. We assume that G is finite. If G has e edges,
then A has e components—one for each edge of G. The com-
ponents of M are referred to as token counts for the corresponding

as. An action or event takes placeina marked directed graph by
ag a vertex or node. Firing a node changes the token count of all
edges incident on the node. All input edges lose one token and all
output edges wain one token. Since the marking must remain non-
negative alter any node firing, it is never possible to fire any node
with atoken-free input edge. Thus, to belegally fired, a node hasat
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number can be added to all the elements of E'so thata smallesten=
try is a zero. The firing count vector £, obtained by this operation is
called the minimum firing count vector. Clearly L, is unique, if it
exists. The i element of an exccutable E; denotes the number of
times vertex i would fire in a firing sequence leading from M, to M.
The vertex with zero firing count will be referred to as a datum. The
existence of a firing count vector L, satisfying KVL, does not
guarantee the existence of a legal firing sequence leading from M,
to M.. A firing count vector L is said to be executable from M, ifa
legal firing sequence exists starting from M, and its firing count
vectoris L.

Executability of a firing count vector
In this section we give an algorithmic proof of the following

theorem due to Murata.! The proof here is based on that of
Theorem 5.°



Theocem |

Let M, and M, be any two markings of a marked directed graph
G. Let AM = M, — M,. A minimum firing count vector £, =
[a)). . « satislying

A'rg = AM, (l)

where visthe number of nodes of G and A is the incidence matrix of
G, is executable from M, if and only if v, = O for each vertex k of
every token-free directed circuit at A,.

Proof
Necessity: obvious.
Sufficiency: we may assume that £, # 0. Otherwise, M, = M, and
the case is trivial. To prove the theorem, we shall first show that
there exists a legally firable vertex with its firing count nonzero.
Consider any a,, > 0. If vertex i, is not legally firable, then there ex-
ists an edge e = (i, i,) directed from some vertex j; L0 vertex i, with
M, (e) = 0. If vertex i, is also not firable, then repeat this process
until a'sequence of vertices iy, iy, ..., i, ia is located such that:
® iy, Iy, ..., i, are all distinct;
*g,>0forj=1,2, ...,k .
* for each edge e = (jui, §),j = 1, 2, ..., k—1, directed from
vertex iy lo vertex iy, M, (e) = 0;
¢ Case I: vertex i, is legally firable or
Case 2:4, = i), forsomej=1,2, ..., k—-2.
One of the two Cases above should occur because the graph G is
assumed to be finite. If Case 1 occurs, then a legally firable vertex
with nonzero {iring count has been found. Case 2 cannot occur for
that would mean the existence of a token-free directed circuit [ .
h-2s - <<, Iy, iy With each of the vertices on this circuit having a
nonzero firing count, thereby contradicting the hypothesis of the
theorem.

Now, fire the vertex i,. This would result in 2 new marking M,
-and a new firing count vector L,. The marking M, is obtained byin-
reasing by one the token count of all edges directed away from i,,

" dnd by decreasing by one the token count of all edges directed into

i Also, %, is obtained from £, by subtracting one from ¢, Clear-
ly, M,, L,, and the vector M, — M, satisfy the hypothesis of the
theorem. If M, = M,, then &, = 0and we have established the ex-
ecutability of L, starting at M,. Otherwise, locate a legally firable
vertex with respect 1o M, and fire this vertex. Repeat this process
until a marking is reached equal to M, and with a firing count vec-
tor L. equal to zero. The hypothesis of the theorem guarantees the

* termination of this process and hence the executability of T, start-

ing at M, leading to AM../!/

Scatter in a firing sequence

A firing traversal of a marked directed graph is a traversal of the .

nodes of the graph which executes a given legal firing sequence.
Thus, a firing traversal must visit nodes of a marked directed graph
in the order dictated by the legal firing sequence, and update the
marking by firing the nodes. With this algorithmic definition of a

firing traversal, equivalent firing sequences leading from a com-
mon initial marking to the same final marking may be studied.
Consider exccuting the firing sequence a4’ ac*. Using this represen-
tation, the node labeled a is visited and fired twice, then node b is
visited and fired three times, etc. Among all possible legal firing se-
quences between two markings on a marked directed graph, which
of these will require a minimum or maximum number of node visits
in a firing traversal of the marked directed graph? This leads to the
concept of scatter in a firing sequence.

~ The scatter of a firing sequence F, denoted by scatter (F), is the
“fference between the number of node visits necded 10 execute F,

% _._d the number of distinct nodes visited in a firing traversal. For

example, if F = ab*ac*, then scatter (F) = | because a firing
traversal with Fwould require four node visits (a, b, a, ¢) and three
distinct nodes (g, b, ¢) would be visited. Thus, the scatter is a non-
negative integer.

e e e e e e K

The definition of scatter applies to a compressed representation
of firing sequences. That is, consecutive elementary firings of a
node are considered to occur during the same visit of that node. An
algorithm to perform a firing traversal might use a representation
of Fas an ordered list of pairs of the form (label, coefficient). The
scatter would then be the number of pairs in a firing sequence
minus the number of distinct labels. If the scatter of a firing se-
quence is zero, then a firing traversal can execute it by visiting each
node to be visited exactly once. For a general graph, a zero scatter
firing sequence is not always present between an intitial marking
and a reachable final marking. This leadsto the problem of finding
a minimum scatter, legal firing sequence leading from some initia}
marking to a reachable final marking.

