Analysis and Synthesis of the K- and Y-Matrices of Resistive n-Port Networks

By P. Subbarami Reddy and K. Thulasiraman 1

With 3 Figures

(Received 25th May 1973)

I. Introduction

The potential factor matrix K of an n-port network was first introduced in connection with establishing a criterion for the proper parallel connection of n-port networks [1]. An extensive use of the concept of potential factors was later made in the realisation of a real symmetric dominant matrix as the Y-matrix of an n-port network [2, 3]. Certain aspects of the relationship between the modified cutset matrix and the potential factors of an n-port network were dealt with in [4]. Recently Lempel and Cederbaum have discussed the synthesis of K-matrices 2 of resistive n-port networks [5]. In a more recent paper [6], the usefulness of the concept of potential factors in the realisation of Y-matrices of n-port networks and the synthesis of K-matrices of (n+2)-node resistive n-port networks have been discussed.

In this paper analysis and synthesis of K- and Y-matrices of resistive n-port networks are considered. In Section II, an equation relating the modified cutset matrix and the K-matrix of an n-port network and certain results regarding portvertex equivalent n-port networks are given. A procedure is given in Section III for the generation of padding n-port networks. Synthesis of K and Y matrices is discussed in Section IV. A lower bound on the number of conductances required for the realisation of Y-matrices of n-port networks having a prescribed port configuration is also obtained in Section IV.

Unless stated otherwise we follow the notation used in [6].

II. Relationship between the modified cutset Matrix and the K-Matrix of an n-Port Network

We consider a resistive n-port network N having a port configuration T. We assume, without loss of generality, that N contains no internal vertices. The linear graph of N will be denoted by G. Let the port configuration T be in p parts T_i , $i=1,2,\ldots,p$. Let T_0 be a tree of G and let T be a subgraph of T_0 . The edges of T will be referred to as port branches and the remaining edges of T_0 will be called non-port branches (n. p. b.). The jth port of N and the corresponding port branch will be both denoted by p_i . The set of branches of T_i and the corresponding set of ports will be both denoted by P_i .

¹ Dr. P. Subbarami Reddy and Dr. K. Thulasiraman, Department of Electrical Engineering, Indian Institute of Technology, Madras — 600 036 (India).

² In the definition used by *Lempel* and *Cederbaum*, all the diagonal entries of the K-matrix are equal to zero.

⁶ IET 5/2

Let C_0 be the fundamental cutset matrix of G with respect to T_0 . Let $C_1(C_2)$ be the submatrix of C_0 such that the rows of $C_1(C_2)$ correspond to port (non-port) branches. If $V_{\rm e}$, $V_{\rm p}$, and $V_{\rm n}$ denote the column matrices of edge voltages, port voltages and non-port branch voltages, then

$$V_{\mathbf{n}} = M^t V_{\mathbf{p}}$$

$$= [m_{ij}]^t V_{\mathbf{p}}$$
(1)

where m_{ij} is the voltage across the j^{th} non-port branch when port i is excited with a source of unit voltage and all the other ports are short-circuited, and

$$V_{\mathbf{e}} = C^t V_{\mathbf{p}} \tag{2}$$

where C is the modified cutset matrix of N and is given by [7]

$$C = C_1 + MC_2. (3)$$

We now proceed to obtain an equation relating the matrix M to the potential factor matrix K.

We first define an $(n \times p)$ matrix

$$\overline{K} = [\overline{K}_{ij}] = \begin{bmatrix} \overline{K}_1 \\ \overline{K}_2 \\ \vdots \\ \overline{K}_p \end{bmatrix}$$

$$(4)$$

as follows:

- a) i^{th} row of \overline{K} corresponds to port p_i ;
- b) i^{th} column of \overline{K} corresponds to the set of ports P_i ;
- c) the rows of the submatrix \overline{K}_i corresponds to the ports of P_i ;
- d) if $j \neq i$, then the j^{th} column of $\overline{K_i}$ is equal to some column of K_{ij} ;
- e) if j = i, then the j^{th} column of \overline{K}_i consists of 1's only.

From the above definition of \overline{K} , we observe that if $p_i \in P_j$ then \overline{K}_{ij} represents the voltage of P_j with respect to the negative reference terminal of port p_i , when p_i is excited with a source of unit voltage and all the other ports are short-circuited. Also, the port configuration T and \overline{K} completely specify K.

Let \overline{T} be the linear graph obtained after short-circuiting all the port branches of T_0 . \overline{T} will have p vertices, v_i , $i=1,2,\ldots,p$, the vertex v_i corresponding to the set of ports P_i . The (p-1) non-port branches of T_0 will form the edges of \overline{T} . Let A be the incidence matrix of \overline{T} , the i^{th} row of A corresponding to v_i and the j^{th} column corresponding to the j^{th} non-port branch.

Let \overline{T}_i be the graph obtained from T_0 after short-circuiting all the port branches except p_i . If $p_i \in P_j$, then the (p-1) vertices v_i , $i=1,2,\ldots,p$, $i\neq j$ and the two vertices of p_i will constitute the vertex set of \overline{T}_i .

Following are the possible ways in which the r^{th} non-port branch (r^{th} n. p. b.) can be situated in \overline{T}_i , with respect to p_i .

a) r_i^{th} n. p. b. is not incident at the vertices of p_i (Fig. 1a).

b) r^{th} n. p. b. is incident at and oriented towards the positive reference terminal of p_i (Fig. 1b).

c) $r^{t\bar{h}}$ n. p. b. is incident at and oriented away from the positive reference terminal of p_i (Fig. 1c).

of

of

P. ,

or

re ti

 T_i

P

ar cc

n.

si

) be ran-

rices

ages

(1)

with

(2)

(3)

ntial

(4)

ents $n p_i$ ited.

ches $_{
m the}$ et A

ches two

umn

. b.)

ninal

iinal

d) rth n. p. b. is incident at and oriented towards the negative reference terminal

e) r^{th} n. p. b. is incident at and oriented away from the negative reference terminal

of p_i (Fig. 1e).

