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Analysis and Synthesis of the K- and Y-Matrices of Resistive
n-Port Networks

By P. Subbarami Reddy and K. Thulasiraman'

With 3 Figures ’ (Received 25th May 1973)

1. Introduetion

The potential factor matrix K of an n-port network was first introduced in con-
nection with establishing a criterion for the proper parallel connection of n-port net-
works [1]. An extensive use of the concept of potential factors was later made in the
realisation of a real symmetric dominant matrix as the Y-matrix of an n-port net-
work [2, 3]. Certain aspects of the relationship between the modified cutset matrix
and the potential factors of an n-port network were dealt with in [4]. Recently
Lempel and Cederbaum have discussed the synthesis of K-matrices® of resistive n-
port networks [5]. In a more recent paper [6], the usefulness of the concept of potential
factors in the realisation of Y-matrices of n-port networks and the synthesis of K-
matrices of (n 4+ 2)-node resistive n-port networks have been discussed. )

In this paper analysis and synthesis of K- and Y-matrices of resistive n-port
networks are considered. In Section II, an equation relating the modified cutset
matrix and the K-matrix of an n-port network and certain results regarding port-
vertex equivalent n-port networks are given. A procedure is given in Section ILI
for the generation of padding n-port networks. Synthesis of K and Y matrices is
discussed in Section IV. A lower bound on the number of conductances required for
the realisation of ¥-matrices of n-port networks having a prescribed port configuration
is also obtained in Section IV.

Unless stated otherwise we follow the notation used in [6]. ~.

1. Relationship between the modified cutset Matrix
and the K-Matrix of an n-Port Network

We consider a resistive n-port network N having a port configuration 7. We
assume, without loss of generality, that N contains no internal vertices. The linear
graph of N will be denoted by G. Let the port configuration T be in p parts T},
1=1,2,..., p. Let T be a tree of @ and let T' be a subgraph of T',. The edges of T
will be referred to as port branches and the remaining edges of Ty will be called
non-port branches (n.p.b.). The j% port of N and the corresponding port branch
will be both denoted by p;. The set of branches of T, and the corresponding set of
ports will be both denoted by P,.

1 Dr. P. Subbarami Reddy and Dr. K. Thulasiraman, Department of Electrical Engineering,
Indian Institute of Technology, Madras — 600036 (India). :

2 In the definition used by Lempel and Cederbaum, all the diagonal entries of the K-matrix
are equal to zero.
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Let C be the fundamental cutset matrix of G with respect to Ty. Let C,(C,) be
the submatrlx of C, such that the rows of C;(C,) correspond to port (non port) bran-

ches. If V,, V,, and V., denote the column matrices of edge voltages, port voltages
and non-port branch voltages, then

Vo= MV, |
= gl 7, W

where m,; is the voltage across the j® non-port branch when port ¢ is excited with
a source of unit voltage and all the other ports are short-circuited, and

Ve =CV, v (2)
where C is the modified cutset matrix of N and is given by [7]
C =0, + MC,. : (3)

We now proceed to obtain an equation relating the matrix M to the potential
factor matrix K.

We first define an (n X p) matrix
K

-

[

K=K, = (4)

X

as follows:

a) 1™ row of K corresponds to port p;;

b) i column of K corresponds to the set of ports P,;

c) the rows of the submatrix K, corresponds to the ports of P,;

d) if j == 4, then the j* column of I_z is equai to some column of K,;;
e) if j = 7, then the j** column of K, consists of 1’s only.

From the above definition of K, we observe that if p,{ P,. then K, represents
the voltage of P, with respect to the negative reference terminal ot port p,, when p,
is excited with a source of unit voltage and all the other ports are short-circuited.

Also, the port configuration T' and K completely specify K. _

Let T be the linear graph obtained after short-circuiting all the port branches
of T,,. T will have p vertices, v, 1= 1,2, ..., p, the vertex v, corresponding to the
set of ports P;. The (p — 1) non-port branches of T, will form the edges of T. Let A

be the incidence matrix of T, the 4th row of 4 corresponding to v, and the j*% column
corresponding to the j* non-port branch.

