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A CODING ALGORITHM FOR_UNDIRECTED GRAPHS.
Introductions

This chapter is concerned with the construction of a
“"code"™ for umdirected graphs. The code which is a string
of characters, cbmpletely defines the graph so that two

graphs have the same code if and only if they are ®isomorphic®,

The algorithm presented here is based on the work done
by Yogesh J. Shah, George I. Davida, and Mlchael K. McCarthy (19).:
In section 2.2.,1 a counter example is given to show that their
_(19)'a1gorithm fails to préduce the op timum code-fof eerﬁain
gréphs;- A more efficient algorithm for the constructianvof fhe
cdde is pfesented in section 2.2.2, Though the algorithmﬂis
based on the e;rlié?-work (19), most'of'the,ideas_ﬁsed are
different from those presented in the original péper (19).
A forﬁal proof of the algorithm is aise presented. In section _
2,2.3 the coding algorithm is worked out in full for a fairly -

simple.graph;

2.1 Graph Coding Problem_ and Graph Isomorphisms

Definition 2. 13

Let G be a collection of graphs eof certain kind, and let -
X be a specified set of objects. A “coding procedufe“ for G

is a mapping C3sG —> X such that two graphs in-G-mép on to.the



same element in X if, and eniy if, the two are isomorphic,
The problem'ofieevieing a eoding procedure for a given set
G is known as "coding preblem". | 7

The image of greph g in G ﬁnder-the mapping d is cailed
the “epde" of g+ An element x-of X:ie called a ®valid code"
if it is the image of some g in G. under C. The set X is
usually the set of all strings of some alphabet, We note
that there is a one to one correspondence between the iso;
merphiem classes in G'and'the set of valid codes., - ?he proée;s
of obtaining, freﬁ a valid code x, a graph whose code is x is-

called the decoding procedﬁre.

Slnce two graphs have the same code if, and only 1f, they
are 1somorph10, the coding problem is effectlvely same as the
-”graph 1somerphism problem® (devising an algorithm to test
whether two graphs in G are 1somorphic or not) But it is not
-adv1sable to go for eodlng procedures, if the problem is just
to find out whether two graphs are 130morphlc or not. Apply-
1ng the coding procedure on each graph and then comparing the
two cedes might be a roundabouf method, There are algorithms
(18,9,4) available whose_ihpﬁf is the pair of graphs to be
tested and outpur is "the two graphs are isoherphic“ or "the
fwo graphs_are not isomorphict, These_algerithme process ﬁhe
two graphs simultaneoﬁsl& and if the tﬁo graphs-are not iso-
morphic it mey be detected at any stage of the algorithm.

Thus if we have a one-shot problem of determining whether two



graphs are isomorphic or not, then algorithmg-which fest this
directly are more suitable, On the otherhand,iif we are giveh

a new graph and asked to find out whether it is is_omorphic to

one of the graphs in a list of graphs, then the coding procedure
could be more suitable, The list of graphs coﬁld be : étored in
the form of their codes. The.cﬁde of the new graph is calcg-
lated and then we look for a match in the 1ist of graphs. Thus

we can replace N{assume there arevN graphs in the 1list) appli-
cationgof the isomorphism program by one application of the coding
program and N coﬁpérisons to find a match in the list of codes.

If the order of_cemplexity of isomorphism pregram and the coding
procedure are same (reasonable assumption) then we save a great
deal of time by using the coding procedure.. To iilustraté this
_point, let us comsider the example given in R.C. Read (16).

