Context Independent Unique Sequences Generation for Protocol
Testing*

T. Ramalingom

Bell Northern Research Ltd
P.O. Box 3511, Station C
Ottawa, Ontario K1Y 4H7, Canada

Abstract

A number of test sequence generation methods pro-
posed recently for protocols represented as Eztended
Finite State Machines (EFSMs) use state identifica-
tion sequences for checking the states. However, nei-
ther a formal definition nor a method of computation
of these sequences for an EFSM state is known. In
this paper, we define a new type of state identification
sequence, called Context Independent Unigue Sequence
(CIUE/ and present an algorithm for computing it. An
unified method based on CIUSes is developed for au-
tomatically generating executable test cases for both
control flow and data flow aspects of an EFSM. In
control flow testing, CIUSes are very useful in con-
firming the tail state of the transitions. In data flow
testing, CIUSes improve the observability of the test
cases for the def-use associations of different variables
used in the EFSM. Unlike general state identification
sequences, the use of CIUSes does not increase the
complexity of the already intractable feasibility prob-
lem in the test case generation.

1 Introduction

Automatic test case generation from protocol stan-
dard is a means of selecting high quality test cases
efficiently. Recently, International Organization for
Standards has established a working group for study-
ing the application of formal methods in conformance
testing [FMC93]. One of the primary aims of this
group Is to enable computer-aided test case generation
from protocol standards specified in formal description
techniques such as Estelle [IS9074], SDL [SDL88§}, and
LOTOS [1S8807).

In this paper, we focus on the EFSM model [UY91]
since it is the fundamental model for both Estelle
and SDL. We need a few informal definitions before
summarizing the salient features of the EFSM-based
test case generation methods developed recently. The
EFSM model is an extension of the FSM model

*This work was done at Concordia University, Montreal,
prior to T. Ramalingom joining Bell-Northern Research Ltd.,
and represents the views of the authors and not necessarily those
of BNR Ltd.

t Currently on leave from Department of Electriacl and Com-
puter Engineering, Concordia University, Montreal.

K. Thulasiraman! Anindya Das

School of Computer Science
University of Oklahoma
Norman, OK 73019, U.S.A.

[Koh78]. A transition in an EFSM may have an input
mteraction, a predicate, and can produce a sequence
of output interactions. Also, the interactions can have
a number of parameters. Moreover, the local variables
of an EFSM can be defined and/or used in a transi-
tion. A walk in an EFSM is feasible if the underlying
predicate of the walk is satisfiable. A walk W is exe-
cutable if there exist a walk W, from the initial state
of the EFSM to the starting state of W such that the
concatenated walk W, followed by W is feasible. A
test case is executable if its underlying walk is exe-
cutable. The feasibility (executability) problem is to
find if a given walk is feasible (executable) or not.

Chun and Amer are the first to apply the Unique
Input Output (UIO) sequences for confirming the tail
state of a transition in an EFSM [CA91]. However,
they do not address either the definition or the com-
putation of an executable UlO-sequence for an EFSM
state. The test case generation method of Miller and
Paul [MP92] covers both control and data flow as-
pects of an EFSM. This method takes the white-box
approach of testing and assumes that the local con-
texts are part of an UlO-sequence. Hence the UIO-
sequence has limited observability. Assuming the def-
inition of a characterizing sequence, Chanson and Zhu
[CZ93, CZ94] have introduced what is called a Cyclic
Characterizing Sequence for identifying the states.
They generate a set of test tours for covering both con-
trol and data flow aspects of testing. The executability
of the tours are considered after their generation. As
a result, the test coverage is affected since the unex-
ecutable tours have to be discarded. In [LHHT94],
Li et al propose a method for generating control flow
test cases from an EFSM which has only integer type
of local variables and input interaction parameters. It
is the first method which explicitly addresses the ex-
ecutability of a state identification sequence. They
have introduced a new type of UIO-sequencce, called
Extended UIO-sequence (EUIO-sequence). It is basi-
cally an extension of an UIO-sequence so that the un-
derlying walk is executable. However, the problem of
finding if a given UIO-sequence has an EUIO-sequence
is, in general, undecidable [LHHT94].

It is evident that the definitions provided for
the state identification sequences in the FSM
model[Koh78] is not adequate for the EFSM model.

9c¢.1.1

0743-166X/96 $5.00 © 1996 IEEE

1141

Moreover, the existing methods focus on the auto-
matic test case generation rather than the issues re-
lated to the state identification sequences. A for-
mal definition and the methods for computing these
sequences are essential in order to successfully use
the number of EFSM-based test sequence generation
methods proposed in the literature. In this paper, we
first formally define an Unique Input Sequence (UIS)
for an EFSM state. Unlike a walk in an FSM model,
the executability of a walk in an EFSM model can
not be taken for granted. Moreover, the executability
problem is inherently intractable. Therefore, generat-
ing executable test cases for a protocol represented in
an EFSM 1is a challenging problem. It is known that
the test case generation for an EFSM model is diffi-
cult when a general UIS is used [LHHT94]. One way
of reducing the complexity of the test case generation
problem is to avoid the feasibility problem as much
as possible, without compromising the test selection
criteria. With this motivation we define a special type
of UIS called Context Independent Unique Sequence
(CIUS) and present a method for computing CIUSes.