Let T, be the graph obtained from T, after short-circuiting all the port branches
except p;. If p, € P;, then the (p — 1) vertices v, 1 =1, 2, ..., p, © & j and the two
vertices of p; will constitute the vertex set of T,.

Following are the possible ways in which the r® non-port branch (# n.p.b.)
can be situated in T, with respect to p;.

a) ™ n. p. b. is not incident at the vertices of p, (Fig. 1a).

b) rt n. p. b. is incident at and oriented towards the positive reference terminal
of p, (Fig. 1b).

¢) r®n. p. b. is incident at and oriented away from the positive reference terminal
of p, (Fig. 1c).
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d) r* n. p. b. is incident at and oriented towards the negative reference terminal
of p; (Fig. 1d). :

e) r'n. p. b. is incident at and oriented away from the negative reference terminal
of p, (Fig. le).

l’th n.p.b
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Fig. 1

We next define an (nXp — 1) matrix 4= [a,,] as follows:

a) it row of A corresponds to p, and the jtt column corresponds to the j% n. p. b.
b) @, = 0, if in T, either (i) the #*» n. p. b. is not incident at the vertices of p,,
or (ii) 7*® n. p. b. is incident at the positive reference terminal of p,.

¢) @y = 1, if in T,, 7™ n. p. b. is incident at and oriented towards the negative
reference terminal of p,.

d) @, = —1, if in 7T, #® n. p. b. is incident at and oriented away from the nega-
tive reference terminal of p,.

We then have the following theorem.
Theorem 1:

M=KA+ A4.

Proof: ,

The (i, r) entry m,, of M represents, by definition, the voltage across the r'
n. p. b. when port p, is excited with a source of unit voltage and all the other ports

are short-circuited. We shall denote the (7, 7) entry of KA as (IEA)“. We shall
consider the five possible ways enumerated earlier, in which the 7 n. p.b. can be

situated in T, (Figs. 1 (a), (b), (c), (d) and (e)) and obtain in each case my (KA);,
and Ei,.. ’ ’

Case A: In T, r™ n. p. b. is situated with respect to p; as in Fig. 1 (a).
Mgy = ky — kot
(KA)iy = kg — kg
ay = 0.
6*



84 P. Subbarami Reddy et al.: Analysis and Synthesis of the K- and ¥-Matrices

Case B: In T, v n. p. b. is situated with respect to p, as in Fig. 1 (b).

My = _z'l —1
a
Case C: Tn T, v n. p. b. is situated with respect to p, as in Fig. 1 (c).
(KA, =1— Iy

Gy =0.

Case D: In T, r™ n. p. b. is situated with respect to p; as in Fig. 1 (d).

My = I;ik
(KA, = kg — 1
a,=1.

Case E: In T, v™ n. p. b. is situated with respect to p, as in Fig. 1 (e).

my = — ki,
(KA, =1 — kg
Jii, _ 1 .

We observe that in all the cases considered above
My = (KA)iy + i
Hence the theorem.

It follows from theorem (1) a,nd equation (3) that

C=0C,+ (KA + A)C,. (5)
We note that K = K, in the case of 2n-node n-port networks. Hence in that case
0;01+(KA+Z)02.: (6)

Eq. (b) and (6) are respectively similar to Eq. (61) and (10) of reference [5]. The
latter equations involve the use of certain submatrices of the matrix relating the
incidence and fundamental cutset matrices of a graph obtained from G.

Consider, next, an n-port network, N* constructed on N. Let T*, the port con-
figuration of N*, also be in p parts T¥, t = 1, ..., p, such that the vertices of T'¥
are the same as those of T',. The n-port networks N and N* defined as above will
. be referred to as port-vertex equivalent n-port networks.