We now discuss an application which provides the motivation
for introducing the concept of scatter. Consider modcling a general
industrial environment with a marked graph as shown in Figure 1.
Each node in this graph represents an activity. In this figure, nodes
1 to & represent sources of possibly different commodities being in-
troduced into the environment from the external world. Nodes 1°
to p’ represent commodity sinks or distribution centers to the ex-
ternal world. The token count on edge (i,/) incident into node j

Figure 1: Modeling with a marked groph.

represents the number of units of some commodity made available
for processing at node ;. For an activity i to occur, there must be at
least one unit of all the required commodities, which in fact cor-
responds to having at least one token on each input edge of node ;.

"+ Occurrence of an activity i thus corresponds to firing node i in the

marked graph. Firing a node consumes one unit of commodity
from each input edge and produces one unit of commodity on each
output edge. If edge (i,)) is incident out of node 7, then completion
of activity / makes one unit of some commodity available for pro-
cessing at nodé j. It may be noted that initially certain edges may
have a non-zero token count. This may represent the initial state of
the environment. The final state corresponds to a pre-defined level
of production, made available for consumption to the external
world through the distribution centers. In other words, in the final
state, the edges incident into the sinks will be required to have a cer-
tain specified number of tokens.

At-cach-node;-a**machine*isavailable forcarrying out the cor-
responding activity. Starting a machine from the shut down siate
may involve considerable overhead cost. It is obviously cost-
effective to minimize the idle running times of the machines, so a
machine at any node is shut down whenever that node cannot be ac-
tivated. Thus, it is desirable to minimize the number of machine
starts. It should be easy to see that the length of the firing sequence
leading from the initial marking to the final marking is a measure of
the overhead cost incurred in reaching the desired production level.
This motivates the introduction of the concept of scatter as well as
the problem of determining minimum scatter firing scquences.
This model can be further generalized by modifying the firing rule
or by incorporating a set of firing rules or semantics* as described
for the design of a distributed operating system kernel.

To illustrate the concept of scatter in firing scquences, consider
the markings M, and M, of the directed graph shown in Figure 2.
The firing count vector £, = [o., 0,, 0., 0,]" = [3, 3, 4, 0}7 is ex-
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Figure 2: Example illustrating scatter of a Jfiring sequence.

ecutable from M, and leads to M.. Some possible legal firing se-
quences are @*b’ac’, ba'h*c*, ca*b’ac®, and ab*abe*. The first two
of these scatter once and the last two scatter twice. The sequences
@*b’ac* and ba’b*c* are the minimum scatter firing sequences ex-
ccuting Ko from M,. All other legal firing sequences executing T,
from A, scatter at least twice. This can be casily verified for this
simple graph by obtaining all possible legal sequences from M, to
A, which execute L,.

The enabling number of a node in a marked directed graphisthe
number of times it can be legally fired when visited at a given visit in
a firing traversal if this number is less than or equal to the node’s
firing number. Otherwise, the enabling number of a node is its fir-
ing number. The disabling number of a node in a marked directed
graph is the difference between the node’s firing number and its
enabling number.

Before presenting the algorithms for determining minimum scat-
ter firing sequences, a few observations can be made about marked
“cted graphs.

“- Since a datum node always exists, at least one firing count is zero.
That is, at least one node of the graph need never be fired to bring
any initial marking to a reachable final marking.

* The markings on all input edges to the datum node must either
remain the same or strictly increase from their initial values in any
legal firing sequence.

* The markings on all output edges from the datum node must
either remain the same or strictly decrease from their intitial values
in any legal firing sequence.
¢ If some node is encountered that is enabled to its corresponding
firing number at any visit during the generation of a firing se-
quence, it can be fired repeatedly until its firing number has been
satisficd and then removed from the graph together with all edges
incident on it. The problem then reduces to finding the remainder
of the firing sequence on the resulting subgraph.

* Any source node, (that is a2 node with no input edges) can be fired
independently since it has no input edges. Thus, a source need only
be visited once in a firing traversal. ]

obvious choice is to fire each node as much as possible at each visit.
Before employing such a greedy firing policy, we must show that we
do not overlook all optimal solutions by examining only those se-
quences which fire a node to its enabling number at each visit. In
other words, we must prove that a minimum scatter, legal firing se-
quence exists between any reachable markings, on a marked
directed graph, in which each visit fires some node to its enabling
number at that visit of the node. Such a firing sequence will be
referred to as a greedy. firing sequence. Unless explicitly stated, all
firing sequences referred o will be assumed legal.

Theorem 2

For any executable firing count vector L,, from a marking M, on
a marked directed graph G, there exists a greedy, minimum scatter
firing sequence F,, exccuting E, from M,, in which each visit of a
node fires the node to its corresponding enabling number.