In order to demonstrate the use of CIUSes in test
case generation, we establish control and data flow
criteria and summarize a method [RDT95b] for auto-
matically generating executable test cases satisfying
these criteria. We show that the use of ClUSes en-
hances the observability (ability to observe the states
and data flow in an implementation, which is viewed
as a black-box) of the test cases without increasing the
complexity of the feasibility problem.

2 The EFSM Model

The EFSM model presented in this paper is in-
spired from [UY91]. An EFSM M is a 6-tuple
M = (8,8,[,0,1,V), where S,I,0,T,V are a
nonempty set of states, a nonempty set of input inter-
actions, a nonempty set of formal output interactions,
a nonempty set of transitions, and a set of variables,
respectively. Let S = {s; | 1 < j < n}; sy is called
the initial state of the EFSM. Each member of I is
expressed as ip?i(parlist), where ip denotes an inter-
action point where the interaction of type ¢ occurs
with a list of input interaction parameters parlist,
which is disjoint from V. Each member of O is ex-
pressed as iplo(outlist), where ip denotes an interac-
tion point where the interaction of type o occurs with
a formal list of parameters, outlist. Each parame-
ter in outlist can be replaced by a suitable variable
from V', an input interaction parameter, or a con-
stant. The interaction thus obtained from a formal
output interaction is referred to as an output inter-
action or an output statement. We will assume
that the variables in V' and the input interaction pa-
rameters can be of types integer, real, boolean, charac-
ter, and character string only. Each elementi € 1" is a
5-tuple t = (source, dest, input, pred, compute block).
Here, source and dest are the states in S representing
the starting state and the tail state of ¢, respectively.
input 1s either an input interaction from I or empty.
pred 1s a Pascal-like predicate expressed in terms of
the variables in V', the parameters of the input inter-
action input and some constants. The compute_block

is a computation block which consists of Pascal-like
assignment statements and output statements.

A component of a transition can also be represented
by postfixing the transition with a period followed by
the name of the component. For example t.pred rep-
resents the predicate component of the transition ¢.
Note that, unlike a variable, the scope of a parame-
ter in an input interaction of a transition is restricted
to the transition only. Let m denote the number of
transitions in M. We will assume that m > n. A
closed walk which starts and ends at the initial state
1s referred to as a tour. A transition in M with empty
input interaction is called a spontaneous transition.

A walk W in M can be interpreted symbolically
by assuming distinct symbolic values for the local vari-
ables at the beginning of W as well as distinct sym-
bolic values for the input interaction parameters along
W. When W is symbolically interpreted the predi-
cates along W are also interpreted and is expressed
in terms of the initial symbolic values for the local
variables and the symbolic values for the input inter-
action parameters. W is said to be feasible if the
conjunction of the symbolically interpreted predicates
is satisfiable.

A context of M is the set {(var,val) | var € V
and val is a value of var from its domain}. A valid
context of a state in M is a context which is estab-
lished when M’s execution proceeds along a walk from
the initial state to the given state.

Let t be a non-spontaneous transition in M. ¢ is
said to be executableif (i) M is in the state ¢.source,
(ii) there is an input interaction of type i at the in-
teraction point ip, where t.input = ip?i(parlist), and
(iii) the valid context of the state and the values of
the input interaction parameters in parlist are such
that the predicate t.pred evaluates to true. A spon-
taneous transition t is executable if (i) M is in the
state t.source and (ii) the valid context of the state
is such that t.pred evaluates to true. When a transi-
tion is executed, all the statements in its computation
block get executed sequentially and the machine goes
to the destination state of the transition. A walk W
in M is said to be executable if all the transitions in
W are executable sequentially, starting from the be-
ginning of the walk. Note that every executable walk
is feasible.

An EFSM is deterministic if for a given valid
context of any state in the EFSM, there exists at
most one executable outgoing transition from that
state. An EFSM M is said to be completely spec-
ified if it always accepts any input interaction de-
fined for the EFSM. An arbitrary EFSM M can be
transformed into a completely specified one using what
is called a completeness transformation described
next. Given a valid context of a state and an instanti-
ated input interaction, suppose that M does not have
an executable outgoing non-spontaneous transition at
the state for the given valid context and the input
interaction, and that M does not have an outgoing
spontaneous transition at the state such that it 1s ex-
ecutable for the given valid context, then a self-loop
transition with an empty computation block is added

" at the state such that it is executable for the given

9¢.1.2

1142

context and the input interaction. The newly added
transitions are called non-core transitions.