We are given the task ;f-generating all trees of order p. A methéd

 of doing this, that produces no duplicates has been described (12),
but is comp}icated; it is more straight forward'to'de:ive these
trees from those of orde; p=1 (which we shall suppose that we |
have already constructed) as follows. To each of the trees of
~order p-1 we add, im every possible way, an extra edge, one node
of which is already in the tree, while the othér is a newvw mode

of degree 1. 1In tﬁis way,_it is cleér thét we ﬁill get all t:ees _
of order p, but there will be duplicates of the same t?ee. Thus |
each time we produce a tree, we must search in thé-list_of trees

already produced to decide whether to add the currently produced



tree to the 1list or not. This 1s precisely the kind of appli-

cation in which coding procedure can be advantageously used,

2.2, A Coding Algorithm for.GraEh Isomorphisms
There have been attempts in the past to obtain a coding
procedure for a graph (19,16). Our algorithm of finding a code °

is based on the work done by Yogesh J- Shah, George I. Davida

and Michael K. McCarthy (19). | ,

While constructing a coding procedure, we look for suitable
graph invariahfs_. An invariant of a graph is a property enjoyed

by isomorphic graphs. For example,

(1): number of nodes of dééﬁee a (p is arbitrary).
(2) number of edges. | o
(3) nuﬁber.qf circuits of length p (p is—arbifrafy),
(%) number of components. |
are graph invariants. But al;'thésgiinvarignté have
the defect of being not sufficient to_pfgve isomeiphism. 'G:aphs
shown in figures 2.1a and 2.1b havé the same number of nodes,

edges, circuits and components. But still the two are not

isomorphic




Henece we must look for an invariant which is more powerful

| than these,

1
and szof order p are isomorphic or not, one has merely to

Theqretically speaking, to f£ind whether two Graphs G

iexamiﬁe all thé p! possible mappings pf thevveptices of‘Gi

on to those of G2 and'éee whether there is at least ohe

whicﬁ preser%es_adjacéncy. The séme proéedﬁre when modified

to get a eoding'algorithm, looks as féiléﬁs._ Obtain all the'pf

- adjacency matrices (vy reofderihg thé nodes of the graph) 0£ 

the given graph. Tﬁénvselect éne of theseumatrices, basedroﬁ

certaiﬁ criterion,.as.thé cede'representing the graph. _(Noté

that-the_abcvé procedure is a coding procedure according to

Definition 2.1). -
Since the adjacency matrix of én undirected graph is

vsymmetric, one need consider oniy the upper_half of the matrix.'

:Also one can associate with~each adjacency:métrix a binary

number as follows.
The binary number corresponding to the adjacency matrix

i " XX - § s e es e “o.
A(p x p) is 828000 @ 85380 ce0By beeB qeceBeeed, g "

We shall denote this as N,.
Definitien 2.2s
 Cede of graph G by definition = Max 2 N, / A an adjacency
' ”matrix of G %
(Among p! binary:numbers obtained‘from the p! adjacency matrices,

we choose the largest one as the code of the graph).



2.2.1 .A Counter Examples
Yogesh J. Shah, George: I. Davida and Michael K. McCarthy (19)-
‘have given an algorithm to obtain the above mentioned code |
'(Deflnztlon 2, 2) w1thout constructing all the p! adaacency 2
’matrlces; But their algorithm’ fail to produce the optlmum
code in (optimum code is an abuse of notation. Code itself

means the max f N, / A an adjacency matrix of G g

But we use it to conform to their (19) terminology.) fhe casé,
of certain graphs, Here we give a counter example to their

algorithm,

The input graph is as shown in figure 2.2. Ve shall giveJ

the different steps and the final code produced b& the algorithm,

-'Figure 2.2,




Ad jacency Matrix:

- Step-13

10

10

Minimum Distance Matrix:

10

10



Step 2: Flag =0
A1 = 1

Step_9: Go to Step 10,

Step 103 K = 2

Step_ 63 Candidates for A, ‘§1

2 1

3 1

b 1

5 1
Step 73 Candidates for A, U Number

2 0

3 0

4 o
Step 8: Candidates for A, Yalency

2 1

3 3

b -2

5 1

A, =3

Step 9: Go to Step 10,

Step 103 K = 3

Step 63 Candidates for A, B, B,
2 1 2

b 1 2

2

5 1



. Step 73 Candidates for A

3 U Number
2 0
4 ‘ 0
5 0
Step 8+ Candidates for A, Valency
2 | 1
y 2
5 R |
Ay = b

Step 95 Go to step 10.