Proof

Let Fbe any minimum scatter sequence executing £, from M,,
and let m denote the total number of visits in F, If Fis not a greedy
sequence then let v, be the first node of G which F fails to fire to its
enabling number at the 7** visit. Construct another legal firing se-
quence F; which is identical to Fin the first r— 1 visits and which
fires node v, to its enabling number u; at the 7 visit. The sequence
F is r visits long and greedy at each visit. The enabling numbers of
all nodes of G except node v, after F; executes from M,, are greater
than or equal to those after the first r visits of F from M,. Thus, if F
fires node v, j + i, at the (r + 1) visit then we may legally construct
the firing sequence F;** defined by the relation

[od ]

1.7
Fr=Fy, @

where u/*' is the enabling number of node v, at the (r+ 1)* visit. The
firing sequence F;** visits nodes in the same order as the first r+ 1
visits of Fand is greedy at each visit. Since the node v, is not fired to
its enabling number at the r™ visit in F, it follows that v, will be
visited at least once after the r* visit in F. Clearly, vy # v.S0, F
must be at least r+ 2 visits long. In other words, m = r+2.

Now, two cases may arise; F either returns to node v, or visits
some other node v, k # i, j at the (r+ 2)" visit.

Case 1: If Freturns to v, at the (7+ 2)* visit, then firing node v at
the (74 1)* visit must have increased the enabling number of node
Vi, since by hypothesis, F has minimum scatter and, therefore, does
not visit nodes redundantly. So, the greedy firing sequence Fr
which left node v, disabled after the r* visit must have re-enabled it
after firing node v, at the (r+ 1)™* visit and, therefore, it is legal to
construct the sequence F:** defined by the relation

re3

i

H
Fer=Frfotv 4

where u"? is the enabling number of node v, at the (r+ 2)* visit.

The greedy firing policy

In the example of the previous section, the enabling number of
node a under the marking M, is

i = minfo., Mo (e,), Mo (e2) ] = 2. " @

There are two possible ways of firing node a if visited under the
marking M,. The firing sequences ab*a*bc* and @bac* are ex-
amples of both. In general, if g, is the enabling number of node v,
under a marking A, then ther are g, possible ways to fire node v if

:d under M (since it can be fired up to p, times and it must be
1wed at least once to qualify as a visit).

An algorithm that generates minimum scatter firing scquences
imust employ some node firing policy at each node visit in order to
alleviate the ambiguity associated with multiply-enabled nodes. An

Case 27 If Ffires node v # v, v, at the (7 + 2)™ visit, then by the

previous argument, we may legally construct the sequence Fr*?
defined by the relation
ul?

Fpr=Foive (5)

where u{*? is the enabling number of node v, at the (r+2)* visit.

In cither case, F*? visits nodes in the same order as the first 742
visits of Fand is greedy at each visit. By repeated application of the
above construction, we will arrive at a sequence F7 = F, executing
L, from M, in which each visit of a node fires the node to its cor-
responding enabling number.//

_Since the construction described in the proof of the above theorem

applics to any minimum scatter firing sequence exccuting Z, from
M,, we have the following corollary.
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Corollary 2.1

For every mimimum scatter, legal firing sequence F, exccuting £,
from M, on amarked directed graph G, there is a greedy, minimum
scatter, legal firing sequence F, exccuting L, from M, which visits
nodes in the same order as Fdoes.//

This theorem implies that if we employ a greedy firing policy at
cach node visited when executing some firing count vector, then it
is possible to execute that vector with minimum scatter by visiting
the nodes properly. In other words, we cannot obtain a firing se-
quence with less scatter by leaving a2 node enabled after visiting and
firing it, than we can by firingit to its enabling number at that visit.
However, being less than greedy at each visit when firing nodes may
lead to unnecessary scatter while searching for firing sequences, as
illustrated by the firing sequences ab*a*bc* and abac*, for the
marked directed graph of Figure 2. Therefore, this is sufficient
grounds for employing the greedy firing policy at each node while
searching for a minimum scatter firing sequence.

The firing sequence ca*b’ac® for the marked directed graph of
Figure 2 shows that arbitrarily applying the greedy node firing
policy over the nodes of a graph may not produce minimum scatter
firing sequences. Thus, along with the greedy node firing policy,
some node visiting policy is needed 10 characterize an algorithm
which generates a minimum scatter legal firing sequence. We pur-
sue this further for general graphs. First, we obtain results for
marked graphs with different topological properties.

Minimum scatter legal firing sequences

This section examines the problem of determining a minimum
scatter fifing sequence executing a given executable firing count
vector from a given initial marking on marked graphs with dif-
ferent topological complexities. It is shown that any exccutable fir-
ing count vector, from a given initial marking on a marked acyclic
directed graph, always possesses a zero scatter firing sequence. This

i shown to be true for the simple directed circuit but not for a
general topology with directed circuits. Disjoint directed circuits
are then examined and an algorithm is given for each case.

Marked acyclic directed graphs
By definition, an acyclic directed graph has no directed circuits.
Thus, on a marked acyclic directed graph G, a marking M, is
reachable from an initial marking M, if and only if KVL is satisfied
between the markings. In an acyclic directed graph, thereis at least
_ one node with zero in-degree and at least one node with zero out-
degree. A marked directed graph with the acyclic property must,
therefore, possess at least one source and at least one sink. A source
is independently firable since, by definition, it has no input edges.
Thus, a firing traversal need only visit sources once.