We next define an $(n \times p - 1)$ matrix $\bar{A} = [\bar{a}_{ii}]$ as follows:

- a) i^{th} row of \bar{A} corresponds to p_i and the j^{th} column corresponds to the j^{th} n. p. b.
- b) $\bar{a}_{ir} = 0$, if in \bar{T}_i , either (i) the r^{th} n. p. b. is not incident at the vertices of p_i , or (ii) r^{th} n. p. b. is incident at the positive reference terminal of p_i .
- c) $\bar{a}_{ir} = 1$, if in \bar{T}_i , r^{th} n. p. b. is incident at and oriented towards the negative reference terminal of p_i .
- d) $\bar{a}_{ir} = -1$, if in \bar{T}_i , r^{th} n. p. b. is incident at and oriented away from the negative reference terminal of p_i .

We then have the following theorem.

Theorem 1:

$$M = \overline{K}A + \overline{A}$$
.

Proof:

The (i, r) entry m_{ir} of M represents, by definition, the voltage across the $r^{\rm th}$ n. p. b. when port p_i is excited with a source of unit voltage and all the other ports are short-circuited. We shall denote the (i, r) entry of $\overline{K}A$ as $(\overline{K}A)_{i,r}$. We shall consider the five possible ways enumerated earlier, in which the r^{th} n. p. b. can be situated in \overline{T}_i (Figs. 1 (a), (b), (c), (d) and (e)) and obtain in each case m_{ir} (\overline{KA}) $_{i,r}$

Case A: In \overline{T}_i rth n. p. b. is situated with respect to p_i as in Fig. 1 (a).

$$m_{ir} = \overline{k}_{il} - \overline{k}_{ik}$$
 $(\overline{K}A)_{i,r} = \overline{k}_{il} - \overline{k}_{ik}$
 $\overline{a}_{ir} = 0$.

Case B: In \overline{T}_i r^{th} n. p. b. is situated with respect to p_i as in Fig. 1 (b).

$$m_{ir} = \overline{k}_{il} - 1$$
 $(\overline{K}A)_{i,r} = \overline{k}_{il} - 1$
 $\overline{a}_{ir} = 0$

Case C: In \overline{T}_i r^{th} n. p. b. is situated with respect to p_i as in Fig. 1 (c).

$$m_{ir}=1-ar{k}_{il}$$
 $(ar{K}A)_{i,r}=1-ar{k}_{il}$ $ar{a}_{ir}=0$.

Case D: In \overline{T}_i r^{th} n. p. b. is situated with respect to p_i as in Fig. 1 (d).

$$egin{aligned} m_{ir} &= ar{k}_{ik} \ (ar{K}A)_{i,r} &= ar{k}_{ik} - 1 \ ar{a}_{ir} &= 1 \,. \end{aligned}$$

Case E: In \overline{T}_i r^{th} n. p. b. is situated with respect to p_i as in Fig. 1 (e).

$$m_{ir} = -\overline{k}_{ik}$$
 $(\overline{K}A)_{i,r} = 1 - \overline{k}_{ik}$
 $\overline{a}_{ir} = -1$.

We observe that in all the cases considered above

$$m_{ir} = (\overline{K}A)_{i,r} + \overline{a}_{ir}.$$

Hence the theorem.

It follows from theorem (1) and equation (3) that

$$C = C_1 + (\overline{K}A + \overline{A}) C_2. \tag{5}$$

We note that $\overline{K} = K$, in the case of 2n-node n-port networks. Hence in that case

$$C = C_1 + (KA + \overline{A}) C_2. \tag{6}$$

Eq. (5) and (6) are respectively similar to Eq. (61) and (10) of reference [5]. The latter equations involve the use of certain submatrices of the matrix relating the incidence and fundamental cutset matrices of a graph obtained from G.

Consider, next, an n-port network, N^* constructed on N. Let T^* , the port configuration of N^* , also be in p parts T_i^* , $i=1,\ldots,p$, such that the vertices of T_i^* are the same as those of T_i . The n-port networks N and N^* defined as above will be referred to as port-vertex equivalent n-port networks.

Let C^* be the modified cutset matrix of N^* . Let Y^* , V_p^* and M^* be defined similarly. If

$$V_{\mathbf{p}} = A^t V_{\mathbf{p}}^* \tag{7}$$

then it is easy to show that

$$M^* = AM \tag{8}$$

$$C^* = AC \tag{9}$$

and

P. S

Fui a p

III.

woı

i =

i = is

wit are

 $P_{i(\cdot)}$

bу

an

Th \overline{N} , cost that

(p)

 $egin{array}{c} \mathbf{to} \ C_{\mathbf{2}} \end{array}$

It vo

85

rices

and

$$Y^* = AYA^t. (10)$$

Further, if N is a padding n-port network, then it follows from (10) that N^* is also a padding n-port network.

III. Synthesis of padding n-Port Networks

We obtain, in this section, a procedure for the generation of padding *n*-port networks, having specified potential factors and a prescribed port configuration.

We shall assume, without loss of generality, that each connected part T_i , i = 1, 2, ..., p of the port configuration of the required padding n-port network N is a lagrangian tree. The set of vertices of T_i will be denoted as $i_0, i_1, i_2, ..., i_{n_i}$, with i_0 as the star vertex of T_i . The mth port of P_i will be denoted by $P_{i(m)}$. i_m and i_0 are the positive and negative reference terminals of $P_{i(m)}$. T_i and the polarities of $P_{i(m)}$ are as shown in Fig. 2.