We assume that the EFSM representation of the
specification is deterministic and completely specified.
It is assumed that for every transition in the EFSM, it
has at least one executable walk from the initial state
to the starting state of the transition such that the
transition is executable for the resulting valid context.
Similarly, we assume that the initial state is always
reachable from any state with a given valid context.

2.1 An Example
As an example of an EFSM , let us consider a
major module { based on the AP-module in [Boc90])
of a simplified version of a class 2 transport proto-
col. This EFSM participates in connection establish-
ment, data transfer, end-to-end flow control, and seg-
mentation. It has the interaction point labeled U
connected to the transport service access point and
another interaction point labeled N connected to a
mapping module. Here, we represent the EFSM by
(S,81,1,0,T, V%. This EFSM is used throughout
the paper for illustrating various points. Let S =
{s1, $2, 83, 54, 55,56}. The set of input interactions
and the set of output interactions are given below.
I= {U?TCONreq(dest_add, prop-opt),

U?TCONresp(accpt-opt), U?TDISreq,

U?TDATreq(Udata, EoSDU), U?U_READY (cr),

N?TrCR(peer.add, opt-ind, cr),

N?TrCC(opt-ind, cr), N?TrDC,

N?TrDR(disc.reason, switch),

N?TrDT(send.sq, Ndata, EoTSDU),

N?TrAK(XpSsq, cr), N?ready, N?terminated}

O = {U!TCONconf(opt), U'TCONind(peer.add, opt),

U'TDISind{msg}, U'TDISconf,

U'TDATAind(data, EoTSDU), Ulerror, UIREADY,

N!TrCR(dest-add, opt, credit),

NtTrDR(reason, switch),

Niterminated, N!TrCC(opt, credit),

N!TrDT(sq-no, data, EoSDU),

N!'TrAK(sq-no, credit), Nlerror, N'TrDC}
V={opt, R_credit, S_credit, TRsq, TSsq }. All the
variables in V are of integer type. The transitions as
described in Table 1, and Table 2 are shown in Fig-
ure 1. The state s; is repeated in the figure merely for
convenience.

3 Unique Input Sequences

An input sequence, a sequence of input interactions,
is said to be instantiated if all the parameters in the
sequence are properly instantiated with values. A test
sequence is a sequence of input and output interac-
tions. A sequence of zero or more output interactions
between two successive input interactions in a test se-
quence is the sequence to be observed after applying
the preceding input interaction to an EFSM and be-
fore applying the succeeding one.

The sequence of input and output interactions
along a feasible walk W is denoted by Trace(W),
known as the trace of the walk W. The sequence
of input (output) interactions along a feasible walk W
is denoted by Inseq(W) (Outseq(W)). Trace(W)
and Outseq(W) are actually obtained by symbolically
interpreting W.

2,123,124

18 through {15
16,131, 13

128,09, 130 66,67, (8

Figure 1: An EFSM in Class 2 transport protocol

Two input interactions are said to be distinguish-
able if: (i) they occur at two different interaction
points or (i1) their interaction types are different. We
say that two output interactions are distinguishable
if at least one of the following is true: (i) they occur at
two different interaction points, (ii) their interaction
types are different, and (iii) if the parameters in a
given position in both interactions are constants then
they are different.

For example, the output interactions N!TrDR/(‘pro-
cedure error’, false) and N!TrDR(‘procedure error’,
true) are distinguishable. However, NITrDT(TSsq,
Udata, EoSDU) and N!TrDT(TRsq, Udata, EoSDU)
are not distinguishable.

The length of a sequence is the number of interac-
tions it contains. Two sequences are indistinguishable
if they have the same length, and if the pairs of inter-
actions in all positions are not distinguishable. Oth-
erwise, the sequences are said to be distinguishable.

Let W be an executable walk at s;. Let U be an
instantiation of Inseq(W). We define U as a Unique
Input Sequence (UIS) of s; if T'race(W) is distin-
guishable from Trace(W’), for any feasible walk W’
at state s, for 1 < k < n,k # j. In this case, W is
called an UIS walk for U.

