A Class of 2-Step Diagnosable Systems: Degree of
Diagnosability and a Diagnosis Algorithm

Kaiyuan Huang
McGill University

Anindya Das
University of Montreal

K. Thulasiraman
Concordia University

Vinod K. Agarwal
McGill University

Abstract

A new diagnosability measure, t/ — 1-diagnosability,
is introduced. A system is t/ — 1-diagnosable if 1) at
least f — 1 faulty units can be identified as long as
the number of faulty units present, f, does not ex-
ceed t and 2) the system is 1-fault diagnosable. This
class of diagnosable systems are fully characterized.
In addition, an O(n®®%) diagnosis algorithm is pro-
vided, which locates at least f — 1 faulty units when
1 < f <t or the only faulty unit when f = 1. When
there is no faulty unit, the algorithm certifies it. The
algorithm is suited for any ¢/ — 1-diagnosable system.

1 Introduction

Research on system level diagnosis was pioneered by
the work of Preparata, Metze and Chien [8]. They
suggested that a system of interconnected comput-
ing units be diagnosed by first making the units of
the system test each other and then analyzing the
outcomes of these tests. Test outcomes are classi-
fied as fault-free or faulty. The set of test outcomes
is called the syndrome of the system. All units are
considered to be identical. They can test others or
be tested by others. No postulate is to be made in
the process of test outcome analysis either on the
status (fault-free or faulty) of any of the units or
on the correctness of any of the test outcomes pro-
duced by the testing units. It is assumed that test
outcomes produced by fault-free testing units are al-
ways correct while those produced by faulty testing
units can be anything (fault-free or faulty), irrespec-
tive of the status of the tested units. This kind of
test outcome interpretation has since been known as
the PMC model. They also introduced two diagnos-
ability criteria, the one-step t-diagnosability and se-
quential t-diagnosability. A system is said to be one-
step t-diagnosable if all faulty units can be identified
from any syndrome produced by the system as long
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as the number of faulty units present does not ex-
ceed t. Similarly, a system is said to be sequentially
t-diagnosable if at least one faulty unit can be iden-
tified from any syndrome produced by the system as
long as the number of faulty units present does not
exceed t. Friedman [5] introduced another measure
of diagnosability, called t/s-diagnosability. A system
is t/s-diegnosable if all faulty units can be located
to within a set of no more than s units, as long as
the number of faulty units present does not exceed
t. Main contributions to this area of system level di-
agnosis include Hakimi and Amin’s 6] characteriza-
tion of t-diagnosable systems, Dahbura and Masson’s
[2] O(n?%) t-diagnosis algorithm, Sullivan’s [11] and
Raghavan’s [9] diagnosability algorithms, characteri-
zation of sequentially t-diagnosable systems by Huang
et al [7] and t/s-diagnosis algorithm by Das et al [3].
For the successful application of the t-diagnosability
measure, a large number of tests between units are re-
quired. However, in existing multiprocessor systems
such as the hypercube, connection is very limited.
To overcome this limitation of classical diagnosability
measure, Somani, Agarwal and Avis {10] and Das et
al [4] proposed approaches which allow large numbers
of faulty units even in sparsely connected systems. It
is shown in [8] that even in a single loop architecture,
a large number of faulty units, up to the square root
of the number of units in the system can be sequen-
tially diagnosed.

We will introduce in this paper a new diagnosing
strategy — we locate all faulty units except for at
most one which may be left unidentified, in which
case a second step of diagnosis is needed to locate
the remaining faulty unit. We call such a system a
t/ — 1-diagnosable system. Just as t/t-diagnosability
is on the boundary of t/s-diagnosability and one-step
t-diagnosability, t/ — 1-diagnosability is on the bound-
ary of multiple step diagnosability and one-step t-
diagnosability. No more than two steps are needed to
locate all faulty units.
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2 Preliminaries

A system is represented by its test digraph D(V, A),
where V is a set of vertices each of which corresponds
to a unit of the system and A is a set of test arcs which
correspond to inter-unit tests. A test arc (u,v) is in
A if and only if u tests v. The tester set I'1(v)
of unit v is the set of all the units which perform
tests on unit v. Analogously, the tester set I'"1(V")
for a subset V' C V is the set of those units which
perform tests on some members of V' but are not
themselves members of V'. The PMC model(8] is
taken for interpreting test outcomes. A fault set is
a set of units which are assumed to be faulty. Each
fault set F' € V stands for a unique system state. The
collection of -all possible fault sets or system states
is denoted by U, which is the power set of V. As
in the above-mentioned work, we will consider only
those fault sets which contain no more than t faulty
units. This universe is called the collection of t-fault
sets and denoted by U;. A syndrome of a system is
the entire set of test outcomes. A fault set is said
to be consistent with a syndrome if it can possibly
produce this syndrome. Similarly, a family of fault
sets 7 C U is said to be consistent with a syndrome
if this syndrome is producible from every member of
F. We use the notation F(v) to associate with unit
v the sets in F which contain unit v. There should
not be any confusion from the context as to whether
F represents a family of sets or a function. Let U,
be the collection of sets containing ¢ or less vertices.
This will be our scope of consideration for families of
sets.