Let C* be the modified cutset matrix of N*. Let Y*, V§ and - M* be defined
similarly. If '

V, = AV (7)
then it is easy to show that

M* =AM ' (8)

c* = AC , . (9)

and
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and ' . . o - :
Y*=AYA". | (10)
Further, if N is a padding n-port network, then it follows from (10) that N* is also
a padding n-port network. T

III. Synthesis of padding n-Port Networks

We obtain, in this section, a procedure for the generation of padding n-port net-
works, having specified potential factors and a prescribed port configuration.

We shall assume, without loss of generality, that each connected part T,
i=1,2,...,p of the port configuration of the required padding n-port network N
is a lagrangian tree. The set of vertices of T, will be denoted as 1y, %), %5, -+, Tn,s
with %, as the star vertex of 7;. The m' port of P; will be denoted by Pjy,. %y, and 7,
are the positive and negative reference terminals of Pjy,. T; and the polarities of
P, are as shown in Fig. 2. : P : o .

The conductance of the edge connecting the vertices 7, and 3, of N will be denoted
bY Girin We further define S;,; and S;; as follows:

nj - .
Sixi = 2 Girims J F
m=0 .
and

ng
Sij= 2 Sujpj F 1
k=0

nj
= 2 Sjpi-
m=0

The network obtained from N after short circuiting all the ports will be denoted b§;

N, and the network obtained after short-circuiting all the. ports except Py, and
connecting a source of unit voltage across Pj, will be denoted by Nyy,). We observe
that (i) the p vertices v,, © = 1, 2, ..., p will constitute the vertex set of N. (ii) the
(p — 1) vertices v,, r =1, 2,...,p, r &= 7 and the vertices of Py, will constitute
the vertex set of Ny, and (iii) C, is the fundamental cutset matrix of N with respect

to T. If A4, is the reduced incidence matrix of N with v, as the reference vertex, then -

C, can be expressed as o .
C, = RA,. (11)

It is well known that R, is non-singular. Further we denote by k. J =, the
voltage of the set of ports P; when P,y is excited with a source of unit voltage
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and all the other ports are short circuited. We note that k;p ; is equal to some
element of the k' row of K, j = 1.

Given the port configuration 7' and the potential factors, the modified cutset
matrix C of the required padding n-port network N can be easily constructed. It
has been shown that a real diagonal matrix G will represent the edge conductance

matrix of a padding n-port network N if and only if the following equations are
satisfied [4].

CGC% =0 (12a)
CQCL =0 : (12b)

and o _
det (C,GC%) 4= 0. , (12¢)

We next proceed to solve Eq. (12) for G.

Consider first Eq. (12a). This equation can be written as a set of linear equations
with 8;,;’s as unknowns. If C¥) denotes the row of C corresponding to Py, then
equation (12a) can be written as

CWEC, =0, i=1,2 ..., "
k=1,2,...,n.
From (11) and (13) we get
' cPEAt = 0, t1=1,2,...,p,
k=1,2,...,n ‘
We note that Eq. (13) and (14) are equivalent since R, is non-singular. The equation
OPG@AL = 0 for some ¢ and some k

represents the following set of (p — 1) equations.

(14)

Siilkigy,; — 1) + Z LY
m=|=lc

+ Z SjmFiwy,; — Kiym) = 0
'm=|=:; m=i=z
j = 1, 2’ "-’p, .7 ———t: .
Eq. (15) can be easily identified as Kirchhoff’s current law equation for N;4, at the

{p — 1) vertices v, r =1, 2, ..., p, 7 = 4. Solving (15) for S; ; and generalising the
result we get

(15)

‘Siky' = 8; ikiw),; + Z Sjm Ky, — Kieym)

me1
m=+ki, m=Ej .
i=12...,p (16)
k=12,...,m
and
i=L2,...,p, . jF1.
Since
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We get from (16)
g
Sig =8y — 2 Syj
k=1

7 g P (17)
=8y(1— 2 ki(k),j) — 2 2 Sim iy — Figym)
k=1 k=1 m=1
m==i, m==j
1=12,...,p and j=1,2,...,p, k1.