As indicated in [LHHT94], automatic test case gen-
eration for an EFSM is difficult when a general UIS
is used. For example, let U be an UIS for s;, and
let W be the UIS walk of U. Let t be a transition
from a state s; to s;. In order to test ¢, one needs
to compute an executable walk P; from s; to s; and
associate values for the input interaction parameters
along P, and t such that P; ¢ W is executable. For a
given W, it is in general difficult to find a P; so that
the walk P, t W is executable. Moreover, if the gen-
eral UlISs are considered, then multiple UISs may be
required for a state in order to test all the incoming
transitions at that state. Hence a careful selection of

9¢c.1.3

1143

1144

Tr. | Input Predicate Compute-block
tl U?TCONreq(dst_add, opt:= prop-opt;
prop-opt) R credit := 0;
N!TrCR(dst-add,opt,Rcredit)
t2 N7TrCR(peer_add, opt := opt.ind; S—credit := cr;
optind, cr) Rcredit := 0;
U!TCONind(peer-add, opt)
t3 | N?TrCC(opt-ind,cr) optdind < opt TRsq:=0;TSsq:=0;
opt := opt.ind; S_credit := cr;
U!TCONconf(opt)
t4 N?TrCC(opt-ind, cr) opt-ind > opt U'TDISind(* procedure error');
N!TrDR(‘procedure error’, false)
t5 N7?TrDR(discreason, UITDISind(discreason);
switch) N!terminated
t6 U?TCONresp(accpt-opt) accpt-opt < opt opt := accpt.opt;
TRsq := 0; TSsq := 0;
NI!TrCC(opt, R_credit)
t7 U?TDISreq N!TrDR{‘User initiated’, true)
t8 U?TDATreq(Udata, S_credit > 0 S—credit := S_credit—1;
EoSDU) NITrDT(TSsq, Udata, EoSDU);
TSsq := (TSsq + 1)mod128;
t9 N?TrDT(sendsq, Ndata, R_credit £ 0 A TRsq := (T Rsq + 1)mod 128;
EoTSDU) send.sq = TRsq R _credit := Rcredit — 1;
U!'TDATAind(Ndata, EoTSDU);
N!TrAK(TRsq, R_credit)
t10 | N?TrDT(send.sq, Ndata, Rocredit =0 V Nlerror;
EoTSDU) send-sq # TRsq Ulerror
t11 | UYU.READY (cr) R_credit := R_credit+cr;
NITrAK(TRsq, R-credit)
t12 | N?TrAK(XpSsq, cr) TSsq>XpSsq A S_credit :=
cr + XpSsq—TSsqg >0 A cr + XpSsq— TSsq
cr + XpSsq —TSsq < 15
t13 | N?TrAK(XpSsq, cr) TSsq>XpSsq A Ulerror;
(er + XpSsq —TSsg <0V Nterror
cr 4+ XpSsq — TSsq > 15)
t14 | N?TrAK(XpSsq, cr) TSsq<XpSsq A S_credit :=
cr + XpSsq—TSsq—128>0 A cr + XpSsq— TSsq — 128
cr+ XpSsq —TSsqg—128< 15
t15 | N7TrAK(XpSsq, cr) TSsq<XpSsq A Ulerror;
(cr + XpSsq — T'Ssq ~ 128 < 0 v | Nlerror
cr + XpSsq — TSsqg — 128 > 15)
t16 | N7ready S_credit > 0 UIREADY
t17 | U?TDISreq NI!TrDR(User initiated’,
false)
t18 | N?TrDR({discreason, U'TDISind(discreason);
switch) NI'TrDC
t19 | N7terminated UI'TDISconf
t20 | N?TrDC Nlterminated;
U!TDISconf
t21 | N?TrDR(disc_reason, Nlterminated
switch)

Table 1: Core transitions of the EFSM shown in Figure 1

Transitions Input

t25, 628, 631, £33, £36
t23, £26, t34, t38
22, £29, t37

U?TDISreq

U7TTCONreq(dest_add, prop-opt

N7TrDR(discreason, switch)
t24, 27, t30, t32, t35 | N7terminated

Table 2: Non-core transitions of the EFSM shown in Figure 1

9¢.1.4

Figure 2: Different walks from s; with behavior se-
quence ?a/lo

the UISs is required.

A walk from a state is said to be context inde-
pendent if the predicate of every transition along
the walk, duly interpreted symbolically, is indepen-
dent of the symbolic values of the local variables at
the starting of the walk. Observe that every context
independent feasible walk is executable.

We introduce a special type of UIS, called Context
Independent Unique Sequence (CIUS). Let U;
be an instantiated UIS of s; and let U(¢) be the cor-
responding UIS walk at s;. U; is said to be a CIUS
of s; if U(2) is context independent and executable.

Note that all the local variables used in the predi-
cate of each transition in U(%) are defined within U (z)
prior to their use. In other words, the predicates along
U (i) are independent of any valid context at s;. There-
fore, U(¢) can be postfixed to any executable walk
from the initial state to s; and the resulting walk is
also executable. This property is very useful in han-
dling the feasibility problem in test case generation.
Also, one CIUS is sufficient for testing all the incom-
ing transitions at a state. In the following section, we
present an algorithm for computing a CIUS of a given
state.