Fig. 2

The conductance of the edge connecting the vertices i_k and j_m of N will be denoted by $g_{i_k j_m}$. We further define $S_{i_k j}$ and S_{ij} as follows:

$$S_{i_k j} = \sum\limits_{m=0}^{n_j} g_{i_k j_m}, j \neq i$$

and

$$S_{ij} = \sum_{k=0}^{n_i} S_{i_k j}, j \neq i$$

$$= \sum_{m=0}^{n_j} S_{j_m i}.$$

The network obtained from N after short circuiting all the ports will be denoted by \overline{N} , and the network obtained after short-circuiting all the ports except $P_{i(m)}$ and connecting a source of unit voltage across $P_{i(m)}$ will be denoted by $N_{i(m)}$. We observe that (i) the p vertices v_i , $i=1,2,\ldots,p$ will constitute the vertex set of \overline{N} . (ii) the (p-1) vertices v_r , $r=1,2,\ldots,p$, $r\neq i$ and the vertices of $P_{i(m)}$ will constitute the vertex set of $N_{i(m)}$ and (iii) C_2 is the fundamental cutset matrix of \overline{N} with respect to \overline{T} . If A_i is the reduced incidence matrix of \overline{N} with v_i as the reference vertex, then C_2 can be expressed as

$$C_2 = R_i A_i. (11)$$

It is well known that R_i is non-singular. Further we denote by $k_{i(k),j}$, $j \neq i$, the voltage of the set of ports P_j when $P_{i(k)}$ is excited with a source of unit voltage

(5)

case

(6) The

 $_{
m the}$

 T_i^* will

ned

(7)

(8)

(9)

We

and all the other ports are short circuited. We note that $k_{i(k),j}$ is equal to some

element of the k^{th} row of K_{ij} , $j \neq i$.

Given the port configuration T and the potential factors, the modified cutset matrix C of the required padding n-port network N can be easily constructed. It has been shown that a real diagonal matrix G will represent the edge conductance matrix of a padding n-port network N if and only if the following equations are satisfied [4].

$$CGC_2^t = 0 (12a)$$

$$CGC_1^t = 0 (12b)$$

and

$$\det\left(C_2GC_2^t\right) \neq 0. \tag{12c}$$

We next proceed to solve Eq. (12) for G.

Consider first Eq. (12a). This equation can be written as a set of linear equations with S_{ikj} 's as unknowns. If $C_i^{(k)}$ denotes the row of C corresponding to $P_{i(k)}$, then equation (12a) can be written as

$$C_i^{(k)}GC_2^t = 0, i = 1, 2, ..., p, k = 1, 2, ..., n_i.$$
 (13)

From (11) and (13) we get

$$C_i^{(k)}GA_i^t = 0, i = 1, 2, ..., p, k = 1, 2, ..., n_i.$$
 (14)

We note that Eq. (13) and (14) are equivalent since R_i is non-singular. The equation

 $C_i^{(k)}GA_i^t = 0$ for some i and some k

represents the following set of (p-1) equations.

$$S_{i_{k}j}(k_{i(k),j}-1) + \sum_{\substack{m=0\\m\neq k}}^{n_{i}} S_{i_{m}j} k_{i(k),j} + \sum_{\substack{m=1\\m\neq j;\ m\neq i}}^{p} S_{j,m}(k_{i(k),j}-k_{i(k),m}) = 0$$

$$(15)$$

$$j = 1, 2, ..., p, j \neq i.$$

Eq. (15) can be easily identified as Kirchhoff's current law equation for $N_{i(k)}$ at the (p-1) vertices v_r , r=1, 2, ..., p, $r \neq i$. Solving (15) for $S_{i,j}$ and generalising the result we get

$$S_{i_k j} = S_{i,j} k_{i(k),j} + \sum_{\substack{m=1\\m \neq i, \ m \neq j}}^{p} S_{j,m} \left(k_{i(k),j} - k_{i(k),m} \right)$$

$$i = 1, 2, \dots, p,$$

$$k = 1, 2, \dots, n_i$$
(16)

and

$$j = 1, 2, ..., p, j \neq i.$$

Since

$$S_{i,j} = \sum_{k=0}^{n_i} S_{i_k j}.$$

Eq. for i

con

the equ

and

Cor

 \mathbf{T} hi

Sol

P. Subbarami Reddy et al.: Analysis and Synthesis of the K- and Y-Matrices

trices

some

utset d. It

ance

s are

(12a)

(12b)

(12c)

tions

then

(13)

(14)

ation

(15)

t the

(16)

We get from (16)

$$S_{i_0j} = S_{ij} - \sum_{k=1}^{n_i} S_{i_k j}$$

$$= S_{ij} \left(1 - \sum_{k=1}^{n_i} k_{i(k),j} \right) - \sum_{k=1}^{n_i} \sum_{\substack{m=1\\ m \neq i, m \neq j}}^{p} S_{j,m} \left(k_{i(k),j} - k_{i(k),m} \right)$$
(17)

i = 1, 2, ..., p and $j = 1, 2, ..., p, j \neq i$.

Eq. (16) and (17) can be used to evaluate all $S_{i,j}$'s after assuming arbitrary values for $S_{i,j}$'s. $S_{i,j}$'s so obtained will satisfy Eq. (12a).

We next proceed to solve Equation (12b) and obtain expressions for the edge

conductances of N in terms of $S_{i_k i}$'s.