Step 103 K = 4
'Now since nodes 2 and‘5 are similar, let us continue our

example with node 2 as'Ah.and node 5 as A5.

Step 0: Candidates for 4, B; B, B; By By

6 21 3 3 3
7 2 1 3 3 3
‘Stgp Zé »Céndidatgs for'Aé U Number
6 0
7 0
Step 8s Gandidafgs for A VValengﬁ
' 6 2
7 3



Step 9¢ Go to step 10,

Step 10s K = 7
A7= 6
Step 93 Go to Step 10.

Step 103 K = 8
A8= 8
- Step 93 Go to Ste_p 10,

Step 103 K = 9

Steg 61 Candidates for 59 B, B, : B3
9 3 2 ' 4
10 '3 2 2

A9 = 10

Step 93 Go to Step 10,
- Step 10 K = 10
Ao = 9

Now the adjacency matrix according to the above ordering is,



b
b
>

;r
>

1 A2 A4 5 4 A 9 %10
A, o 1 1 1 1 0 o o0 0 .0
4, 1 0 o o0 o 1 1 o o0 o
AB 1 -0 0 0 0 0 b 1 0 o
4, 1 0 o0 © 0 ©0 0 0 o0 "o
A, * 0 o 0o o O 0o o0 o0 o
A, © 1 © o o o0 o0 o 1 1
Aé_ o 1 o © o o o o o 1
Ag 0 o0 1 0 o o 0 o 1 0
Ay O 0 o6 o o 1 0 1 o . o.
A, O 0 o0 o0 o 1 1 o o o

Hence the eorresponding code is
“11&10000000011000000010000@0@0000000011001190“.

But if we interchange A9 and A19,

We will get,
”111100000000110000000100000000000000611010010" as the code.

This is certainly larger than the code obtained using the

algorithm,

2.2.2  Decription of the Algorithms

Now we shall propose an algorithm which results in

. the optimum code for a graph.

Our method aims at getting a total ordering of ﬁhe
nodes such that the adjacency matrix of the graph when written .

in this order results in the optimum code,



Definition 2.3:¢ Ordered m-partition.

Let V be the set of nodes of a graph G. Then s P1,P2,P3..;P@ ;-is
an ordered m-partition P of the nodes of G if
(a) P; is a subset of V for 1<ig m.
(b) The P, 's are mutually exclusive,
de Pj:ﬂP. = ¢ forall i, j@—( 1,2'0.."1) and i #j.

J
(¢) The P,'s are exhaustive ie

v

. P. =V

joq 1

We shall call m as the rank of the partition P,

Def:i._nitién 2.4: The class index of P of an ordered partifion
| , ) g .

€P1’P2’_'..Pk... Pm) 1Sv‘th.e subscript ko

Definition 2.5: In an ordered m-partition P = é P1,P2,... Pm ;

P.< Py if and only if k £ 1,

Thus our task is to find an ordered n-partition
. (n is the cardinality of the set of nodes of the graph) which
will result in the optimum adjacency matrix. Let us label the

- node in Py of the above, final, ordered n—partition as _Ai.

We shall first find A“1 and then the other Ai 'é inductively..

2.2.2,1 Method of finding A,

Definition 2,6 Valency of a node

The valency of a node V, of a graph G is the number of

edges in G which are incident on V..



BDefinition 2;6tg:- Neighbour: Node V. of a graph G is a
nelighbour of node Vj>if there is an edge in G connecting
Vi and Vj.

(Notes Neighbour relation is symmetric).

Definition 2.6 b: U Number: U number of a pair of nodes

(Vg vj) is the cardinality of the set of nodes which are
adjacent to both V; and V, if A(V, V) = 1. deV, is a

neighbour of V It is zero otherwise,

3° _
. Definition 2.6 ©3 MW Numbers The MW number of mode V, is

the largest of all U numbers of the pair (Vi, Vj) wheré-node

Vj is a neighbour of node Vi.