4 CIUS Computation Algorithm

The UIO-sequnce computation algorithms for an
FSM [SD88] are, in general, not suitable for comput-
ing UIS in an EFSM. For instance, in order to find
whether a state in an FSM produces an output o when
an input a is applied, these algorithms simply check
if the state has any outgoing transition with the label
a/o. But in an EFSM, any of the two types of feasible
walks from the state, say s;, as shown in Figure 2, may
have the same trace; therefore their presence has to be
analyzed. In the figure, the dashed edges with label
i* denote walks consisting of a finite number (possi-
bly zero) of silent transitions. 7a and lo indicate the
input interaction a¢ and the output interaction o, re-
spectively. In this section, we develop an algorithm
for computing a CIUS of a given state in the EFSM .
In order to guarantee the termination of the algorithm
we assume that the EFSM has no feasible silent closed
walk of length more than K for some integer K > 1.

Let W1 and W2 be feasible walks in the EFSM. Let
t be the last transition in W1. We say that Trace(W1)
subsumes Trace(W2) if there exists a sequence OS
of zero or more output interactions at the end of ¢

‘such that T'race(W1) and T'race(W2)@O0S are indis-

tinguishable. By a null walk at a state , we refer to
an empty walk, a walk without any transition, starting
and ending at that state. A higher level descr1pt10n of
the proposed algorithm ComputeCIUS is given below.

Algorithm ComputeCIUS
Input: An EFSM and a state sg in the EFSM
Output: If it exists, a CIUS for s; such that its
underlying walk W is of length < 2n? and W has
only non-silent transitions.
Step 0 { Initialization }
1) Wset ;= {null walk at s; }.
Eii) OWset := {null walk at 5; | 1 < j < n,j#k}.
(i1) L == 0.
Step 1 { Tterative step }
(i) repeat (a) to (c) until L > 2n?
(& L:=L+1.
(b) Set TWset and TOWset to the empty set.
{c} Do Step 2.
(ii) Stop.
Step 2
(1) Do Step 2.1 for each walk W € Wset and for
each non-silent outgoing transition ¢ in the
EFSM at the tail state of W.
i) Copy TWset to Wset.
1) Copy TOWset to OWset.
Step 2.1
If Wt is a context independent executable
walk then do the following:
} Let W' be the walk W t.
b) Add W’ to TWset.
gc) Initialize NOWset to the empty set.
(d) Do Step 2.1.1 for each walk Wi in OWset.
(e) If NOWset is empty then Declare
Inseq(W t) as the CIUS and stop.
Step 2.1.1
If there exists a feasible extended walk W5 in
the EFSM for W; such that Trace(Ws)
subsumes T'race(WW’) then do the following:
{(a) Add all such feasible extended walks of W,
to TOWset.
(b) Add all such feasible extended walks of W
to NOWset.
end ComputeCIUS

This algorithm computes a CIUS of the state si in
the EFSM such that the walk from s; which corre-
sponds to the CIUS is of length at most 2n%. The
same bound is used in the algorithm of Sabnani and
Dahbura [SD88] for computing an UIO-sequence. For
better observability of the test cases, these walks are
allowed to have only non-silent transitions. However,
the algorithm can easily be adapted to compute CIUS
walks with silent transitions. We would like to note
that there may exist a state which does not have a
CIUS, in general, and the CIUS with this length and
non-silent transition restriction, in particular.

At the beginning of the ith iteration of Step 1, Wset
contains the set of all context independent executable
walks of length (i — 1) which starts from sx. At the

9c.1.5

1145

same instant, OWset contains the set of all feasible
walks from all the states other than s; such that the
trace of every walk in OWset subsumes the trace of a
walk in Wset. In Step 0, Wset is initialized with the
null walk at s and OWset contains the null walk at
sj, forall j,1 <j < n,J # k. Step 1 is the iterative
step which is repeated at most 2n? times.

When the ith iteration of Step 1 invokes Step 2,
the latter step computes a set ETWset) of context in-
dependent executable walks of length ¢ which start
from s;. This is done by checking the executability of
the walk obtained from each walk W in Wset by ap-
pending each non-silent outgoing transition from the
tail state of W to W. Step 2 also computes the set
(TOWset) of all feasible walks from any state other
than s, such that the trace along a walk in this set
subsumes the trace along some walk in TWset. Step 2
does these computations by repeatedly calling Step 2.1
which in turn invokes Step 2.1.1 many times. TWset
and TOWset become Wset and OWset, respectively,
for the (7 + lfth iteration. Step 2.1 and Step 2.1.1 are
explained below.

Given a walk W € Wset and a non-silent outgo-
ing transition t from the tail state of W, if the walk
W' = W t is executable and context independent, then
Step 2.1 adds this walk to T'Wset. For each walk W; €
OWset, Step 2.1 invokes Step 2.1.1 for computing the
set of all feasible walk extensions of W such that the
traces of the resulting walks subsume the Trace(W’).
In NOWset, Step 2.1 stores the set of all feasible walks
from any state other than s such that the trace along
a walk in this set subsumes the trace along a walk
W' € TWset. If NOWset is empty, then the trace
along W’ is clearly a CIUS of s;. And in this case
the algorithm terminates. If NOWset is not empty for
all the 2n? iterations, then the algorithm terminates
without finding a CIUS for sg.