Let $C_{1,j(m)}$ denote the row of C_1 corresponding to $P_{j(m)}$. Then, taking into account the symmetry of the short-circuit conductance matrix CGC_1^t , the following sets of equations are obtained from Eq. (12b).

$$C_i^{(k)}GC_{1,j(m)}^t=0, \quad i=1,2,\ldots,p-1, \ k=1,2,\ldots,n_i, \ j=2,3,\ldots,p,j>i, \ m=1,2,\ldots,n_i.$$
 (18a)

$$C_i^{(k)}GC_{1,i(m)}^t = 0, \quad i = 1, 2, ..., p,$$

$$k = 1, 2, ..., n_i - 1,$$

$$m = 2, 3, ..., n_i, m > k$$
(18b)

and

$$C_i^{(k)}GC_{1,i(k)}^t = 0, \qquad i = 1, 2, ..., p,$$

 $k = 1, 2, ..., n.$ (18c)

Consider the equation

 $C_i^{(k)}GC_{1,j(m)}^t=0$, for some i, k, j > i, and m.

This equation can be written as

$$g_{i_{k}j_{m}}(k_{i(k),j}-1) + \sum_{\substack{r=0\\r\neq k}}^{n_{i}} g_{i_{r}j_{m}}k_{i(k),j} + \sum_{\substack{r=1\\r\neq i\\r\neq j}}^{p} S_{j_{m}r}(k_{i(k),j}-k_{i(k),r}) = 0.$$

$$(19)$$

Solving (19) for $g_{i_k j_m}$ and generalising the result, we get

$$g_{i_{k}j_{m}} = S_{j_{m}k} k_{i(k),j} + \sum_{\substack{r=1\\r\neq i\\r\neq j}}^{p} S_{j_{m}r}(k_{i(k),j} - k_{i(k),r})$$

$$i = 1, 2, \dots, p - 1$$

$$k = 1, 2, \dots, n_{i}$$

$$j = 2, 3, \dots, p, j > i$$

$$m = 1, 2, \dots, n_{i}.$$

$$(20)$$

 $\mathbf{W}\mathbf{e}$

The

thos

resu

P. Si

Values for $g_{i_k j_m}$'s obtained by using (20) will satisfy (18a). Further $g_{i_0 j_m}$ and $g_{i_k j_0}$ and $g_{i_0 j_0}$ can be obtained as

$$\begin{split} g_{i_0 j_m} &= S_{j_m i} - \sum_{k=1}^{n_i} g_{i_m i_k} \\ g_{i_k j_0} &= s_{i_k j} - \sum_{m=1}^{n_j} g_{i_k j_m} \end{split}$$

and

$$g_{i_0j_0} = S_{i_0j} - \sum_{m=1}^{n_j} g_{i_0j_m}$$

$$i = 1, 2, ..., p - 1$$

$$k = 1, 2, ..., n_i$$

$$j = 2, 3, ..., p, j > i$$

$$m = 1, 2, ..., n_j.$$
(21)

Eq. (20) and (21) will enable us to obtain conductances of edges connecting vertices in different T_i 's.

We then consider equation (18b). The equation

$$C_i^k G C_{1,i(m)}^t = 0$$
 for some i, k and $m > k$

can be written as

$$-g_{i_k i_m} - \sum_{\substack{j=1\\j\neq i}}^{p} S_{i_m j} k_{i(k),j} = 0.$$
 (22)

Solving Eq. (22) for $g_{i_k i_m}$ and generalising the result we get

$$g_{i_{k}i_{m}} = \sum_{\substack{j=1\\j\neq i}}^{p} S_{i_{m}j}k_{i(k),j}$$

$$i = 1, 2, \dots, p,$$

$$k = 1, 2, \dots, n_{i} - 1,$$

$$m = 2, 3, \dots, n_{i}, m > k.$$

$$(23)$$

Values for $g_{i_k i_m}$'s obtained using (23) will satisfy Eq. (18b). Finally, we consider equation (18c). The equation

$$C_i^{(k)}GC_{1,i(k)}^t=0$$
, for some i and some k

can be written as

$$g_{i_k i_0} + \sum_{\substack{j=1\\j \neq i}}^{p} S_{i_k j} (1 - k_{i(k),j}) + \sum_{\substack{m=1\\m \neq k}}^{n_i} g_{i_k i_m} = 0.$$
 (24)

From Eq. (24) we get

$$g_{i_k i_0} + \sum_{\substack{m=1\\m \neq i}}^{n_i} g_{i_k i_m} + \sum_{\substack{j=1\\j \neq i}}^{p} (k_{i(k),j} - 1) S_{i_k j}. \tag{25}$$

Valı

min

is to conc and

of I

will it m

assu how

fact

sect new

the as s

- CO 10

 $\frac{\text{gene}}{T^*}$

hav.

ices

 $g_{i_k j_{\mathfrak{o}}}$

We get from Eq. (23) and (25)

$$g_{i_{k}i_{0}} = \sum_{\substack{m=1\\m\neq k}}^{n_{i}} \sum_{\substack{j=1\\j\neq i}}^{p} S_{i_{m}j} k_{i(k),j} - \sum_{\substack{j=1\\j\neq i}}^{p} (1 - k_{i(k),j}) S_{i_{k}j}$$

$$= \sum_{\substack{j=1\\j\neq i}}^{p} k_{i(k),j} S_{i_{0},j}.$$
(26)

The last step in Eq. (26) follows after equating to zero the sum of the currents in those edges of $N_{i(k)}$, connecting vertices in T_i to all other vertices. Generalising the result obtained in Eq. (26) we get,

$$g_{i_{k}i_{0}} = -\sum_{\substack{j=1\\j\neq i}}^{p} k_{i(k),j} S_{i_{0}j}.$$

$$i = 1, 2, \dots, p,$$

$$k = 1, 2, \dots, n_{i}.$$
(27)

Values for $g_{i_k i_0}$'s obtained using Eq. (27) will satisfy (18c).