Definition 2.6 ds VN Numbers Let the set

S

é s / U (Vi,s) = My (V) ;

Now VN number of node V, = max ( valency s / s € S )
Lemma 13

Consider two adjacency matrieés A ahd A' of a graph G.
Let the first K rows of the twd-matrices be identical., If
the length of the string of 1's following the diagonal in

the (K+1)th row of A is greater than that of A!, thenNA is

greater than N*Ar

Proof:s The result follows directly from the definition of NA'

Lemma 23

- The node corresponding to the first row of the optimum

adjacency matrix is a node of maximum valency.



/4 :':.

Proof's Let A be the optimum ad jacency matrix and v be the
node associated with the first row of A, Let the valency of

v be d. Then, the binary number NA-cerresppnding to A.

d+1 _(2)-1_

i=1

‘Let us assume that there exists a node v' whose valency d' d.
Now construct an adJacency matrix A! whose flrst (d+1) nodes

are v' and d of its neighbours. ‘The blnary number N,, corres-

A
pondlng to A?
n
d+1 (2)-1
> 57 "
<z
: . . + This implies that N¥* AC>N contradicting
i:l ’
the assumption on A,
' Q. E.D,

Algorithm I
Step 1: Find the node(s) of maximum valency. If there is a
single node M of maximum valency, assign M as Al and stop.,

Else go to Step 2,

Step 23 Let there be j nodes (Ml’MZ"°’MJ) of maximum valency.
For each node,’find its MW number, If there is a single node
M having maximum MW number, assign M as Al and stop. Else

go to Step 3.

Step 33 Let there be j' nodes (M1,M2...Mj') having maximum MW

number. For each node find its VN number. If there is a



single node with maximum VN number assign it as A1 and stop,.

' Else go to Step U, -

Step 4s Let there be @ nodes (M1,M25.,.Mi) having maximum VN

number ., Then the candidates for Al are El,Mz,..{Ml stop.

The input to Algorithm I is an adjacency matrix of the

given graph G. The algorithm either finds.A1 or it gives a

is indeéd one

list of candidates for A,. We can show that A

1 1
of the nodés in the list of candidates given by the algorithm.
From definition 2,2 of optimum code, it is evident that
we should look for A, along the following lines,
a. According to Lemma 2 the first row of the optimum adjacency
matrix must correspond to a node of maximum Valeney. This is-
guaranteed by Step 1.
b. If constraint 'a' is satisfied by more than -one node, then
we see from Lemma 1 that Alrsheuld'be so chosen, such that the
string of 1's following the diagonal in the second row of the
adjaceney matrix is of maximnm length. This is guaranteed by
Step 2 of the algorithm, »
¢, If there are more than one nodes competing for A, satis-
fying constraints 'a' and ‘b"then'Al should be so chosen such
that the second row of the adjacency matrix has maximum number

of 1's. This is guaranteed by Step 3 of the algorithm,



For each candidate for Al given by the algorithm, we

shall construct an ordered 2-partition as follows.,

P, = ( candidate for Ay )

V—- ( candldate for A )

Pa

~ For the Sake of simplicity we shall call the candidate for A1

1
name A, is interpreted from the context.

in each partition as A, itself, The node qualified by the

Definition 2.7 Refinement of an ordered m-partition

An ordered partition P' = (P.', P,'... P ') is said to

b§ a refinement of an ordered partition P = (Pi,'Pz, esn Pm)

- if

1) for everj i (1,25... 1)
P%F:Pj for some je(1,2,...m),

2) for every K,f ¢(1,2, r)
P'CPi, PiCP and i( %P'(Pdt

'P*' is said to be a proper refinement of P if the rank of
P' is greater than that of P. (Note that the rank of P' is
never less than that of B, In such a case P' is said to be

finer than P.

Definition 2.8: Breaker nodes

We are given an ordered m-partitinn P and a node v of a
graph.G, We-refine the partition P by splitting each class Pi

into two classes (one class could be empty) P{ and P} where

6.