Given a walk W, € OWset, and a walk W' € TWset
, Step 2.1.1 computes the set of all feasible walk exten-
sions of Wi such that the traces of the resulting walks
subsume Trace(W'). The extended walks are added
to TOWset as well as NOWset.

Following theorems summarize the time complexity
and correctness of the algorithm. They are proved in
[Ram94].

Theorem 1 Suppose that the EFSM has no fea-
sible closed silent walk of length more than K
for some integer K > 1. Then the algorithm

ComputeCIUS takes at most 2(d2%)2“2+1 + (n —

mazr
1)(d2ut) 2r +2)+(140mae (EH)(n*41) steps where

n, Omae and d522 . are the number of states, the maz-
imum number of output interactions in any transition
in the EFSM, and the mazimum number of outgoing
transitions including self-loops in any state, respec-

tively.

Theorem 2 Suppose that the EFSM has at least one
walk W of length at most 2n% at s € S such that
(1) W-1s a context independent ezecutable walk having
only non-silent transitions, and (it) Trace(W) is dis-
tinguishable from the trace of any feasible walk from

State | CIUS Tr. Seq
$1 U?TCONreq(dst-add, prop-opt) t1
se | N?7TrDR(discreason, switch) t5h
s3 U?TDISreq t7
S4 U?TDISreq t17
S5 N?TrDR(disc_reason, switch) t21
S N7terminated t19

Table 3: CIUS for states in EFSM of Figure 1

any state other than si. Then, the algorithm Com-
puteCIUS returns the input sequence U along a short-
est walk at s, which satisfies (i) and (i). U s a CIUS
of sk.-

Note that only a higher level complexity of the algo-
rithm is given in terms of the number of times various
basic steps are executed. The executions of some of
these steps may themselves be complex. A detailed
refinement of the algorithm is given in [Ram94]. The
CIUS of every state in the EFSM of Figure 1 com-
puted using the algorithm ComputeCIUS is presented
in Table 3. The algorithm terminates after the first
iteration of Step 2 for every state. The parameters in
the CIUSes have to be instantiated with certain feasi-
ble values.

Though the given algorithm is exponential, for real
life protocols which have CIUSes for all the states, the
algorithm is expected to terminate within a few itera-
tions, as in the above EFSM. We have also applied the
algorithm on few other protocols. The EFSM repre-
sentation of the class 0 transport protocol as specified
in [UY91] has 4 states and 14 core transitions. The
shortest CIUS walk for the initial state is of length 2.
All other states have a CIUS walk of unit length. The
EFSM representation of the abracadabra protocol as
specified in [Tur93] has 5 states and 30 core transi-
tions. It has a CIUS set such that the maximum length
of a CIUS walk for a CIUS in this set is only 2. It
should also be noted that there are protocols which
may not have a CIUS for every state. For example,
the initiator module of the INRES protocol [Hog92]
does not have a CIUS for one state.

In the following section we shall study the use of
ClIUSes in the test sequence generation.

5 Automatic Test Case Generation

We consider the automatic generation of executable
test cases for both data flow and control flow aspects
of an EFSM. Our control flow fault coverage criterion
is called trans-CIUS-set criterion and it is based on
the Uv-method [CVI89]. For data flow coverage, we
extend the “all-uses” criterion [RW85)] to what is called
the def-use-ob criterion. This extension is essential
due to the black-box approach of protocol testing and
it enhances the observability of the test cases for the
def-use associations. As detailed below, both criteria
use a CIUS set for identifying the states.

5.1 Control Flow Coverage Criterion
Let U; be a CIUS for the state s;, 1 < i < n. Let
U={U; |1 <i<n} Wecall Y as a CIUS set.

9¢.1.6

1146

Our control flow coverage criterion, called the trans-
CIUS-set criterion is to select a set 7 of executable
tours such that for each transition ¢t in the EFSM and
for each U; € U, T has a tour which traverses t fol-
lowed by U;. Apart from guranteeing the coverage of
every transition in an EFSM, the test cases generated
based on this criterion have the capability of observing
and confirming the tail state of each transition. This
criterion is similar to the one used in the Uv-method
[CVIRY] for the FSM model. As the entire CIUS set is
applied at the tail state of every transition, the trans-
CIUS-set criterion is superior to the existing control
flow coverage criterion for the EFSM model. An exe-
cutable walk W starting from the initial state is called
a preamble walk for ¢ if Wt is also executable.