The acyclic property of a marked acyclic directed graph can be,
used fo generate a minimum scatter firing sequence between two
markings with an executable firing count vector. If a source is
located, it can be fired to its firing number and removed from the

graph. This_s_o_u_ncc,is—guar_amecd-inacyclic.graphs..Aﬂerfr.emo-vring~—~—

this source from the graph, the subgraph thus induced must also
have the acyclic property and the procedure can then be recursively
applied until all nodes have been removed. This is just atopological
sort* applied to the nodes of the acyclicgraph. Let v, v,, ..., v. be
the labels assigned to the nodes of a marked acyclic directed graph
G according to a topological sort, then

v, . ®

is a zero scatter firing sequence for a given executable firing count
vector L. So, we have the following theorem.

AN 2N I

leorem 3

A zero scatter, legal firing sequence exists for any given ex-
ecutable firing count vector on any marked acyclic directed
graph.//

Figure 3 illustrates the procedure for a marked acyclic directed

F = a'b’c%d%?

= aa bsd Je3

Figure 3: A marked acyclic graph and @ minimum scatter sequence determination.

graph. Theinitial marking is irrelevant during topological sort, so a
minimum scatter scquence can be obtained from the underlying
graph and the firing count vector.

The marked directed circuit

We next consider the problem of generating a minimum scatter
liring sequence between two markings on a marked directed circuit
with a legally executable, minimum firing count vector. Let v be the
number of vertices of a simple marked directed circuit C. pick any
vertex of Cand label it v,. Traverse the circuit from vertex v, in the
circuit direction labeling the vertices v,, v, . . ., v..,. Also, since the
circuit has v edges, let ¢, denote the edge incident into vertex v, for j
€(0,1,...,v—1]. Let M, and M, be the initial and final markings
of C and let £, be the minimum firing count vector. Since L, is
assumed executable, KVL is satisfied between M, and Af, and thus

Y Mi(e)= Y M(e) =T M
10 10

where I'c is the circuit token count. So, KVL for the marked
directed circuit implies that any two markings on C are mutually
reachable if and only if they have the same circuit token count.

Theorem 4
A zero scatter firing sequence exists between any two reachable
markings on a simple marked directed circuit.

Proof

Observation 1 in the third section guarantees the existence of at
least one vertex with a zero firing count. Observations 2 and 3 in- -
dicate that any datum vertices can be rémoved from the graph. If

_this datum vertex is removed from'the circuit C, the subgraph in-

duced is acyclic and Theorem 3 guarantees the existence of a zero
scatter firing sequence by applying topological sort on it./ /

Specifically, the firing sequence defined by

-
F=TTvispms | (8)
=0

where i is the index of any datum vertex, is always executable and
has zero scatter. This sequence is obtained by starting at a datum
vertex and sorting the circuit vertices in the order dictated by the
circuit. Any nodes with zero firing count can be neglected. Figure 4
illustrates the construction of such a sequence.

Vertex-disjoint marked directed circuits

To extend the result {or a simple marked directed circuit to the
case of disjoint circuits, we first note that the existence of a datum
node in the circuit is not guaranteed if other nodes are present in the
graph. Thus, it may be necessary to fire every node of adirected cir-
cuit in a marked directed graph. Since the nodes of a directed cir
cuit C are restricted to at most I'¢ firings per visit, scatter may oc-
cur. As an immediate consequence of Theorem 3, dirccted circuits
are the only cause of scatter in a minimum scatter firing sequence.
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(2)-r(b)
() (c)
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02,0313 23
= cefa’

F=bcdefa

0 3 ) 3_2
F=de't'abc? = &t a’c

Figure 4: A simple dirccted circuit and a determination.

scatter seq

Assuming that the vertices of a marked directed circuit C, which
is vertex-disjoint with any other directed circuits in a marked
directed graph G, are fire-restricted only by the markings on the cir-
cuit edges, we can analyze C independently for a minimum scatter
subsequence. All vertices of G, except those of C, can be removed.
The resulting subgraph is C with a corresponding set of firing
numbers. One of two cases must occur, Either a vertex of Cexists
with a zero firing number or it does not. The former case reducesto
the previous problem and zero scatter is possiblein the subsequence
for C by removing the vertex with zero firing number and
topologically sorting the induced acyclic graph. In the latter case, a
zero scatter subsequence may still be possible but this is not general-
ly true.

At this point, the question of scatter in a subsequence for the cir-
cuit can be answered by examining the disabling numbers of the cir-
cuit vertices. If any disabling number is zero, then a zero scatter

‘bsequence is possible starting at that vertex. This follows from

" .ac fact that after this vertex is fired o its cnabling number, its fir-

ing number becomes zero and it can be removed from C, resulting
in the acyclic case discussed previously. We are left with the pro-
blem of finding a minimum scatter firing sequence of C when the
scatter is nonzero. )

Where used as a vertex or edge index, (i+ /) will denote addition
of the integers f and /, modulo v, where v is the number of vertices
of C. Also, (j) will represent J mod v. With C labelled as in the
previous subsection, we define a cyclic firing sequence of C, of
length m, as one with the form

IIvu,., ©

rm

wherea, > 0, forj= 1,2, ..., m. Expressing m assv + r, wheres
= lm/v},and r = (m), the cyclic sequence can be written as

where x; is the vertex visited at the /* visit and g, is the number of
times x, is fired at the / visit. Since F- has nonzero scatter, let v, be
the first vertex of C which repcats in F¢. let p and 7 denote the first
and sccoad visits of v, in F¢, respectively. The following statements

hold for F..
. .i,.x,... «..s Xy are distinct,
*t—-psvVv. .