P! = (x / X€P, and X is a neighbour of V)

Thé resulting new partition is ordered as follows. P;, Pq’ Pé,'

P;;....Pé, P;. All.empty'classes should be .ignored. VWe shall

call the above refined partition as P'. Here node v is said

to be used as "Breaker node" in refining the partition P.:

Definition'2,9s Position vector:

We associafe an m diménsional véctor with,each.node of an-
orderéd m=-partition. .The Kth co;ordinate ofrthé m-dimgpsiénal
. »vector of a node v is the pumber of nodes of the kth class Which_
are adjacent to v. To he more mathematical; with each node v,
we associate Vv = (v1’vg'°' vm), ‘Where vy = no. of neighbours
of v in Py, The aﬁove'defingd vector is called the "Position
Vector"® of a node‘of an ordered partition.

He can define a mapping'n'frqm the_sef of position vectors
' to the set of integers.such‘that? position vector v, is lexi-
cographieallylgreéﬁer than position vector ;2 if and 9n1y>if

Definition 2,103 Position Numbers

. Let ¥ be the position vector of a node v. Then M(¥) is called

e g

the "position number® of the node v. (Assume that M is defined).‘

Now we apply Algorithm II to all the partitions produced
by Algorithm I. Along with each partition we also input a
pointer which peints to one of the classes of the partition.

Initially the pointer points to Class 1.



e

Algorithm IX.

Step 1s Use the member of the class indicated by the pointer
as the "Breaker node" to refine the partition. (Notes At this

point, the class indicated by the pointer has exactly one

member). Advance the pointer by one unit.

§i§2_§1 If each class of the partition has exactly one eiement,
then Stop; Else find the position number bf each node‘ofrthe
_ciass indicated by the pointer. Let the pointer point to

class i, If there is a single node Vj éf maximum ﬁosition

number then split class i into two classes Pi and P; where

Py = (v and P* = GClass i ~ P!.
i ST i

5)

b ' ;ah ;o o
eeePy 39 PLy Py Pyoqee P

The resulting partition is (Pl.,.P2

stop. Else go to step 3.

Step 3: Let M, Mz,.;..MK be the nodes of maximum position
number. Then construct K partitions, one for each M €(M1,M . MK)
as follows. The partition cerresPondlng to MJ is (Pl’Pz""Pi 1?

(Hj), Pi - (MJ.), Pi'l‘l.. oPm) Stopo

. Algorithm II is applied simul taneously to all the parti-
_tions, Only those partitiens which result in max1mum position
number in Step 2, are maintained for further processing. Other

partitions are ignored.

Each of the output partitions of Algerithm II corresponding

to an input partition is either



exit (a); A partition with each class containing exactly one
element o

“or
exit (b)s A partition with less than n elasse#, but the
pointer advanced by one unit, .If Algorithm IT takes exit ‘*a‘
then we move to Algorithm III., Else each ﬁartition correspoﬁd-

ing to . exit 'b' is given as input to Algorithm II. Ultimately

ve will reach exit 'a' since the input graph is finite,

Algorithm IIX.

Step 1: Choose any partition determined by Algorithm IT.

Let A be the adjécency matrix eorresponding to this partition.

Step 2: Find N,. The code of the graph is N,. Stop.

Definition 2.11:

A class €C of a partition P, having exactly one element is
said to be a "fixed class® if in each class of the partition,
either all the members are adjacent to the unique member of

class C or none of them is adjacent to that member,

Definition 2,12

An ordered m-paftition of the nodes of a graph G of order
n is said to possess the order preserving property if, the
partition can be fefined to an ordered mn-partition which results

in the optimum code.



‘Lemma 33 Let P = (Pl’Pz""'Pm) be an ordered m-partition of
the nqdes of a graph G of order n, having the order preserving
propérty. If K is. the lafgest integer such that any class
whose i_ﬁdex is not gfgater than K is a fixe_ad. class, then, (K+1)'th

node of the optimum adjacency matrix must be a member of class

(K+1) baving the maximum position number in that class.