5.2 Data Flow Coverage Criterion

The data flow testing is basically to check if the im-
plementation has the right flow of information as its
execution proceeds. A hierarchy of data flow coverage
criteria including the “all-uses” criterion has been pro-
posed in [RW85] for testing computer programs. For
the data flow coverage, we extend the all-uses criterion
to what is called a def-use-ob criterion. An useful
property of the def-use-ob criterion is that the set of
test cases selected as per this criterion facilitates the
tester to observe every def-use association in the pro-
tocol. The observable extension is similar to the one
proposed for the 10-def-chain criterion [UY91].

The data flow terminologies such as definintion
(def), use, computation use (c-use), predictate use (p-
use), output use (o-use) of a variable or an input in-
teraction parameter are taken from {UY91, CZ93].

A def-use pair D with respect to a vari-
able/parameter v is an ordered pair of def and use
of v such that there exists a walk in the EFSM which
satisfies the following: (i) the first transition in the
walk is the one where v 1s defined (i.e., where the def
occurs) and the last transition of the walk is the one
where v is used (i.e., where the use occurs) and (ii)
v is not redefined in the walk between the location
where it is originally defined and the location where
it is used. Such a walk is called a def-clear walk for
D. Let D be the set of all def-use pairs for all the
variables and input interaction parameters.

Our def-use-ob criterion requires the selection
of a set of executable tours such that for each feasible
def-use pair D € D, the set has at least one tour, say
T, satisfying the following conditions.

(a) If the use part in D is an o-use, then 7' contains
a def-clear walk for D.

(b) If the use part in D is a p-use, then T" contains
a def-clear walk W1 for D followed by the CIUS
walk U(j), where s; is the tail state of W1.

(c¢) If the use part in D is a c-use, then 1" contains a
walk W2 followed by a walk W3, where W2 1s a
def-clear walk for D and W3 has an information
flow chain [Ram94] from the variable which is de-
fined at the location where the variable for D is
c-used to a location where a variable is either o-
used or p-used. Moreover, if the information flow

Def-Use Pair Tour

(t3.c1, t11.c2)TRsq t1t3t1117t20
(t6.c3, t14.c1)TSsq t2t6t14t8t17t20
(t8.cl, t16.P)S_credit | t1t3t8t16t17t20
t8.c3, t12.c1)TSsq - t1t3t8t12t8t17t20
t9.c2, t9.c2)Rcredit | t1t3t11t9t9t17¢20
(t14.c1, £16.P)S_credit | t1t3t14t16t17t20

Table 4: Sample data flow test tours for EFSM given
in Figure 1

chain terminates in a p-use variable, then, in T,
W3 is followed by the CIUS walk U(p), where s,
is the tail state of W3.

Condition (a) takes care of the def-use association for
all the def-use pairs in which the use part 1s an o-use.
If the use part of D is a p-use, then apart from meeting
the def-use association, by applying the CIUS of s;,
condition (b) enables the tester to observe and check if
the predicate of the transition where the p-use occurs
evaluates to true as expected. On the other hand, if
the use part of D is a c-use, then condition (c) enables
the tester to observe the effect of the value computed.
Actually, this value flows through other intermediate
variables along T' until it is used in an output state-
ment or in a predicate of a transition. In addition, the
correct evaluation of the predicate is ensured by T' as
in condition (b). An executable walk W starting from
the initial state is called a preamble walk for the
def-use pair D if it satisfies conditions (a), (b), and
(c) where T is replaced by W.

5.3 The test case generation method

We have developed an algorithm reported elsewhere
[RDT95b] for generating a set of executable test tours
for covering the trans-CIUS-set and def-use-ob criteria
for a given EFSM. The algorithm has two phases and
each phase incrementally constructs the test tours.
Starting from the initial state, the first phase traverses
the EFSM in a breadth-first fashion in order to com-
pute preamble walks for every transition in the EFSM
and for every feasible def-use pairs in D. In the second
phase, all preamble walks computed in the first phase
are completed into executable tours. These tours are
infact the required set of tours for the coverage crite-
ria. Note that a CIUS walk of a state can be post-
fixed to any executable walk terminating at that state
and the resulting walk is also executable. Therefore
the use of CIUSes in test cases does not increase the
complexity of the feasibility problem in the test case
generation.

Table 4 and Table 5 show some sample test tours
from the set of executable test tours generated by this
algorithm for the EFSM given in Figure 1. In table 4,
(t14.c1,¢16.P)S credit, for example, denotes the def-
use pair in which S_credit is defined at the first compu-
tation statement (c1) of transition ¢14 and it is p-used
in the predicate of ¢t16. [Ram94] has the complete set
of test tours generated for this EFSM.