® Vaey €[X)15 0.

The first statement follows from the hypothesis that v, is the first
vertex which repeats in F.. The second statement follows from
statement 1 and the fact that there are only v vertices in C. The last
statement must be true if F. is a minimum scatter firing sequence;
otherwise, it is possible to construct another legal firing sequence

¢ by absorbing the * visit into the p*visit, resulting in a sequence
which has less scatter than F..

" Identify the maximal set of visits {t.}%, satisfying the following
properties:

aptlst sit-1,rell,2,..., s,
bix, = v, refl, 2,...,s,
il < L,refl, 2, ..., 5—1].

Thus, F¢ has the form

. . o . o« _erer
VW oovaty oy VL, LoV X

X (12)

. -1
FC = xll ..x,.'|

Two cases of interest are considered.

Case 1: (k—5) # (k+1). ]

Inthis case, g, is independent of the firing of v, at the p*visit, Thus,
we may construct another legal firing sequence FZ by con-
catenating the visits {1}, in the order in which they appear in F.
and placing them immediately before the p™ visit. After this rear-
rangement, the p™ and * visits may be grouped together as vg**r at
the (s+ p)™* visit of F&. The constructed sequence F¢ will have the
form

Sp-t _ay o1 L optes Sref
F¢ = xive [P Aa AN T Valy W . e X..:‘

XL (1Y)
and ism — 1 visits long. This construction would reduce the scatter

in F¢ but since F;: has minimum scatter, thisis not possible. In other
words, case 1 cannot occur.

v Ve e Ve B B OHARE i A (¢10)}

and has scatterm — vifm = v,

Theorem 5 .
Every minimum, nonzero scatter firing sequence F¢ of a disjoint
directed circuit C in a marked directed graph G, is cyclic.

Proof _
Consider an arbitrary minimum, nonzero scatter firing sequence
~.of the vertices vy, vy, ..., v_, of a disjoint directed circuit Cina
rked directed graph G. The vertices are assumed to be cyclically
1abceled. Let Fe be written as

I = H,\',"-

o

(n

Case2: (k—s5) = (k+1);ie.5= v ~ |.

In this case, statement 2 holds with equality. That is, r — p = vand
50 {X,) 7« = [Vuen) =1, Thus, the subsequence from the p™ to the
visit in Fe is a cyclic firing traversal of C with the form

opel Spel Opsv~i Spee

VeV Vil L T W (14)

Now, we may assume that the firing of v..., at the (p+ )" visit
dependson the {iring of V4.4, at the (p + i— 1) visit and thc_subsc-
quence from the p™ to the ** visit in F¢ cannot be rcduccd.as incase
1. This follows from the hypothesis that Fe is not reducible. F_ur-
thermore, since v, is assumed to be the first vertex of C which
repeatsin Fc, and all v vertices of Care present in the subsequence,
it follows that p = 1. So, v, must be the first vertex visited in the fir-
ing sequence Fe. Thus, 7 = v + | and F- hs the form

*1 ) . Seel vl om
Vl. Viaer) Vineny ... Vivor-1) Vi Xeag o0 X (ls)



e e e S i s ————

NoALITVRL B0 BBV LAASINAUIYIZUY, IMARNEL DIRNLEC L LU URAF D 11

Specifically, case 2 must occur between nearest visits of any
vertex which repeats in Fe; otherwise a reduction would be possi-
ble. Nearest visits of any vertex of C, in Fe, must necessarily be v
visits apart. From this observation and the fact that the first v visits
of F¢ are cyclic, it follows that F. must be cyclic.//

This result, along with the fact that we need only examine greedy
firing sequences, allows us to immediately conclude that we may
obtain a minimum scatter, legal firing sequence F; for a disjoint
directed circuit Cin a marked directed graph G by examining all the
greedy, cyclic, legal firing sequences of C which execute a given fir-
ing count vector L. There is exactly one such sequence starting at
cach legally firable vertex v, of Cat M,. Since there can be at most v
vertices of C which are legally firable under a marking of C, this
problem is at most v times as complex as the problem of determin-
ing one cyclic firing sequence of C.

Specifically the greedy, cyclic firing sequence F&, executing the

* firing count vector L = [g,, gy, ... » 0-)%, from an initial marking

M, of C, is uniquely determined by its starting vertex v,. Since we
need only consider the case where g, is nonzero for each vertex v,of
C, it follows that F¢ is at least v visits long for each firable vertex v,
of Cat M,. The first v visits of F* are

o - - oy g
w' V(:o” V('.'." oee Vinerry, (16)

where the g,"s are computed according to the recursive relation a,
= Min (Graepesy, Mo (Cuosery) + a4}, j = 2, 3, ... v, withe, = M,
(e.). Here, we hdve assumed the disabling number of vertex v, is
nonzero under the marking M,. Otherwise, a zero scatter firing se-
quence exists starting at v,, given by the above definition, where g,
is replaced with o4y, for allje(l,2,...,v. Lt £* = [0/, o/,
-++y 0/-4}" be the firing count vector corresponding to the first v
visits of F* and let I*"’ =fos’, ..., 854 = L —X’ be the
residual firing count vector. Note that the firing count vector L” is
some cyclic permutation of (a,, a,, ..., alr.