Proofs (K+1)th node of the optimum'adjaceney matrix must be a
membexr of class (K+1) because of the order preserving property
of the partition. |

Since.the.first'K classes ére "fiied classes", the first
K.rowé of all the adjacency matrieés corresponding to fhe n-
partitions refinihg P coincide with those of_the optimum adja-
cency matrix‘i.e. any refinement of P rgsults in a che whosé
first K segments (the:portion of:thé code contfibuted'by the

first K rows) coincide with those of the optimum one,

Now the (K+i)th node must be suitably chosen to maximise

the (K+1)th segment. Let V , be a member of class (K+1) having

the maximum position number in that elass. Let ii be the number

of elements in class i.

Since the nodes can be reordered only at the class level
(only nodes within a class can be reQrdered) the maximum value
for the.(K+l)th segment of the code with v as the (K+1)th node

s "

- " .
15 TSke1 %ke2 **° ®m

Where s, is a bit string of v,1's followed by (ﬂj-;j) O0's and

J J

;j is the jth co~ordinate of the position vector of nqde'v.



We now observe that the (K+1)th segment of the code with

vK+l

segment of the code with any other node as the (K+l)th node

as the-(K+1)th node is greater than or equal to the (K+1)th

Becadse the position vector of VK41l is lexicographically

greater than or equal to that of any other node.

Lemma 43

| If the input-to'Algorithm IT possesses the érder preserving
'property then:there_exists at leést one partition with order -
preserving property in the list of output ﬁartifioﬁs prodﬁced‘

by Algorithm IIX.

| Let P be the input partitiom and K be therindex of the
class indicated by the pointer at entry to Algorithm IT, When
we enter Step 1 ef_Algorithm'II, the following is true for

each class € whose index is less than K. -

In each class of the partition, either'éll the members are
. adjacent to class C or nonmé of them is adjacent to class C.

(Class € is a fixed class)

Hence the first‘(K-l) rows of all the adjacency matrices
corresponding to the n-partitions refining P coincide with
those of the optimun adjacency matrix ie, any refinemenf of
the input partitian'results inha codé whoée first (K-l) segments
(the portion of the éode contributed by the First K-1 rows)

coincide with those of the optimum one,



Now to maximise the segment of the co&e, contribuféd by
the Kth roﬁ, we are forced to do the following. in each claés
members which are adjacent to the node corrésPdnding to the
| Kth row must-bevpreferred to thoée which are not. This is.

guaranteed by Step 1. Thus step 1 retains the order preserv-

ing propert& of the input partition.

When we enter step 2, we Qould have assigned nodes frém
Al to AK where'Kfl is thg inde# of the class indicated by the
pointer; From Lemma 3; we nqte that'AK+1 must be_a member of .
Cléss K+l having the:maximum_position nﬁmber in that'class.
This is guaranteéd becanse we put in the 1ist of candidates
fef.AK+1, all the nodes in Class K+1 which have the maximum

- position number, Thus at least one of the output partitions

poséesses the order preserving propérty.

Lemma 53 _

. A1l the partitions given as input'to:Algofifhm III result
in the same adjacency matrix. | “
-Proofs

When.wg exit Algorithm II with pointer valﬁe K, ﬁe can

associatelﬁifh each preserved'partition a partial adjacency
matrix ﬁhose_first K rows correspond to the first K claéées
of the partition. |
(Note that the first K rows do not change with the refinement

of the partition).



i
1%

From the arguments given in the proof of Lemma 4 and because
of the fact that we preserve only those partitions with maxi-
mum position number,'we observe that all these partial-adjacéncy

matrices are idéntical.

When we enter Algorithm III, the pointer value is n, the
order of the graph., Hence all the partitions given as input

to Algorithm IIT result in the same adjacency matrix.

Thevremz
‘Algorithm I, II and III together result in the optimum

code of the graph,

Proofs

When we invoke Algorithm II for the first time, one of the
input pgrtitions has the qrder preserving property becaﬁse Ai
is indeed one of the nodes in the ;iSt of candidateé for A1
produced by Algorithm I. From lemma 4, we see that one of the
n-partitiqns produced by Algorithm II is indeed an optimum one.