Eq. (18) and (17) can be used to evaluate all §;;’s after assuming arbitrary values

for §; i’s. 8;,;’s so obtained will satisfy Eq. (12a).
We next proceed to solve Equation (12b) and obtain expressions for the edge
conductances of N in terms of S; ;’s. :
Let Oy jmy denote the row of C; corresponding to Pjyy,. Then, taking into account
the symmetry of the short-circuit conductance matrix CGCY, the following sets of

equations are obtained from Eq. (12b).
COGC sy =0, ©=1,2,...,p —1,

k=1,2,.20,mn; " o .8.'1
. : . . C 2
32213"",p,]>1, (_» )
m=1,2 ..., n;.
O'Ek)GO?l,’L(’m) = 0, 'L = 1, 2, ceey p,
k=1,2,...,n, — 1, (18Db)
m=2,3,...,n, m>k
and
C(zk)GO?I_,’L(k) = O, ’I, == 1,. 2, ey P 18
kE=1,2,...,n,. (18¢)
Consider the equation
CHGCE sy = 0, for some 3, k, j > 1, and m.
This equation can be written as
g
GiinFans — 1) + 2 9ig, Ky,
&
» , (19)
+ 28 okiwy,; — ki,r) = 0.
"
r=j
Solving (19) for g; ; and generalising the result, we get
) .
Tinim = Sipkiars + 2 Siaiays — Figy,r)
2
r=l.=j )
1=1,2,...,p—1 '
E=1,2,...,m ' (20)

i=23...,p73>1
m=12,...,n,;.
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Values for ¢ ; ’s obtained by using (20) will satisfy (18a). Further g,; and g;k,-u
and g¢; ; can be obtained as .

ng
Disim — Sjmi - Z i e

gikj., zk_'/ Z g‘Lk]m

and

7,
gioja 10.7 Z g1407m

m=1
1=12...,p—1
2
k=1,2,...,n (21)

i=2,3...,p,3>1
m=1,2,...,n

5.

Eq. (20) and (21) will enable us to obtain conductances of edges connecting vertices
in different 7';’s. ‘
We then consider equation (18b). The equation

C*GCY ymy = 0 for some ¢, k and m > k-
can be written as
— i, — 2 i ikiy,g = 0- (22)

Solving Eq. (22) for ¢; ; and generalising the result we get

Sirim Z ey, s
3—rz - _
1=1,2,...,p, ' ’ (23)
k=1,2,...,n, — 1,
m=2,3,....,m;, m>k.

Values for g; ; ’s obtained using (23) will satisfy Eq. (18b).
Finally, we "consider equation (18¢). The equation

CHAEC, 4y = 0, for some ¢ and some k
can be written as
g’bk% + Zl S/"kj - Z(k)v:’ + Z gzkzm = 0' ) | (24:)

J=Fz m#k

From Eq. (24) we get

gtkzo + Z gzkz,m + 2 (kz(k)g )Sikj' . - : : (25)
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We get from Eq. (23) and (25)

ng » . 4 .
Giio = 2 2 Sipikiarns — 2 (1 — Figy,5) Sigj
m=1j=1 j=1
mEE Foi J+i

o (26)
= 2 kiw,iSis -
i=1
_ I+ »
The last step in Eq. (26) follows after equating to zero the sum of the currents in

those edges of Ny, connecting vertices in 7, to all other vertices. Generalising the
result obtained in Eq. (26) we get,

? \
Girio = — 21 Kitky, iS5+
i=

(B ‘

27
1 =1,2,...,p, (27)
k=1,2,...,n,.

Values for g; ;’s obtained using Eq. (27) will satisfy (18¢).

The discussions up to this point may be summarized as follows:

a) Assuming arbitrary values for 8;,;’s, determine’ S; ;s using Eq. (16) and (17).

b) Use the values of S; ;’s so obtained, in Eq. (20), (21), (23) and (27), and deter-
mine the values for the edge conductances g; ; ’s of N. ' :

¢) The values of edge conductances so obtained will satisfy Eq. (12a) and (12b).