Theoremn 6

If the firing numbers o,, 7 = 0,1, ..., v—1of a marked directed
circuit C are expressed modulo the circuit token count I'c as o, =
sTe + r,, where s, = |a:/T¢| and the remainder r, = o, mod Co),
then

“ s =3l s 1,0, jelo,1,...,v=1]. (1

Proof _

Consider any two firing numbers a,, o, of a marked directed cir-
cuit Cwith a circuit token count Fc. We make the following claim.
Anytwo firing numbers g,, g,0f amarked directed circuit Ccan dif-
fer by at most I'¢. That is, .

IU.—U,I.SI‘c.i.je[O.l,....'v—l]. ' (18) .

If v, is adjacent to v,, then the difference o, — o, is plus or minus the
change in the marking on the edge connecting them. This change
can be at most I'¢ in either direction. If v, is not adjacent to v, then

contradicting the claim established aboveé. !/

“Theorem 7

The residual firing numbers have the property
00" 200wy Z Ol = oui = 0fluyy 2 0.

Proof
Assume, without loss of generality, that k¥ = 0. Then, we must

showthateg’ = o)’ 2 0;° ... Z 0. = 0. The firing numbers o
satisfy the system

O = Gyeny = M (eyeny) = Moleyon)j=0,1,...,v—-1. (22)

The first v—1 of these equations form an independent set which
can be written as

o1 = 0+ My(e) — M), j=0,1,...,v=2. (23)

If this system of equations is solved in terms of 0o, the firing
numbers are

o =00+ ) Moe)— I Mledk=1,2,....v=1. (24
et Jo1

Recursively applying the relation defining the a’s,

Lod}

a, = min{a,y, ), Mo(e)l k= 1,2,...,v. (25)

10

Since ¢! ="a,.,, for k = 0,1, ..., v—1,

ol’ =0, = minfay, 3 Mo(e)}, k= 0,1,...,v—1 (26)
Jo0
or,
o’ =maxia, — Y Mo(e),00,k=0,1,...,v—1. @27
J0

Substituting the solution for o, in (24) into (27) gives

g/’ = maxfo, — M, (&) — E M, (e). 0},
Mmoo . .
k=12, ....v=1. (8

Since the markings are nonnegative vectors, it follows that the
numbers defined by

————thedifference s, =g, cambe expressed as the sum of the differential

marking M, — M, along the directed path in the circuit from v, to
v, Again, this difference can be at most, plus or minus I, thus
establishing the claim.

Expressing the firing numbers @, 9; modulo I,

o=slc+r, U/'—"S/r‘c+f1. . (19)
If s, # 5, thenlet 5, > 5, without loss of generality. Ifs, # 5, + 1,
then

o—g=(5—5)lc+r—r, (20)
Since 5> 5, + 1,(s, = 5)Tc > 2Tc. Clearly, we must have | r, — Al
< Fesince 0 < r,,r, s Te ~ 1. It follows that

g =0, =(s,—s)We+rn—r>0, (21)

by = 0o — M, (eo),

bh=bo— Y M (e k=12 ...,v=1, (29

s

have the property b, = b,., for k = 0, 1, ..., v—2. Thus, the
residual firing numbers 0, * = max{b,,0},fork = 0,1, ..., v—1,

must have the property

g zal'za'...20!",=0. 30)

Since this result is independent of the vertex labeling, we must have

0 2ol Zoliy 2 ... 2 00lum, 20, (31)
for the residual firing numbers £** corresponding to the firing se-
quence Fe. /!
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«* To completely characterize the greedy cyclic firing sequence F2,
twQ cascs are to be considered.

Case 1: g{ieyy = 0.

»Here viyuqy may be removed from C and Theorem 3 guarantees

‘the existence of a zero scatter firing sequence executing L’ * over
the induced acyclic subgraph. The number of visits needed to ex-
ecute £ is just the number of nonzero entriesin £°°.

Case 2: 0{{.-yy # 0.