Further on applying lemma 5 we note that all the n-partitions

produced by Algorithm II are optimal.

Q.E.D.

2.2,3 Example:
Here we shall work out the coding algorithm in full for

a reasonably simple graph shown in figure 2.3,



GRAPH d

Figure 2.3.

 Algorithms I

Step 13 | Nodes ‘ Valéhéz
1 4
2 2
3 2
b 3
5 2
6 2
7 3
8 2
9 4

10 1

Candidates for A, are nodes 1 and 9.

Step_23 . Candidates for A, MW number
1 1
9 . 1
Step 3s : Candidates for A, VX_number
1 ' 2
9 3

Node 9 is assigned as Al
Algorithm IT |
The input partitioﬁ to Algorithm II is,
(9) (1,2,3,4,5,6,7,8,10)

Pointer points to (9)



Breakef node is 9,
The refined partition is
(9) (6,7,8,10) (1,2,3,4,5)
Pointer points to (6,7,8,10).

Step 23
"Nddeé Position Number
6 _ 010100
7 _ 010101
8 ‘ 010901
10 . 010000

New partition is

(9) (1 (6,8,10) (1,2,3,,5)

Step 13
Breaker node is Te

The reflned partitlon 1s

(9) (7) (6) (8, 10) (h) (1 2, 35 5)

Step 23 Node 6 is the only node in the class indicated by

the pointer. Hence no refinement,

Step 1: Breaker nodg.i$'6.

The new partition is

(9) (7) (6) (8,10) (%) (1,2,3,5)

Step 23
' 'Nodeg Position Number
8 010000000 1

10 0100000000



The refined partition is

- (9)

Step 1
The
(9)
Ste2.2=
Step 13

Step 2:

Step_1:

Step 2

Step. 1%
Step 2:

Step_1:

”Stegvzi

(7) (6) (8) (10) (%) '(1_,2,3‘.5)
Breaker node is 8 |

new partitién is

(7) (6) (8) (10) (¥) (5) (1,2,3)
Node 10 is the only node,

Hence no refinement.

' Breaker node is 10..

No refinement.

Node b is the oniy'node. 

Hence no refinement,

Breaker node is 4,

‘The new'partition is

(9) (1) (6) (8) (10) (B) (5) (1) (2,3)

Node § is the only node,

Hence no refinement,

.Breaker node is 5, No refinement.

Node 1 is the only node. Hence no refinement.

Breaker node is 1,

No'refinement'

Nodes Position Nﬁmber._
2 . 000000000000000 101
3 ' 000000000000000 101

The output partition of Algorithm II are



(i) (9) (7) (6) (8) (10) (B) (5) (1) (2) (3)
(11) (9) (7) (6) (8) (10) (&) (5) (1) (3) (2)

Now if we input these two partitions to Algorithm III, we

get the optimum ad jacency matrix as

12 3 4 5 6 7 8 9 10
1 0 1 1 1 1 o o o0 o0 o
2 1 0 1 0 o 1 o o o o
3 1 1 0o o o o o o o o
5% 1 0o o o o o 1 o o o
5 1 0o 0 0-0 0 0 0 0 O
6 0o 1 0o 0.0 o o 1 o o
7 o o o 1 o o0 O 1 O 0
8 o 0 0o © o 1 1 o 1 1
9 0 0o o o 0 0 o0 1 o 1
' o0 0o 0o o 0 o0 o 1 1 o

The code of the given graph is
“111100000100100060000000001000000600100100111"

One can intutively feelhthat in general, the complexity
of working of the algoriﬁAm STOWS with the number of edges of
the graph., Hence if the number of edgesrof the given graph
of order n is greater than n (n;l)/h, then onme can construct

. the code of the éomplement of the graph. Also we can attach a
special symbol to the code to indicate that the code is that

of the complement,

L
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2,3 CONCLUSION:

The algorithm discussed in this chapter wasvimplemented
in iBM 370/155 ﬁsing PL/I as the source language., The flow .
chart éf the program is given in Appendix I. Some features
which afe_n;t discussed invthis chaptef are introduced into
the program to reduce the computation time considefably in

some special cases.