3 t/ — 1-Diagnosability and
Characterization

In this section, we fully characterize the class of £/ —1-
diagnosable systems.

Definition 3.1 A system is said to be t/ — 1-
diagnosable if 1) it is 1-diagnosable and 2) when there
are f < t faulty units present ot least f — 1 of them
can be identified.

All proofs of the following results are omitted to save
space.

Theorem 3.1 A family F is consistent if and only
if the following is satisfied:

1. If F does not contain the empty set, then for
every test arc (u,v) € A

F(v) C F(u) or F(u)U F(v) = F.
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2. If F contains the emply sel, then for every
nonempty set F € F

r-1(F) =0.

Theorem 3.2 A system is t/ — 1-diagnosable if and
only if the following conditions are satisfied:

1. T=Y(V") is not empty for every nonempty subset
V! C V of cardinality less than or equal to t.
In addition, if t = 1, then T=Y(V') must not be
empty for every subset V' C V of cardinality two.

2. If |Nper F| < maxg. £(|F]) — 1 for some F C
U; with 0 ¢ F, then there ezists a test arc
(u,v) € A such that

F(v) € F(u) and F(u) U F(v) £ F.

Theorem 3.3 A system ist/ — 1-diagnosable if and
only if, for any subset V! C V, the following is satis-
fied:

1 |T=X V)| > 0 for |V'|=1;
2. [D7Y(V")| > max(t — 2,0) for |V'| = 2;
3. |D=Y V)| > t—[|V'|/2] for V'] > 3.

4 A Diagnosis Algorithm for
t/ — 1-Diagnosable Systems

In this section, we present a polynomial time diagno-
sis algorithm for the class of t/ — 1-diagnosable sys-
tems. This algorithm will identify at least f—1 faulty
vertices if f > 1 or the only faulty vertex if f = 1,
where f is the number of faulty vertices, as long as
the system is ¢/ — 1-diagnosable and f does not ex-
ceed t. In the following we will use some additional
graph theory terms. Those readers who are not famil-
iar with these terms are referred to [1]. For a given
syndrome and a test digraph D(V,A), we construct
the implied fault graph G (V, E)[2], which is an undi-
rected graph and an edge (u,v) is in E if and only
if u can be deduced to be faulty on the assumption
that v is fault-free. Then we compute a minimum
vertex cover of this graph and determine from it at
least f — 1 faulty vertices when f > 1 or the only
faulty vertex when f = 1.

Suppose we can, by some means, find a minimum
vertex cover of the implied fault graph Gr. The fol-
lowing algorithm can then be utilized to locatc the
faulty vertices. It identifies at least f — 1 faulty ver-
tices when f > 1 or the only faulty vertex when f = 1,
as long as the number of faulty vertices present does
not exceed t. Of course, the system should be t/ — 1-
diagnosable.



Algorithm 4.1

Input: Given a minimum vertex cover K and im-
plied fault graph Gy

Output: Nonempty fault set F C F with |F] >
|F|—1 when |F| > 1 and |F| =1 when |F| =1,
where F is the set of faulty vertices present.

Step 1: If |[K| =1 or |K| < t, set F' = K and go to
End.

Step 2: If K} = t, determine if there is a vertez
v € K such that |[N(v) — K| = 1. If “yes”, set
F =K — {v}. Go to End.

Step 3: Set P = K.
End

All proofs of the following results are omitted to
save space.

Theorem 4.1 For any given syndrome produced by
a nonemply set F of not more than t faulty vertices,
a nonempty subset of faulty vertices F C F with
|F| > |F} — 1 can be identified by an application of
Algorithm 4.1 on the implied fault graph G and any
minimum vertez cover of G, as long as the system
is t/ —1-diagnosable. The complezily of the algorithm
is O(e), where e is the number of edges in the implied
fault graph Gp.

The implied fault subgraph with respect to vertex
v € V, denoted by G}, is a subgraph of G formed by
removing from G, vertex v and all edges incident on
v. The neighbor set of a vertex u in G}, is denoted by
N*(u) and the neighbor set of u in G} with respect to
F (the set of neighbors which are not in F') is denoted
by Nz(u).

