An Efficient Simulated Annealing Algorithm For Graph Bisectioning

Y.C. Zhao L. Tao

K. Thulasiraman

M.N.S. Swamy

Faculty of Engineering and Computer Science
Concordia University

Montreal, Canada H3G 1M8

Abstract

A new simulated annealing algorithm for solving the
graph bisectioning problem is proposed. We run our
simulated annealing algorithm, the Kernighan-Lin al-
gorithm, and the Saab-Rao algorithms on the same
set of random graphs with 50 to 500 nodes and com-
pare their performances. Experiments show that our
simulated annealing algorithm provides lower bisection
cost than the Kernighan-Lin algorithm and the Saab-
Rao algorithms for all of the graphs and our algorithm
takes less running time than the other algorithms men-
tioned above for all of the graphs with more than 100
nodes. For the simulated annealing approach, we con-
clude that sequential neighborhood search outperforms
random neighborhood search in solving the graph bi-
sectioning problem.

Key words: Graph bisectioning, simulated anneal-
ing, combinatorial optimization.

1 Introduction

An undirected graph G = (V, E) consists of a set V
of nodes and a set E of edges, where an edge ey =
{u,v} € E is an unordered pair of nodes u and v in
V and is said to be incident on u and v. A weighting
function on the set E is a mapping w : E — R from the
set E to the set of real numbers with w(e,) denoting
the weight of an element e, , € E. A set E is said to
be weighted if it has a weighting function defined on
it. A graph G = (V, E) is said to be an edge-weighted
graph if the set E is a weighted set. In this paper , we
only consider the undirected edge-weighted graphs.
We say that V) and V; partition the set V if V; and
Vo are both nonempty, ViUVo =V and Vi NV, = 0.
We denote the partition by the unordered pair (4,
V2). An edge e € E is said to be cut by a partition
(V1, V2) if its two ends belong to Vi and V; respec-

1This work has been partially supported by the Canada
NSERC research grant OGP0041648.

TH0355-8/91/0000/0065$01.00 © 1991 IEEE

tively. The cost of a partition for a graph is the sum of
the weights of all the edges cut by the partition, i.e.,
>uev, Sovev, W(€uy). The Graph Bisectioning (GB)
[8] is to find a partition (V4, V3) of G = (V, E)) such that
[Vi| = |V2| and the cost of (Vi, V2) is minimized. The
GB problem has extensive applications in VLSI place-
ment and routing problems[1, 5, 12]. It has been shown
to be NP-complete[13]. Many heuristics have already
been proposed for the GB problem. The Kernighan-
Lin algorithm is the recognized champion among the
classical approaches to this problem. The recent GB
algorithms proposed by Saab and Rao [14] are faster
than the Kernighan-Lin algorithm but cannot outper-
form the latter in bisection cost. Most of the algo-
rithms mentioned above follow a descent paradigm.
They start with an initial solution. A neighbor of this
solution is then generated by some mechanism and the
change in cost is calculated. If the cost is reduced ,
the current solution is replaced by the neighbor; oth-
erwise the current solution is retained. The process is
repeated until no further improvement can be found in
the neighborhood of the current solution. The obvious
disadvantage of the descent paradigm is the possibility
of being trapped in a local minimum which may be far
from the optimal solution.

Simulated Annealing (SA), which has received much
attention over the last few years [6], is a randomized
heuristic approach designed to give a good, though
not necessarily optimal, solution within a reasonable
amount of computing time. Metropolis et al. [11]
proposed SA and applied it to the field of statistical
physics as a means of determining the properties of
metallic alloys at given temperatures. Kirkpatrick et
al. [7] and Cerny [2] first demonstrated the potential of
SA to solve the combinatorial optimization problems
independently.

SA starts with a random initial solution. It attempts
to avoid being trapped in a local optimum by some-
times allowing the temporal acceptance of inferior so-
lutions. The acceptance or rejection of an inferior solu-
tion is probabilistically determined by a random num-

ber r uniformly distributed on the interval [0, 1], a
control parameter ¢ (temperature), and the increase
in the value of the objective function. SA has been
successfully applied to many combinatorial optimiza-
tion problems such as VLSI placement and routing [9],
quadratic assignments [15, 3], and the zero-one knap-
sack problem {4].