The discussions up to this point may be summarized as follows:

- a) Assuming arbitrary values for $S_{i,j}$'s, determine $S_{i,j}$'s using Eq. (16) and (17).
- b) Use the values of S_{i_kj} 's so obtained, in Eq. (20), (21), (23) and (27), and determine the values for the edge conductances $g_{i_kj_m}$'s of N.
 - c) The values of edge conductances so obtained will satisfy Eq. (12a) and (12b).

We next turn to (12c). Need for padding network synthesis arises in the realisation of K and Y matrices by n-port networks having no negative conductances. If N is to be the padding n-port network of some n-port network containing no negative conductances then all $S_{i,j}$'s should be chosen nonnegative. Further if \overline{N} is connected and contains no negative conductances (i.e., all $S_{i,j}$'s are non-negative), then $(C_2GC_2^t)$ will be nonsingular and (12c) will be satisfied. So, while selecting values for $S_{i,j}$'s it must be ensured

- i) all S_{ii} 's are non-negative, and
- ii) some S_{ii} 's must be positive so that \overline{N} is connected.

In the foregoing, expressions for edge conductances of N have been obtained, assuming that each connected part of T is a langrangian tree. This assumption, however, involves no loss of generality, as may be seen from the following.

If any arbitrary connected port configuration T^* and the corresponding potential factors are specified then, the potential factors corresponding to T, in which each connected part is a lagrangian tree, can be easily obtained (Equation 8 in the previous section). If an n-port padding network N having the port configuration T and the newly determined potential factors is generated then the n-port network N^* with the port configuration T^* will also be a padding network with its potential factors as specified. It may be noted N and N^* are port-vertex equivalent n-port networks.

If, however, the port configuration T^* alone is specified, then we should first generate N assuming values for all distinct S_{ij} 's as well as for all $k_{i(k),j}$'s. The n-port network N^* port-vertex equivalent to N and having the prescribed port configuration T^* will be the padding n-port network required.

This completes our discussions on the synthesis of padding *n*-port networks having any arbitrary connected port configuration and having specified potential factors. The usefulness of these results will be discussed in the next section.

(21)

ices

(22)

(23)

[24)

25)

Example 1:

It is required to generate a 3-port padding network having the port configuration shown in Fig. 3a. The potential factors of the required network should be as follows:

$$k_{1(1),2} = k_{12} = 0.5;$$
 $k_{1(1),3} = k_{13} = 0.6$ $k_{2(1),1} = k_{21} = 0.4;$ $k_{2(1),3} = k_{23} = 0.5$ $k_{3(1),1} = k_{31} = 0.3;$ $k_{3(1),2} = k_{32} = 0.2.$

Fig. 3a

Assume $S_{i,j}$'s as follows: $S_{12}=10$, $S_{13}=20$; $S_{23}=10$. Using Eq. (16) and (17) $S_{i,j}$'s are obtained as

$$\begin{split} S_{1,2} &= 4 \,;\; S_{1,2} = 6 \,;\;\; S_{1,3} = 13 \,;\; S_{1,3} = 7 \,;\\ S_{2,1} &= 2 \,;\; S_{2,1} = 8 \,;\;\; S_{2,3} = 7 \,;\;\; S_{2,3} = 3 \,;\\ S_{3,1} &= 7 \,;\;\; S_{3,1} = 13 \,;\;\; S_{3,2} = 1 \,;\;\; S_{3,2} = 9 \,. \end{split}$$

Fig. 3b

For example,

$$\begin{split} S_{\mathbf{3_{1}2}} &= S_{\mathbf{23}} k_{\mathbf{32}} + S_{\mathbf{21}} (k_{\mathbf{32}} - k_{\mathbf{31}}) \\ &= 10 \, \cdot 0.2 + 10 \cdot (-0.1) = 1 \end{split}$$

and

$$S_{3,2} = S_{23} - S_{3,2} = 9.$$

P.,

Us ed{

Th

IV a)

sol

ha

po ap

of K

is co

cu Tł

ex

ex ha W

bу

w] If no

 \mathbf{of}

no

ices

ion ws:

Using the values of $S_{i,j}$'s so obtained in Eq. (20), (21), (23) and (27) we can get the edge conductances of the required 3-port network. For example

$$\begin{split} g_{1,2_1} &= S_{2,1} k_{12} + S_{2,3} (k_{12} - k_{13}) \\ &= 2 \cdot 0.5 - 7 \cdot 0.1 = 0.3 \\ g_{1,1_0} &= -S_{1_0 2} k_{12} - S_{1_0 3} k_{13} \\ &= -6 \cdot 0.5 - 7 \cdot 0.6 = -7.2 \,. \end{split}$$

The required 3-port padding network is shown in Fig. 3b.

IV. Synthesis of K- and Y-Matrices of n-Port Networks

a) Synthesis of the K-Matrix

Synthesis of the potential factor matrix K of an n-port network requires the solution of the following two problems:

i) Determination of the port configuration T appropriate to K.

ii) Determination of an n-port network containing no negative conductances and

having the port configuration T and the specified K-matrix.

In their solution of the first problem, Lempel and Cederbaum [5] first assume the port configuration to be in n parts and then obtain the modified cutset matrix, appropriate to the assumed port configuration and the given K-matrix. This modified cutset matrix can be determined either by using Eq. (10) of reference [5] or Eq. (6) of this paper or by inspection of the assumed port configuration and the given K matrix. From the modified cutset matrix so obtained, the port configuration T is determined by the application of a simple procedure, which yields a unique port configuration T for a given K matrix.