In this case, all residual firing numbers are nonzero and the greedy
cyclic firings of the vertices of C have placed all I’z tokens on edge
&.. Since any vertex of Ccan be fired at most I times per visit, each
vertex v, must be visited at least 5, times to execute o/ *, where s, =
la/ * ITc]. Since sy~ is a minimum s;, then the entire circuit must
betraversed at least s,..._,, timesto execute £ * . Each traversal will
have the form

fc Tc fc rc
L Vider) Vineay <o s Vidseiys (32)

and the firing count £’ * remaining after Scaemyy Such traversals, is
oblained by subtracting Sae-yl'c from eachentryin £*’, I 54y,
iszero,thenL’’* = L'’ and such atraversal is not possible. Clear-
ly, the residual firing numbers o;*’ satisfy the property of
Theorem 7. Therefore, i’ * = (5, — Sqaewy)c + 72 is 2 maximum
o/ "*. From Theorem 6 ard Theorem 7, weshave 5, ~ Suoryy < |
and, therefore, vertex v, need not be visited more than twice to ex-
ecute ¢y . At this point, the pumber of visits needed to execute
E‘*’ may be counted. Specifically, two visits are required for each
o/ "’ greater than Iz and one visit is required for each nonzero a/"’
less than or equal to T'c. Thus, the number of visits needed to ex-
ecute L'’ is the number of nonzero entries in £°*’ plus the
number of entrics in L'’ * greater than I'c. Let w be the number of

entriesin £°°” greater than T, where 0 < w < v~1,

In cither case, the firing sequence F* may be formally written as

Fe=FF}F) (33)
where
Fy=vib vy v i Vidien,
£y = [vlcviE, V{fq; oo Vifompy Plaemn,
Fy = vie VG, VI VISP v, (9)

and the visits v/ are not present in F3, if w = 0. The problem re-
mains to determinc k. '

The above results are summarized in the following theorem,

where

len (F&) = length of Ftin visits,
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Figure 5: Graph for illustrating Algorithm 1.

executable firing count vector, from an initial marking M, of G.
Correctness of the algorithm follows from Theorem 8. We assume
the disabling numbers, and hence, the firing numbers are all
nonzero. Let T be the firing count vector for the circuit vertices.
Let C be labeled as in the previous subsection.

Algorithm 1

Step 1: For each legally firable vertex v, of Cat M,, obtain a parti-
tion L, L* * of the firing count vector T, defined by the system of
equations:

. J
a:l"/) med(v) = min{ E M, (euon-dm)o au-/)-um} 0

A0

Olienmetts) = Otsfymadtsy = 11es med(v) s (35)
forj= 0,1, ..., v—1. This step is of complexity O(+*).

Step 2: For each of the L'’ * vectors generated at step 1, the residual
firing number 0{,};mwsr., iSaminimumoneand o}’ ’ isa maximum.
Now, let s... = |osin/Tc), where the residual count 0, = mjn[-
O Z1ymeatn ] Obtain all £* * * vectors by reducing all firing numbers
oj"ineach L'’ by s...I¢c. If any of the £'" * * vectors contain zero
entries, then proceed to step 3. Otherwise, proceed to step 4.
Step 3: From among all the £’ * vectors, pick any one of them
having a maximum number of zero entries. Let this vector be
Ev ! Stop.

Step 4: From among all the L'’’’ vectors, pick any one of them
having a maximum number of entries less than or equal to . Let

this vector be ,* **. Stop.

At termination of this algorithm, the vertex v, is the first vertexin’
the minimum scatter firing sequence of C as defined before. The
minimum scatter firing sequence F2 can be determined from the
vectors Z*’, £*** and the number s,..., or by starting at vertex v,
and traversing the circuit in its direction, firing each vertex to its
enabling number, and updating the enabling numbers, until all
enabling numbers for the circuit are zero. It is easy to see that each
step in the above algorithm is of complexity O(v*), and the overall
complexity of this algorithm is O(v?).

Figure 5 is used to illustrate the steps involved in the above

S~ = minl g/ * ITf},

a1, = number of nonzero entriesinL’’,

ny = number of nonzero entriesin £*°°,

n = number of nonzero entries greater than e in £,
Theorem 8

i) If 6{eiy, = O, then len(FY) = v + n,.
i) [fo{1em1y > 0, then 1en(FY) = (Sam + DV + m + n,.11

The fallowing algorithin determines a vertex v, which should be
fired firstto arrive at a legal minimum scatter firing sequence F2 for
a disjoint directed circuit C (which is fire-restricted only by the
tokens on the circuit cdges) in a marked directed graph G, given an

algorithm: Itis-assumed thatthis directed circuit Cisa subgraph of
some marked graph G, which is vertex-disjoint with all other
directed circuits in G. The minimum firing count vector £ = [a,,
s, 0., 0uy 0., )7 = (23, 24, 24,21, 22, 22]", There are four legally
firable vertices of C at M,. Step 1 produces the following partitions
of :

£ =12,3,3,6,7.77, 2" =[21,21,21, 15, 5, 15)"

E.' = [7v lr ln 4- 5' 5]1" :NI = (l6i 23' 23' 17' 17' 17]"

L =16,7,7,3,4,4]", £ =[17,17, 17,18, 18, 18]

L =(3,4,4,7,1, 1), 2 = (20,20, 20, 14, 21, 21}
The minimum residual firing number is 14. Since I'c = 7, then
S... = 2, Thus, step 2 yields the vectors:
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L =1{2,9,9,3,3,31