In this paper, we use SA to solve the GB prob-
lem and demonstrate its superior performance to the
Kernighan-Lin algorithm and the Saab-Rao algorithms
in both the bisection cost and the computation speed.
In Section 2, we propose a SA algorithm for solving the
GB problem. In section 3, we compare the bisection
cost and the computation time of our SA algorithm
with the Kernighan-Lin algorithm and the Saab-Rao
algorithms by applying them to the same set of random

graphs. This paper concludes with some comments on
SA.

2 SA algorithm for the GB
problem

For the GB problem, the solution space S includes
all the points corresponding to the feasible solutions.
Given a particular bisection corresponding to point p in
S, the exchange of a pair of nodes belonging to different
partitions will let us move in S from p to a neighboring
point. SA starts with an initial feasible solution, and
moves step by step towards a solution giving hopefully
the minimum (or close to the minimum) bisection cost.
SA differs from the descent algorithms in that SA at-
tempts to avoid being trapped in a local minimum by
sometimes accepting a feasible solution that increases
the value of the objective function f. We accept a
move in S unconditionally if it decreases the value of
f, and accept a move probabilistically if it increases
the value of f.

The following key issues play an important role in
our SA implementation.

1. Initialization. We can start the algorithm with ei-
ther a random solution or a solution resulting from
another algorithm. Although we can get a better
initial solution in the latter case, we have to pay
the extra computation time for the initialization
algorithm. Since theoretically SA will eventually
converge to the global optimal solution indepen-
dently of the initial solution, we take the random
initial solution to start our algorithm.

2. Acceptance function. The probability of accepting
a move that causes an increase A in f(s) is deter-
mined by the acceptance function. Like most re-

searchers we use the Metropolis acceptance func-
tion [11] e(~4/t), where t is a control parameter
corresponding to the temperature in analogy with
physical annealing. Because A > 0 and ¢t > 0,
e(=2/Y) is always smaller than 1. We generate a
random number r uniformly distributed on the
interval [0, 1] and compare e(~2/") with r. If
e(=8/1) 5 p then the move is accepted; otherwise
the move is rejected.

. Neighborhood search. There are two ways for se-

lecting the next feasible solution from the set of
neighbors of the current solution: random and se-
quential. In most published research on SA, the
next feasible solution is randomly selected from
the neighbors of the current solution. Accord-
ing to Connolly [3], the random neighborhood
search might miss some potential improvements
by the random nature of the search. We imple-
ment both approaches for comparison. For the
sequential neighborhood search, the attempted
node-exchange is examined in the order (1, 2), (1,
3), ..., (1,n),(2,3),..,(n=1,7),(1,2),...50
as to increase the chance of improvement.

. Cooling schedule. Tt includes the selection of the

starting temperature to, the rate at which the tem-
perature is reduced, the number of iterations at
each temperature, and the criterion for stopping
the algorithm. The temperature is initially set
to some large value for permitting almost all at-
tempted moves and gradually lowered such that
the acceptance probability of inferior moves is
gradually reduced until it approaches zero. In
our algorithm the temperature is controlled by
the Lundy and Mees scheme [10] because it re-
duces the temperature more smoothly. By this
scheme, starting from an initial temperature tg,
the temperature is reduced after each attempted
node-exchange by the following recurrence expres-
sion:
t4
ti+1=ﬁ?§’ i=0,---,m—1

where m is a given number of iterations for stop-
ping the algorithm. Therefore,

to—tm
mtot,,. ’

8= to>> B.

We use m = k(n?/4), where n?/4 is the size
of the neighborhoods and k is a positive inte-
ger. We choose to and ¢, equal to the maximum

and the minimum increases of f(s) for successive
current solutions s in a fixed number (for exam-
ple, (1/100)m) of node-exchanges between the two
partitions respectively.

Our SA algorithm is given as follows.

Input:
Graph G = (V, E) and the n x n cost matrix w.
Cost function f(s) = 3, v, Zyev, w(eu,) for any
partition s = (V;, V).
Starting temperature ¢o, final temperature t,,,
and the number of iterations m.
B = (to — tm)/(miot,).