To solve the second problem, Lempel and Cederbaum first determine the modified cutset matrix C, appropriate to the port configuration T and the specified K matrix. Then linear programming technique is applied to obtain a non-negative G, if one exists, satisfying the equation

$$CGC_2^t = 0$$
.

In this section, we give a new necessary and sufficient condition to test the existence of a resistive n-port network containing no negative conductances and having a specified K-matrix and a port configuration T appropriate to the matrix K. We assume, without loss of generality, that each connected part of the port configuration T is a lagrangian tree.

Let the column matrices of $(S_{i_k j})_p$'s and $(S_{ij})_p$'s of an *n*-port network N_p be denoted by \overline{S}_p and S_p respectively. Eq. (16) and (17) can be together written in matrix form as

$$\overline{S}_p = PS_p$$

where each entry of the matrix P is a linear combination of some potential factors. If $(S_{ij})_p$'s are such that N_p is connected then the corresponding S_p will be called non-trivial. It is shown in [6] that

- i) if all $(S_{i_d})_p$'s of a padding *n*-port network N_p are non-negative then a network of departure N_d can be found so that the parallel combination N of N_p and N_d contains no negative conductances;
 - ii) an n-port network and its padding network have the same K-matrix, and

iii)
$$(S_{i,j})_p = S_{i,j}$$
 and $(S_{ij})_p = S_{ij}$.

Theorem (2) then follows.

(17)

Theorem 2

Let each connected part of the port configuration T appropriate to a given potential factor matrix K be a lagrangian tree. The matrix K can be realised by a resistive n-port network containing no negative conductances if and only if there exists a non-trivial S such that $S \ge 0$ and $PS \ge 0$.

Following steps may then be used for the synthesis of a K-matrix:

- i) Obtain a non-trivial value of S, if it exists, equal to S_a such that $S_a \ge 0$ and $PS_a \ge 0$ [9, 14].
- ii) Construct a padding n-port network N_p having the matrix K as its potential factor matrix and such that its \overline{S} matrix is equal to PS_a .
- iii) Determine a suitable N_d so that the parallel combination N of N_d and N_p contains no negative conductances.
 - iv) The network N realizes the matrix K.

We now wish to draw attention to the following.

1. According to the procedure given in [6] to determine a suitable N_d for a given N_p in which all $(S_{i,j})_p$'s are non-negative

$$(g_{i_k i_m})_d = -(g_{i_k i_m})_p \tag{28}$$

and

$$(g_{i_k j_m})_d = -(g_{i_k j_m})_p + \frac{S_{i_k j} S_{j_m i}}{S_{ij}}, \quad i \neq j.$$
(29)

Since

$$g_{i_k j_m} = (g_{i_k j_m})_d + (g_{i_k j_m})_p \quad \text{for all i and j}\,,$$

we get

$$g_{i_k i_m} = 0 ag{30}$$

and

$$g_{i_k j_m} = \frac{S_{i_k j} S_{j_m i}}{S_{ii}} \text{ for all } i \text{ and } j, j \neq i.$$
(31)

Thus determination of N requires the evaluation of only $(g_{i_k j_m})$'s using (31).

2. It can be shown using Eq. (16) that for every vertex i_k there exists a j such that $S_{i_k j}$ is non-negative if all S_{ij} 's are non-negative. Thus of the $(n+p) \cdot (p-1)$ elements of the vector \overline{S} , (n+p) elements will be non-negative if all S_{ij} 's are non-negative. Hence the total number of constraints involved in the solution of the linear program implied in theorem (2) is only (n+p) (p-2). In contrast the number of constraints used in the procedure given in [5] is n (p-1). It may be noted that for

$$n>p\ (p-2)$$

the procedure given in this section for K-matrix synthesis involves a smaller number of constraints than used by Lempel and Cederbaum [5]. Further the present procedure involves $\frac{p(p-1)}{2}$ number of unknowns which is less than the minimum number of unknowns, namely 2p(p-1) used in [5].

The new approach given in this section for K-matrix synthesis provides a greater insight into the nature of the K-matrix synthesis problem. In fact following the same approach a simple necessary and sufficient condition has already been obtained for the synthesis of the K-matrices of (n + 2)-node n-port networks. Further, since

this a s_I Sec

b) ...

net esse a g

 $ext{Th}\epsilon$

nan pad for and Thi n-p

mo knc cut net

of

 $_{
m tha}^{
m pot}$

 N_d and (23)

who val con

If a

The proline out ed K-12

en-

; a

ces

nd

ial

 N_p

'en

28)

29)

30)

31)

ıat le-

he er

ıat

er ire

er

he ed

ce

this procedure essentially requires the synthesis of a suitable padding network having a speciefied K-matrix, it can be readily used in Y-matrix synthesis as discussed in Section IV (b).

b) Synthesis of the Y-Matrices of n-port Networks with more than (n + 1) Nodes

The only approach available for the synthesis of the Y-matrices of n-port resistive networks having more than (n+1)-nodes is due to Guillemin [8]. This approach essentially requires the determination of a suitable padding n-port network N_p for a given network of departure N_d . As a result a number of procedures have been proposed in the past for the generation of padding n-port networks [8, 10, 11, 12]. The procedure for padding network generation given in Section III is yet another contribution in this direction.