9c.1.7

1147

Transition | Preamble Set of Tours [Hog92]
8 tIt3 t1t3t8t17t20
t1t368t31t17t20
t1£3t8t32t17t20
£1t3t8t18t19
t17 t1t3 t163817t21 [158807]
t1t3t17t33t20
t1£3t17t34t20
£113t17t35t20
Table 5: Sample control flow test tours for the EFSM [1S9074]
given in Figure 1
6 Summary
A new type of state identification sequence, namely, [Koh78]
the Context Independent Unique Sequence, is defined [LHHT94)
and an algorithm for computing a CIUS of a given
state in an EFSM is developed. While the CIUSes
facilitate the observability of the test cases, they do
not increase the complexity of the alreday complicated
feasibility problem in the automatic generation of exe-
cutable test cases. Also, the incremental nature of the [MP92]
feasibility problems encountered in the CIUS compu-
tation and the test case generation algorithms lends
itself to an incremental solution.
In this paper we have focussed on the formalization
and the computational aspects of UIO-sequences for
the EFSM model. Similar work needs to be done for [Ram94]
the other types of state identification sequences such
as characterizing sequences and the distinguishing se-
quences [RDT95a, Koh78]. Extending our work for
testing EFSMs which may not have CIUSes for cer-
tain states i1s another direction for further research. [RDT95a]
References
[Boc90] G. v. Bochmann. Specifications of a sim-
plified transport protocol using different
formal description techniques. Computer
Networks and ISDN systems, 18:335-377, [RDT95b]
1989/1990.
[CA91] W.Chun and P. D. Amer. Test case gener-
ation for protocols specified in Estelle. In
J. Quemada, J. Manas, and E. Vazquesz,
editors, Formal Description Techniques, [RW85]
111, pages 191-206. Elsevier Science Pub-
lishers B. V. (North-Holland), 1991.
[CVI89] W.Y. L. Chan, S. T. Vuong, and M. R.
Ito. An improved protocol test generation [SD8S]
procedure based on UlOs. In ACM SIG-
COMM, pages 283-294, 1989.
[CZ93] S. T. Chanson and J. Zhu. A unified ap-
proach to protocol test sequence genera- [SDL8S]
tion. In Proc. IEEE INFOCOM, pages
106-114, 1993.
[CZ94] S.T. Chanson and J. Zhu. Automatic pro- [Tur93]
tocol test suite derivation. In Proc. IEEE
INFOCOM, pages 792-799, 1994. [UY91]
[FMC93] ISO SC21 WGI1 P54: Information Pro- :
cessing Systems - Open Systems Intercon-
nection - Formal Methods in Conformance
Testing, Working Document, June 1993.
9¢.1.8

1148

D. Hogrefe. OSI formal specification case
study: the Inres protocol and service, Re-
vised. Technical report, Institute for In-
formatics, University of Berne, May 1992.

ISO/IEC 8807: Information Processing
Systems - Open Systems Interconnection -
LOTOS - a Formal Description Technique
Based on the Temporal Ordering of Obser-
vational Behavior, June 1988.

ISO/IEC 9074: Information Processing
Systems - Open Systems Interconnection -
Estelle - A Formal Description Technique
Based on an Extended State Transition
Model, 1987.

7. Kohavi. Switching and Finite Automata
Theory. McGraw-Hill, New York, 1978.
X. Li, T. Higashino, M. Higuchi, and
K. Taniguchi. Automatic generation of ex-
tended UIO sequences for communication
protocols in an EFSM model. In 7th Inter-
national Workshop on Protocol Test Sys-
tems, Tokyo, Japan, November 1994.

R. E. Miller and S. Paul. Generating con-
formance test sequences for combined con-
trol and data flow of communication pro-
tocols. In Proc. 12th International Sympo-
sium of Protocol Specification, Testing and
Verification, 1992.

T Ramalingam. Test case generation and
fault diagnosis methods for communication
protocols based on FSM and EFSM models.
PhD thesis, Concordia University, Mon-
treal, Canada, 1994.

T. Ramalingam, A. Das, and K. Thulasir-
aman. Fault detection and diagnosis ca-
pabilities of test sequence selection meth-
ods based on the FSM model. Computer
Communications, 18(2):113-122, February
1995.

T. Ramalingom, A. Das, and K. Thu-
lasiraman. A unified test case generation
method for the EFSM model using con-
text independent unique sequences. In 8th
International Workshop on Protocol Test
Systems, Evry, France, September 1995.
S. Rapps and E. J. Weyuker. Selecting soft-
ware test data using data flow information.
IEEE Tr. Soft. Engg., SE-11(4):367-375,
April 1985.

K. Sabnani and A. Dahbura. A proto-
col test generation procedure. Computer
Networks and ISDN systems, 15:285-297,
1988. :
CCITT/SGx/WP3-1, Specification and
Description Language, SDL. CCITT Rec-
ommendations Z.100, 1988.

K. J. Turner, editor. Using formal descrip-
tion techniques. John Wiley & Sons, Chich-
ester, England, 1993.

H. Ural and B. Yang. A test sequence se-
lection method for protocol testing. IEEE
Tr. Comm., 39(4):514~523, April 1991.