We next turn to (12¢). Need for padding network synthesis arises in the realisation
of K and Y matrices by n-port networks having no negative conductances. If ¥
is to be the padding n-port network of some n-port network containing no negative
conductances then all §; ;s should be chosen nonnegative. Further if N is connected
and contains no negative conductances (i.e., all S;;’s are non-negative), then (CGC%)
will be nonsingular and (12¢) will be satisfied. So, while selecting values for §;’s
it must be ensured

i) all 8;,’s are non-negative, and

3

ii) some §,;’s must be positive so that N is connected.
In the foregoing, expressions for edge conductances of N have been obtained,
assuming that each connected part of 7' is a langrangian tree. This assumption,

however, involves no loss of generality, as may be seen from the following.

If any arbitrary connected port configuration 7* and the corresponding potential
factors are specified then, the potential factors corresponding to 7, in which each
connected part is a lagrangian tree, can be easily obtained (Equation 8 in the previous
section). If an n-port padding network N having the port configuration T' and the
newly determined potential factors is generated then the n-port network N* with

~ the port configuration 7* will also be a padding network with its potential factors

as specified. It may be noted N and N* are port-vertex equivalent n-port networks.

If, however, the port configuration T* alone is specified, then we should first
generate N assuming values for all distinct S;;’s as well as for all kyy ;’s. The n-port
network N* port-vertex equivalent to N and having the prescribed port configuration
T* will be the padding n-port network required. : .

This completes our discussions on the synthesis of padding n-port networks
having any arbitrary connected port configuration and having specified potential
factors. The usefulness of these results will be discussed in the next section.
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Ezample 1:

It is required to generate a 3-port padding network having the port configuration
shown in Fig. 3a. The potential factors of the required network should be as follows:

kl(l),2 S k12 ES 05, kl(l),3 = ]C]_3 ESS 0.6
koy1 = koy = 0.4; kaqys = kog = 0.5
’C3(1)’1 = k31 = 03, ]C3(1)’2 == k32 = 0.2.
, 2 3,
Port 1 Port 2 Port 3
,O T __20— ______ 3 O
Fig. 3a

Assume §; ;s as follows: S;, = 10, S;3 = 20; S,3 = 10. Using Eq. (16) and (17)
§; s are obtained as ’ .
Sie=4; S12=6; S13=13; S13=7;
So1=2; S50 =8; Sp3=17; Sp3=3;
S50 ="T; 830 =13; S35 =1; S32=19.

Fig. 3b

For example,

83,0 = Sagkas + Spy(kgy — k3)
=10 024 10-(—0.1) =1
and
8302 = Sza — ‘8312 =9.
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Using the values of §;, ;’s so obtained in Eq. (20), (21), (23) and (27) we can get the
edge conductances of the required 3-port network. For example

1.2, = Seakiz + 3213("?12 — ki)
=2:-05—-7-01=0.3

di,1, = —Sl.,zklz — S1°3k13
= —6:-05—T7-06=—"7.2.

The required 3-port padding network is shown in Fig. 3b.

1V. Synthesis of K- and Y-Matrices of n-Port Networks
a) Synthesis of the K-Matrix

Synthesis of the potential factor matrix K of an n-port network requires the
solution of the following two problems: ‘ .

i) Determination of the port configuration 7' appropriate to K.

ii) Determination of an n-port network containing no negative conductances and
having the port configuration 7' and the specified K-matrix.

In their solution of the first problem, Lempel and Cederbaum [5] first assume the
port configuration to be in n parts and then obtain the modified cutset matrix,
appropriate to the assumed port configuration and the given K-matrix. This modified
cutset matrix can be determined either by using Eq. (10) of reference [5] or Eq. (6)
of this paper or by inspection of the assumed port configuration and the given
K matrix. From the modified cutset matrix so obtained, the port configuration T
is determined by the application of a simple procedure, which yields a unique port
configuration 7' for a given K matrix. : :

To solve the second problem, Lempel and Cederbaum first determine the modified
cutset matrix C, appropriate to the port configuration 7' and the specified K matrix.
Then linear programming technique is applied to obtain a non-negative @, if one
exists, satisfying the equation

0G0, = 0.