The following labeling procedure, similar to that
used by Dahbura and Masson in their diagnosis algo-
rithm for t-diagnosable systems[2], partitions the set
of vertices into two subsets, the set of vertices sup-
posed to be fault-free and the set of those vertices
supposed to be faulty. The procedure may fail for
some vertices. It reports whether or not it is success-
ful when it terminates.

Procedure LABEL(v)

Input: Implied fault subgraph G} with respect to v,
neighbor set N(v) of v and maximum matching
M® of G,

Output: Return status (successful or failed), labels

(fault-free or faulty) on the vertices in G} and
vertex cover KV of G}.
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Step 1: Initialize stack S.

Step 2: Mark all M"-unsaturated vertices “fault-
free” and place them on S. Set the stack top
pointer Top equal to the number of these ver-
tices. If Top = 0, set the return status as “failed”
and go to End.

Step 3: If Top = 0, set the return status as “suc-
cessful” and go to Step 6. Remove from the stack
the vertex pointed to by Top. Let it be v;. Set
Top = Top — 1. If v; is marked “faulty”, go to
Step 5.

Step 4: Let D be the set of vertices in N” (v:) al-
ready marked. If any vertex in D is marked
“fault-free”, set the return status as “failed”
and go to End; otherwise, mark all vertices in
N¥(v) — D “faulty”, place them on S and set
Top = Top+ |N¥(v:) — D|. Go to Step 3.

Step 5: Let v; be the vertex matched by v; under
MY I v; is marked “faulty”, set the return
status as “failed” and go to End. If v; is un-
marked, mark it “fault-free”, place it on S and
set Top = Top + 1. Go to Step 3.

Step 6: Let U be the set of vertices in G} left un-
marked. If |U| = 0, go to Step 7. Otherwise,
U contains exactly two vertices matched by each
other under M". Let them be u; and u;. Mark
one vertex adjacent to v in G “faulty” if there is
any; otherwise, mark any one of them “faulty”.
Mark the other vertex “fault-free”.

Step 7: Place all vertices marked “faulty” into K*.
End

Now we are ready to present our algorithm for
finding a minimum vertex cover of the implied fault
graph.

Algorithm 4.2 (Minimum Vertex Cover)
Input: Implied fault graph G .
Output: Minimum vertez cover K of Gy.

Step 1: Set s =n.

Step 2: For each vertez v in G do:

1. Form subgraph G} = G — v by removing

from G vertez v and oll edges incident on
v.
. Compute & mazimum matching MY of Gy.

. Apply LABEL(v) to partition V — {v} into
two subsets K, and V — {v} — K.



4. If the status returned from LABEL(v) is
“successful”, then do the following:
(a) If N(v) — K” £ 0 then set K' = K* U
{v}; otherwise, set K' = K.
(b) Set s, = |K'|.
(c) Ifs, <s, then set K = K' and s = s,,.
End

Theorem 4.2 Algorithm 4.2 can correctly compute
¢ minimum vertez cover of G, as long as the system
is t/ — 1-diagnosable and the number of faulty ver-
tices present does not exceed t. The ezecution time of
Algorithm 4.2 is upper bounded by O(n3").

The whole diagnosis algorithm for t/ — 1-
diagnosable systems is formally described below.

Algorithm 4.3 (Fault Identification)
 Input: Test graph D(V,A) and syndrome Syn.

Output: Foult set £ C F such that |F| > |F| -1
when |F| > 1 and F' = F when |F| = 1, where F
is the set of faulty vertices present.

Step 1: If the test outcomes are all “0”, set £ = 0
and go to End. Construct the implied fault graph
Gr(V, E) from D(V, A) and Syn.

Step 2: Find a minimum vertez cover K of Gy, (us-
ing Algorithm 4.2).

Step 3: Determine a fault set F (using Algo-
rithm 4.1).

End

Theorem 4.3 Algorithm 4.3 Identifies at least f — 1
faulty vertices when f > 1 or the only faulty vertez
when f =1, provided the system is ¢t/ — 1-diagnosable
and the number of faulty vertices f is no larger than
t. The algorithm can be ezecuted in O(n®?) time.

5 Conclusions

We have introduced a new diagnosability measure,
the t/ — 1-diagnosability, and presented a complete
characterization of ¢t/ — 1-diagnosable systems. We
have also given an O(n3®) t/ 1 diagnosis algorithm.
The ¢/ — 1-diagnosable systems have the following
characteristics: 1) It is two-step diagnosable; 2) the
degree of diagnosability may double that of one-step
t-diagnosability and 3) if a system is both t/ — 1-
diagnosable and 1-fault tolerant, one phase of diag-
nosis and repair can bring a failed system back into
operation. This new diagnosability is a compromise
between one-step t-diagnosability and sequential ¢-
diagnosability.
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