A significant feature of this new procedure is that all the parameters used herein namely S_{ij} 's and $k_{i(k),j}$'s can be readily identified with certain quantities of the padding network N_p to be realized. Also these quantities happen to be the same for both N_p and N. The procedures for padding network synthesis given in [8, 10, 11], and [12] do not permit such straightforward identification for all the parameters. This feature of the new procedure is of help in the synthesis of Y matrices of RLC n-port networks. In the synthesis of such networks, it is required to realise a set of real symmetric Y matrices by resistive n-port networks, all having the same modified cutset matrix [3], [8]. If a network N_1 realising one of these matrices is known, then all networks realising the other matrices should have the same modified cutset matrix as N_1 . This leads us to the problem of synthesis of a resistive n-port network having a prescribed Y matrix, a prescribed port configuration and specified potential factors $k_{i(k),j}$'s. To solve this, we may proceed as follows. We assume that each connected part of the port configuration T is a lagrangian tree.

Let $\{g\}_d$ be the column matrix of edge conductances of the network of departure N_d with respect to the given Y and T. Let $\{g\}_p$ be the column matrix of edge conductances of a required padding network N_p . It follows from Eq. (16), (17), (20), (21), (23) and (27) that $\{g\}_p$ can be related to S, the column matrix of S_{ij} 's, as

$$\{g\}_p = QS$$

where each entry of Q is a function of $k_{i(k),j}$'s. Hence Q can be determined from the values specified for $k_{i(k),j}$'s. Since the parallel combination of N_p and N_d should contain no negative conductances, it is required that

$$\{g\}_p = QS \ge -\{g\}_d. \tag{32}$$

If a non-negative and non-trivial value of S equal to S_a satisfying (32) exists then the column matrix $\{g\}$ of conductances of the required n-port network will be given by

$$\{g\}=\{g\}_{\it d}+\it QS_{\it a}.$$

Thus it follows from (32) that when T, Y and $k_{i(k),j}$'s are specified, n-port synthesis problem simplifies to one of solving a linear program. This is in contrast to the nonlinear equations involved when Y and T alone are specified. Following the approach outlined above, a simple necessary and sufficient condition has already been established for the synthesis of (n+2)-node n-port networks having prescribed Y and K-matrices [13]. The procedure for padding network synthesis given in [8, 10, 11, 12] will not be of help in the synthesis of Y-matrices of RLC n-port networks.

 \boldsymbol{P}

 $\mathbf{a}^{\mathbf{j}}$

fα

tł

 S_i

n

ir.

fc

 \mathbf{a}

 \mathbf{n}

fε Τ

O.

is

tŀ

 \mathbf{n}

oi ir

is

S

ti

ir

 \mathbf{a}

h.

A

tl

C(

re

O:

o: fc

 ${\bf Z}$

 \mathbf{n}

еi

n

u

a

d.

c) Lower Bound on the Number of Conductances required for the Synthesis of a Y-Matrix

We, next, establish a lower bound on the number of conductances required for the realisation of a real symmetric matrix Y as the shortcircuit conductance matrix of a resistive n-port network containing no negative conductances and having a prescribed port configuration T.

Consider, a resistive n-port network N containing no negative conductances. Let each connected part of the port configuration T of N be a lagrangian tree.

For every port $P_{i(k)}$ of N there exists a j such that

$$k_{i(k),j} \ge k_{i(k),r} r = 1, 2, ..., p, \quad r \neq i, r \neq j.$$
 (33)

Since N contains no negative conductances all S_{ikj} 's are non-genative. Then it follows from Eq. (33) and (20) that for every vertex i_k , $k \neq 0$ there exists a j such that

$$(g_{i_k j_m})_p \ge 0 \quad \text{for all } m = 0, 1, 2, \dots, n_j.$$
 (34)

Let N^* be an *n*-port network port-vertex equivalent to N. Let the star vertex of each T_i^* be different from that of T_i . Then following the same line of argument as above, we can show that for every vertex i_0 there exists a j such that

$$(g_{i_0j_m})_p \ge 0 \quad \text{for all } m = 0, 1, 2, ..., n_j.$$
 (35)

Since the padding networks of port-vertex equivalent n-port networks are identical, we conclude from (34) and (35) that for every vertex i_k there exists a j such that

$$(g_{i_k j_m})_p \ge 0 \quad \text{for all } m = 0, 1, 2, \dots, n_j.$$
 (36)

Further, the above result is valid irrespective of the port configuration.

It follows from (36) that in the case of (n + 2)-node n-port networks in which p = 2, all the conductances connecting vertices in T_1 to vertices in T_2 are nonnegative. This result has already been established in [6].

Let N_d be the network of departure with respect to a given Y matrix and a port configuration T. Let $x_{i(k),j}$ be the total number of positive conductances in N_d connecting vertex i_k to all the vertices in T_j . Let

$$x_{i(k)} = \text{Min} \{x_{i(k),j}, j = 1, 2, ..., p, j \neq i\}.$$

Theorem (3) then follows from (36).