In this section, we give a new necessary and sufficient condition to test the
existence of a resistive m-port network containing no negative conductances and
having a specified K-matrix and a port configuration T' appropriate to the matrix K.
We assume, without loss of generality, that each connected part of the port config-
uration 7' is a lagrangian tree.

Let the column matrices of (8; ;),’s and (Sj),’s of an n-port network N, be denoted

by 51, and S, respectively. Eq. (16) and (17) can be together written in matrix form as
Ep = PS§,
where each entry of the matrix P is a linear combination of some potential factors.

If (S;),’s are such that N, is connected then the corresponding S, will be called
non-trivial. It is shown in [6] that

i) if all (S;,;),’s of a padding n-port network N, are non-negative then a network
of departure N can be found so that the parallel combination N of N, and Ng contains
no negative conductances;

ji) an n-port network and its padding network have the same K-matrix, and

id
Theorem (2) then follows.
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Theorem 2

Let each connected part of the port configuration 7' appropriate to a given poten- -

tial factor matrix K be a lagrangian tree. The matrix K can be realised by a resistive
n-port network containing no negative conductances if and only if there ex1sts a
non-trivial § such that § = 0 and PS = 0.

Following steps may then be used for the synthesis of a K-matrix:

i) Obtain a non-trivial value of §, if it exists, equal to §, such that §, = 0 and
P8, = 09, 14].

ii) Construct a padding n-port network N, having the matrix K as its potentlal
factor matrix and such that its S matrix is equal to PS,.

iii) Determine a suitable N; so that the parallel comblnatlon N of N; and N,
contains no negative conductances.
iv) The network N realizes the matrix K.
We now wish to draw attention to the following.
1. According to the procedure given in [6] to determine a suitable N; for a given
in which all (S; ;),’s aré non-negative

N

s . ,

(Gii)a = — Gig)o - | (28)
and '

' : S4.S; R . :
(@i )a = — Gis, )p + ”jg T (29)
ij .
Since _ ' _
‘. i = (@i )a +. (9i4, )p for all 7 and j,

we get o , o - ' :

Gigi,, = 0 I o - , . (30)
and R o . :

Fiim = S”gs’m’ for all 7 and j, j == 7. . _ (31)

1,_7

Thus determination of N requires the. eveluatiorr_of only (gikj%)"’s using (31).

2. It can'be shown using Eq {16) that for every .vertex ¢, there exists a j-such that
8;,; is nen-negative -if all §;’s are non-negative. Thus of the (n + p) - (p — 1) ele-

ments of the vector S, (n + p) elements will be non- negatlve if all §,;’s are non-
‘negative. Hence ‘the total number .of constraints involved in the solution of the
linear program implied in theorem (2) is-only (n -+ p) (p — 2). In contrast the number
of constraints used in the procedure given in [5] is » (p — 1). It may be noted that
for ‘

n>p(p—2)

the proceduré given in this section for K-matrix synthesus involves a smaller number
of constraints than used by Lempel and Cederbaum [5]. Further the present procedure

—1
involves 1—0(—]0?——) number of unknowns_ Whlch is less than the minimum rrumber

of unknowns, namely 2p(p — 1) used in [5]. '

The new approach given in this section for K-matrix synthesis prov1des a greater
insight into the nature of the K-matrix synthesis problem. In fact following the
same approach a simple necessary and sufficient condition has already been obtained
for the synthesis of the K-matrices of (n 4+ 2)-node n-port networks. Further, since
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this procedure essentially requires the synthes1s of a suitable padding network havmg
a speciefied K-matrix, it can be readily used in Y -matrix synthesis as discussed in
Section IV (b).

b)- Synthesis of the Y-Matrices of n-port Networks with more than (n + 1) Nodes

The only approach available for the synthesis of the Y-matrices of n-port resistive
networks having more than (n 4 1)-nodes is due to Guillemin [8]. This approach
essentially requires the determination of a suitable padding n-port network N, for
a given network of departure N As a result a number of procedures have been
proposed in the past for the generation of padding n-port networks (8, 10, 11, 12].
The procedure for padding network generation given in Section III is yet another
contribution in this direction.