The graph shown in fignre 2,& was_given as test input to
the program, This is a carefully ®"cooked up" graph to cause
as much trouble as‘possible. (It does not mean that this is
the ﬁorst problem. The author is yet to find a tight upper
bound for the time taken by the algorithmﬁand the correspond-
ing graph which results in this maximum timé.) The program
took about'lb seconds to construct the code for this graph
which has an‘automé}hism group of large order. ‘(It‘should be
noted that the number of partitions>produeed by Algorithm II
is generally proportional t; the order-of_the.éutomofphism
gﬁéup of the input graph. Hence the time tgken to.prodﬁce
the code, also grows with the order of the automorphism group).
Code construction for several other graphs (ineluding those of
higher order) with a_smalier automonphism group tpok a ﬁuch

lesser time,



GRAPH e

Though the algorithm proposed in this chapter is for
the construction of a code, with a little quification.it

could also be used for checking directly whether two graphs

- are "isomorphic® or not,
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The adjacency matrix A of a graph G (and hence G) can be
uniquely recovered from the string of O's and.&‘s obtained
by sequential conéﬁtenation of the rows of the upper triangle
éf A. This striné represents a numbef in binary form and
among all the.nt graphs (re-labellings of G) obtained by

2y mul-tre : ' ,

i: thé rows and columns of A the one whose string
répresents a number of greatest mégnitude may be taken
as a canonical representétive of this isqmorphism class
of graﬁhs. The string of this graph is called the optimum
code of the graphs of this claéé. "It is obvious fhat two
(or mor e) graphs cai1 be tested for isomorphism by the
generaﬁion and comparison of such codes, This péper
preéents an intereétiﬁé algerithm to generate the optimum
code of a graph. Two examples are given, worked oﬁt in

considerable detail.

Starting with the given adjacency matrix_A with nodes:M1,
Myeuny Mn. the algorithm proceeds to relabel the nodes

as A1, AZ"' An’ sequqntially. The-following concepts are
used{ (1) 1r i and J are adjacent in G, the U number of

i vith respect to j is the number of nodes adjacent to

both i and j (dii) B, number of an unassigned node j is

the minimum distance between j and the assigned node Age
The algerithm is based on the observatipn that between two‘“
candidates for the choice of Ak the_one with'maximum

valency, maximum U number and minimum B number(s) should

d

be. prefered. In presenting the details, howevér, the

authors appear to have given a wrong stipulation



s 2 3

(in sﬁep 6 of the algorithm) as to the appropriate Bd'éomparisons.
The reviewer feels that this error can be rectified by '
restricting the appropriate comparisons to only those B's

for which r&<d £k - 1 where r is the minimum index of Ay

such that d (4,, 4;) =d (A1, A )-1. In fact adjacency, rather

than distance seems to play the crucial role,

With step 6 as it is, the algorithm does not always lead to
the optimum code as, for example for the graph with initial code-

111100000000000000011000000100000000010011010.

Here the algorithm (as it stands) selects mode 10 as Ag and .

mode 9 as A,  whereas 9 as A. andl0 as A

10 9 10

binary number. The corresponding Bd's are

leads to_a higher

B, B, B, B), B, B B., Bg
9 3 2 4 4 b 1 1 3
10 3 2 2 4 b 1 3 1

The authors have erred by observing B3 and this could have

" been évoided by restricting the relevant B.'s to B6’ B, and B8

d 7

The defect in the algoritﬁm mentioned above was firﬁt

observéd bf K.N.Venkataraman in his M,Tech, thesis !'Some Graph
Theoretic Algoritth' (Indian Institute of Technology, Madras - 1975)
" The countef-example-given_ébo#e is.due to him. The thesis pro-

.vides a corrected version of the aigorithm using different

notation, terminology and concepts,

sd/-
(K.R. Parthasarathy)