Theorem 3

The number of conductances required for the realisation of a real symmetrix matrix Y as the short-circuit conductance matrix of a resistive n-port network having no negative conductances and having a prescribed port configuration T cannot be less than

$$1/2 \sum_{i=1}^{p} \sum_{k=0}^{n_i} x_{i(k)}.$$

V. Conclusion

The only approach available for the synthesis of resistive n-port networks having more than (n+1)-nodes is due to Guillemin [8]. Guillemin's approach essentially requires the determination of a suitable padding n-port network N_p for a given network of departure N_d so that the parallel combination of N_d and N_p contains no negative conductances. Hence a number of procedures were suggested for generation of padding n-port networks [10, 11, 12]. All these procedures express conductances of a padding network in terms of certain arbitrary parameters. It was pointed out recently that a padding n-port network can be identified as the padding network

rices

for trix

g a

Let

(33)

ows

(34)

r of t as

(35)

ical,

hat

(36)

nich 10n-

port

 N_d

trix 1av-1not

ving
ially
iven
s no
tion
nces
out
vork

of some resistive n-port network containing no negative conductances if and only if all $S_{i_k j}$'s are non-negative [6]. In view of this it is enough if we confine our search for a suitable padding n-port network to a restricted class of these networks. Further the potential factors and S_{ij} 's of a network and its padding network are identical. So, it seemed desirable and useful to develop a procedure for generating padding n-port networks in terms of these parameters. A step in this direction was taken in [6]. In Section III of this paper the approach presented in [6] is investigated and formulas for the conductances of a padding network in terms of potential factors and S_{ij} 's are obtained. Since these formulas are in terms of potential factors it is neccessary that we know the necessary and sufficient conditions which the potential factors of a resistive n-port network having no negative conductances should satisfy. This necessity explains the interest in the analysis and the synthesis of the K-matrix of n-port networks.

In Section II, an equation relating the modified cutset matrix and the K-matrix is established. This relationship, as pointed out in Section II, is useful in view of the method used in [5] for determining the port structure pertinent to a given K-matrix.

The procedures for K-matrix synthesis given in [5] as well as in Section IV (a), of this paper require the solution of a linear program. However, the present approach involves a smaller number of unknowns and further the number of constraints used is also smaller for all n > p (p-2). Added to these is ist usefulness in the Y-matrix synthesis problem.

Though the Y-matrix synthesis problem looks formidable, simultaneous realisation of K and Y matrices is straightforward as shown in Section IV (b). It is shown in [15] that the problem of synthesis of a hybrid matrix reduces to one of realising an n-port network having prescribed K and Y matrices and prescribed S_{ij} 's. Thus hybrid matrix synthesis can be achieved by a straightforward application of the results of this paper.

The lower bound on the number of conductances required for the realisation of a matrix Y might help in throwing some light on *Biorci*'s conjecture.

Abstract

In this paper a new matrix equation relating the modified cutset matrix C and the potential factor matrix K, of an n-port network is first established. A new procedure for the synthesis of padding n-port networks is then given. Based on these results, a new necessary and sufficient condition is then established for the synthesis of the K-matrices of n-port networks. Application of these results in the synthesis of Y-matrix is discussed. A lower bound on the number of conductances required for Y-matrix synthesis is also given.

Zusammenfassung

In dem Artikel wird eine neue Matrizengleichung, die die modifizierte Schnittmengenmatrix C und die Knotenspannungsmatrix K eines n-Tor-Netzwerkes miteinander verknüpft, vorgestellt. Ein neuer Algorithmus für die Synthese größerer n-Tor-Netzwerke wird gegeben. Mit diesen Ergebnissen wird eine neue hinreichende und notwendige Bedingung für die Synthese der K-Matrizen von n-Tor-Netzwerken abgeleitet. Die Ergebnisse werden bei der Synthese von Y-Matrizen angewendet und diskutiert.

References

- [1] Murti, V. G. K., and K. Thulasiraman: Parallel connection of n-port networks. Proc. IEEE 55 (1967) 7, 1216—1217.
- [2] Murti, V. G. K., and K. Thulasiraman: Synthesis of a class of n-port networks. IEEE Trans. on Circuit Theory CT-15 (1968) 3, 54-63.
- [3] Thulasiraman, K., and V. G. K. Murti: Synthesis applications of the modified cutset matrix. Proc. IEE 115 (1968) 9, 1269—1274.
- [4] Thulasiraman, K., and V. G. K. Murti: Modified cutset matrix of an n-port network. Proc. IEE 115 (1968) 9, 1263—1268.
- [5] Lempel, A., and I. Cederbaum: K-matrix of n-port networks analysis and synthesis. IEEE Trans. on Circuit Theory CT-16 (1969) 11, 471—483.
- [6] Subbarami Reddy, P., V. G. K. Murti and K. Thulasiraman: Realisation of modified cutset matrix and applications. IEEE Trans. on Circuit Theory CT-17 (1970) 11, 475-486.
- [7] Cederbaum, I.: On equivalence of resistive n-port networks. IEEE Trans. on Circuit Theory CT-12 (1965) 9, 338-344.
- [8] Guillemin, E. A.: On the realisation of an nth order G-matrix. IEEE Transactions on Circuit Theory CT-8 (1961) 9, 318—323.
- [9] Gale, D.: Theory of Linear Economic Models. New York, McGraw-Hill, p. 119.
- [10] Swaminathan, K. R., and I. T. Frisch: Necessary conditions for the realisability of n-port resistive networks with more than (n + 1)-nodes. IEEE Trans. on Circuit Theory CT-12 (1965) 12, 520-527.
- [11] Lupo, F. J., and C. C. Halkias: Synthesis of n-port networks on two-tree port structures. IEEE Trans. on Circuit Theory CT-12 (1965) 12, 571-577.
- [12] Lupo, F. J.: The Synthesis of transformerless n-port networks on multi-tree port structures. IEEE Transactions on Circuit Theory CT-15 (1968) 9, 211—220.
- [13] Subbarami Reddy, P., and K. Thulasiraman: Synthesis of (n + 2)-node resistive n-port networks. IEEE Transactions on Circuit Theory CT-19 (1972) 1, 20-25.
- [14] Gass, S. I.: Linear programming. New York, McGraw-Hill.
- [15] Swamy, M. N. S., and K. Thulasiraman: Realisation of the A-matrix of RLC networks. IEEE International Symposium on Circuit Theory CT-19 (1972) 9, 515-518.