A 51gmf1cant feature of this new procedure is that all the parameters used herein
namely S;’s and k3 ;s can be readily identified with certain quantities of the
padding network N, to be realized. Also these quantities happen to be the same
for both N, and N. The procedures for padding network synthesis given in [8, 10, 11],
and [12] do not permit such straightforward identification for all the parameters.
This feature of the new procedure is of help in the synthesis of ¥ matrices of RLC
n-port networks. In the synthesis of such networks, it is required to realise a set
of real symmetric ¥ matrices by resistive n-port networks, all having the same
modified cutset matrix [3], [8]. If a network N, realising one of these matrices is
known, then all networks realising the other matrices should have the same modified
cutset matrix as N;. This leads us to the problem of synthesis of a resistive n-port
network having a prescribed Y matiix, a prescribed port configuration and specified
potential factors k;g ;s To solve this, we may proceed as follows. We assume
that each connected part of the port configuration 7' is a lagrangian tree.

Let {g}; be the column matrix of edge conductances of the network of departure
N4 with respect to the given ¥ and T. Let {g}, be the column matrix of edge conduct-
ances of a required padding network N,. It follows from Eq. (16), (17), (20), (21),
(23) and (27) that {g}, can be related to S the column matrix of S;,’s, as

{9}, =

where each entry of @ is a function of k;y, ;’s. Hence @ can be determined from the
values specified for k;y ;’s. Since the parallel combination of N, and N; should
contain no negative conductances, it is required that

(g} = 08 = — {ga- - (32)

If a non-negative and non-trivial value of S equal to S, satisfying (32) exists then
the column matrix {g} of conductances of the required n-port network will be given by

{9} = {g}a + @S,.

Thus it follows from' (32) that when 7T, ¥ and kiz.;s are spe01f1ed n-port synthesis
problem simplifies to one of solving a linear program. This is in contrast to the non-
linear equations involved when Y and 7 alone are specified. Following the approach
outlined above, a simple necessary and sufficient condition has already been establish-
ed for the synthesis of (n 4 2)-node n-port networks having prescribed Y and
K-matrices [13]. The procedure for padding network synthesis given in [8, 10, 11,
12] will not be of help in the synthesis of Y-matrices of RLC n-port networks.
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¢) Lower Bound on the Number of Conductances required for the. Synthesza
of a Y-Matrix ,

We, next, establish a lower bound on the number of conductances required for
the realisation of a real symmetric matrix Y as the shortcircuit conductance matrix
of a resistive n-port network containing no negative conductances and having a
prescribed port configuration 7.

Consider, a resistive n-port network N containing no negative conductances. Let
each connected part of the port configuration 7' of N be a lagrangian tree.

For every port Py, of N there exists a j such that

iy = ke ™ =1,2, ., p, 14 7. . (33)
Since N contains no negative conductances all §; ;’s are non-genative. Then it follows
from Eq. (33) and (20) that for every vertex 1,, £ == 0 there exists a j such that

(Gig,)p =0 forall m=0,1,2,...,n (34)

Let N* be an n-port network port-vertex equivalent to N. Let the star vertex of
each T¥F be different from that of 7',. Then following the same line of argument as
above, we can show that for every vertex %, there exists a j such that

(@ij,)p = 0 for all m =0, 1, 2,. (35)

Since the padding networks of port-vertex equlvalent n-port networks are identical,
we conclude from (34) and (30) that for every vertex 7, there exists a j such that

(gikjm)p =0 forallm=0,1,2,...,n,. (36)

Further, the above result is valid irrespective of the port configuration.

It follows from (36) that in the case of (n + 2) node n-port networks in which
p = 2, all the conductances connecting vertices in 7T to vertices in 7', are non-
negative. This result has already been established in [6] ' :

Let N; be the network of departure with respect to a given Y matrix and a port
configuration T'. Let x4 ; be the total number of positive conductances in Ng
connecting vertex 17, to all the vertices in T';. Let

’L(k) S Mln {xi(k),j, ] = 1, 2, ey Py j :f: ?/}.
Theorem (3) then follows from (36).