L' =1(3,3,3,4,4,4F
L*'* =1(6,6,6,0,7, 7

Since E¢7** is the only residual vector with a zero entry, the grcedy.
cyclic firing sequence executing I, starting at vertex e, is a
minimum scatter firing sequence leading from M, to M,,,. From
Theorem 8, the length of this sequence is 23 and the scatter is 17.
The minimum firing sequence is
= e¢fb'cd' (e fa b’ IdYe’ a*bict. (36)
The above algorithm could be used to find a minimum scatter
legal firing sequence for a marked directed graph G, in which all
directed circuits are vertex-disjoint, as follows. First, identify all
the directed circuits and condense them.* The resulting subgraph
G’ isacyclic. Let v,, vy, ..., v.. be thelabels assigned to the vertices
of G’ according to a topological sort. Then, the sequence
Fe=FRFRF...F., (€)]
is.a minimum scatter firing sequence for G, where F, is the
minimum scatter subsequence, determined as before, if the vertex
v corresponds to a condensed directed circuit. Otherwise, F;, = vy,
Implementing the above procedure involves the following steps.
¢ Performing a depth-first search to determine all the disjoint-
directed circuits. The complexity of this is O{e+ v),*
¢ Condensing the directed circuits and perform a topological sort
on the resulting graph. This can also be achieved by means of a
depth-first search.
¢ Applying Algorithm 1 to each directed circuit. This is of com-
olexity O(v*).
'lc')(h:: )ovcrall complexity of implementing the above procedure is

On minimum scatter firing sequences for a general graph

We now outline an approach for determining minimum scatter
firing sequences in the case of any general graph and then show that
this problem is equivalent to the corresponding problem for the
case of a strongly connected graph. Consider a marked directed
graph G = (¥, E) where Vis the vertex set and E is the edge set. Let
G =(V,E), G =(V,E)...,G, = (V,E)bethestronglycon-
nected components of G. Then, itis known that thesets ¥, V;, ...,
V. form a partition of ¥.* Let G’ be the graph obtained by contfac-
ting (short-circuiting) all the edges in each of the strongly con-
nected components and removing the resulting self loops. Then, it
is known that G* has no directed circuits. Let the vertex set of G be
denoted by [x,, xi, ..., x). Assume that x, corresponds to G, and
without loss of generality; let a topological sort of G’ assign
number i to vertex x,. Then, it is easy to sce that the sequence

F=F‘|F]-..F‘ll (39)
where £, is the minimum scatter subscquence of the strongly con-
nected component corresponding to the M vertex in the
topologically sorted vertex set of G*.

We now establish an upperbound on the enabling number y, of
any vertex v, under any marking reachable from alive initial mark-
ing M, on a strongly connected graph G. In a strongly connected
directed graph G, each edge ¢, belongs to a least one directed cir-
cuit. Since the circuit token count of all directed circuits of G must
remain invariant under any legal sequence of vertex firings, the
number of tokens on any edge e, of a directed circuit cun be no more
than that circuit’s token count. Extending this restriction to all
directed circuits containing edge e, implies that the token count on
edge e cannot exceed the minimum circuit token count of all
directed circuits containing edge e,.

Let v, be the terminal vertex of edge e¢,. Now, every circuit con-
taining edge e, also contains vertex v,. Thus, the enabling number x;
of vertex v, cannot exceed the minimum circuit token count of all
directed circuits containing edge e,. Applying this agrument to all
edges encident into vertex v, implies that the enabling number g, of
any vertex v, in a strongly connected graph G cannot excced the
minimum circuit token count of all directed circuits containing v,.
Let I',, be the circuit token count of the j* directed circuit contain-
ing vertex v,, then

WS n\Iian,J].ie(l,Z.....vl. (40)

We may use this result to determine a lowerbound on the scatter
of any firing sequence of a marked directed graph G. Since it is
shown that only the strongly connected components of G need be
considered, we present the result for a strongly connected graph.
Let I, denote the bound on the enabling number 4, of vertex v, as
defined above. Clearly, vertex v, can be fired at most I, times per
visit. Thus, vertex v, must be visited at least {9,/I%] timesto execute
a,. If v is the number of vertices with a nonzero firing count o, in a
strongly connected graph G then for any legal firing sequence Fex-
ecuting I, we have

scatter (F) = E (0T = v. 41
-1

' Summary _

The following are the main contributions of this paper:

¢ An algorithmic proof of a theorem due to Murata is given.? The
proof is based on an carlier work by Commoner, Holt, Even and
Pnueli.?

¢ The concept of scatter in a firing sequence is introduced. Using
the notion of a greedy firing policy, algorithms for generating
minimum scatter firing sequences for different classes of grnphs are
nrpcnn(cd R PR

F=FRF...FR (38)
is a minimum scatter firing sequence of G, where F, is a minimum
scatter firing sequence of G,. This follows from the fact that after
executing K, F; . .. F,.,, the vertices of G, are fire-restricted only by
the edges E, of G,. Note that the problem considered in the section
discussing vertex-disjoint marked directed circuits is, in fact, the
special case where each G, is a directed circuit. The problem of
determining a minimum scatter firing sequence for a general graph
involves the following steps:

» determine all strongly connected components of G,*

* obtain the condensed graph G*,

¢ perform a topological sort of the vertices of G’

= find a minimum scatter firing sequence for each strongly con-
nected component of G, and then

* a minimum scatter firing sequence F, of G, is given by

* A gcneral approach for dctcrmmmg minimum scatter Nring se-
quences is discussed. It is shown that the problem in the general
case is equivalent to the corresponding problein for the case of a
strongly connected graph.
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