Th eérem 3

The number of conductances required for the realisation of a real symmetrix
matrix Y as the short-circuit conductance matrix of a resistive n-port network hav-
ing no negative conductances and having a prescribed port configuration 7' cannot
be less than

» 7
1/2 2 2 Lik) -
i=1k=0

5

.?

V. Conclusion

The only approach available for the synthesis of resistive n-port networks having
more than (n + 1)-nodes is due to Guillemin [8]. Guillemin’s approach essentially
requires the determination of a suitable padding n-port network N, for a given
network of departure N; so that the parallel combination of N4 and N, contains no
negative conductances. Hence a number of procedures were suggested for generation
of padding n-port networks [10, 11, 12]. All these procedures express conductances
of a padding network in terms of certain arbitrary parameters. It was pointed out

recently that a padding n-port network can be identified as the padding network
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of some resistive n-port network containing no negative conductances if and only if
all §; ;s are non-negative [6]. In view of this it is enough if we confine our search
for a suitable padding n-port network to a restricted class of these networks. Further
the potential factors and §,;’s of a network and its padding network are identical.
So, it seemed desirable and useful to develop a procedure for generating padding
n-port networks in terms of these parameters. A step in this direction was taken
in [6]. In Section III of this paper the approach presented in [6] is investigated and
formulas for the conductances of a padding network in terms of potential factors
and S;;’s are obtained. Since these formulas are in terms of potential factors it is
neccessary that we know the necessary and sufficient conditions which the potential
factors of a resistive n-port network having no negative conductances should satisfy.
This necessity explains the interest in the analysis and the synthesis of the K-matrix
of n-port networks.

In Section II, an equation relating the modified cutset matrix and the K-matrix
is established. This relationship, as pointed out in Section II, is useful in view of
the method used in [5] for determining the port structure pertinent to a given K-
matrix.

The procedures for K-matrix synthesis given in [5] as well as in Section IV (a),
of this paper require the solution of a linear program. However, the present approach
involves a smaller number of unknowns and further the number of constraints used
is also smaller for all n > p (p — 2). Added to these is ist usefulness in the ¥-matrix
synthesis problem.

Though the Y-matrix synthesis problem looks formidable, simultaneous realisa-
tion of K and Y matrices is straightforward as shown in Section IV (b). It is shown
in [15] that the problem of synthesis of a hybrid matrix reduces to one of realising
an m-port network having prescribed K and Y matrices and prescribed S;;’s. Thus
hybrid matrix synthesis can be achieved by a straightforward application of the
results of this paper.

The lower bound on the number of conductances required for the realisation of
a matrix ¥ might help in throwing some light on Brorci’s conjecture.

Abstract

In this paper a new matrix equation relating the modified cutset matrix C and
the potential factor matrix K, of an n-port network is first established. A new pro-
cedure for the synthesis of padding n-port networks is then given. Based on these
results, a new necessary and sufficient condition is then established for the synthesis
of the K-matrices of n-port networks. Application of these results in the synthesis.
of Y-matrices is discussed. A lower bound on the number of conductances required.
for Y-matrix synthesis is also given.

Zusammenfassung

In dem Artikel wird eine neue Matrizengleichung, die die modifizierte Schnitt-
mengenmatrix ¢ und die Knotenspannungsmatrix K eines n-Tor-Netzwerkes mit-
einander verkniipft, vorgestellt. Ein neuer Algorithmus fiir die Synthese gréferer
n-Tor-Netzwerke wird gegeben. Mit diesen Ergebnissen wird eine neue hinreichende
und notwendige Bedingung fiir die Synthese der K-Matrizen von n-Tor-Netzwerken
abgeleitet. Die Ergebnisse werden bei der Synthese von Y-Matrizen angewendet und
diskutiert.
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