Algorithm:
Generate a random feasible solution s = (V4, V»)
such that |V}| = |V5].
Let t = to, cost = f(s), bests= s.
for all v € Vj, enqueue(Q, v)2.
for all v € V3, enqueue(Qa, v).
while ¢t > t,, do
Let n; = dequeue(Q1)3, ny = dequeue(Qs).
Let s’ = (V1 - {nl} U {112}, Va — {nz} U {nl}).
Let A = f(s') — f(s).
Let r be a random number uniformly distributed
on [0,1].
if A<Oore 2/t >y then
enqueue(Q1,n2), enqueue(Qs, ny).
if f(best.s) > cost then bests = s'.
Let cost = f(s'), s = ¢'.
Let t =
end while
Output:

—t
148t

best_s.

3 Performance comparison

We run our SA algorithm, the Kernighan-Lin algo-
rithm, and the Saab-Rao algorithms on MIPS M120/5
for random graphs with node numbers ranging from 50
to 500. The random graphs have the following proper-
ties:

1. Connected.

2. The degree of each node ranges from 2 to n/2,
where n is the number of nodes in the graph.

3. The weight of each edge ranges from 2 to 200.

Table 1 and Table 2 summarize the performances of
these algorithms in cost and CPU time respectively.

Average Cost

n | K.-L. alg. | Saab-Rao alg. SA alg.
(iter. #) 3.1 | 3.2+4.1 | seq. | rand.
50 977(15) 924 975 923 927

100 4039(5) | 3983 4120 | 3978 | 3980

150 9061(5) | 8995 9383 | 8992 | 8995

200 [16417(6) | 16373 16946 [16369 | 16373
250 [24830(7) [24815 25728 | 24805 | 24815
300 | 36499(6) | 36484 37290 | 36483 | 36482
350 | 49713(7) | 49659 50495 | 49858 | 49662
400 | 63770(7) | 63710 65616 | 63709 | 63707
500 | 98350(1) | 98026 99590 | 98024 | 98026

Table 1: Comparisons for bisection cost

Average CPU time (sec.)

n | K.-L. alg. | Saab-Rao alg. SA alg.

(iter. #) | 3.1 | 3.244.1 { seq. | rand.
50 3(15) 0 0 2 2
100 12(5) 3 0 6 8
150 52(5) | 13 1] 9] 10
200 | 131(6) | 34 2] 25| 29
250 265(7) | 69 3 38 39
300 | 465(6) | 114 5| 57| 76
350 747(7) | 190 7| 138 165
400 | 1104(7) | 294 9 [171 | 181
500 334(1) | 663 15| 250 | 352

Table 2: Comparisons for computation time

For the Saab-Rao algorithm, there are two parts: one
is for the algorithm 3.1, another is for the algorithm
3.2+4.1 in which algorithm 3.2 is used to obtain an ini-
tial bisection for algorithm 4.1. For the SA algorithm,
the two parts are for two versions of implementation
different only in the neighborhood search scheme: se-
quential and random. The cost and the CPU time are
the averages over ten graphs with the same number of
nodes.

It can be seen from Table 1 that sequential SA out-
performs random SA on bisection cost in all but two
graphs. For the graphs with 300 and 400 nodes, the
costs for sequential SA are greater than those for ran-
dom SA for about 1.5 units which is not too significant.
From Table 2, we see that sequential SA always takes
less CPU time than random SA for all graphs. In sum-

2Procedure enqueue(Q, v) enters node v into queune Q.
3Function dequeue(Q) deletes and returns the first node in
queue Q.

mary, sequential SA seems better than random SA in
solving the GB problem.

Although the Saab-Rao algorithm 3.2+4.1 is the
fastest algorithm, its solution quality is very poor. Ta-
ble 1 shows that sequential SA generates bisections
with lower costs than the Kernighan-Lin algorithm and
the Saab-Rao algorithm 3.1 . For the graphs with 500
nodes, our sequential SA algorithm takes only about
1/1.4 and 1/2.6 CPU time of the Kernighan-Lin algo-
rithm and the Saab-Rao algorithm 3.1 respectively.

4 Conclusion

In this paper, we use SA to solve the GB problem and
compare the performance of our SA algorithm with
those of the Kernighan-Lin algorithm and the Saab-
Rao algorithms. We show that for all graphs with node
numbers ranging from 50 to 500 , sequential SA algo-
rithm outperforms all the other algorithms mentioned
above in solution quality. For the graphs with more
than 100 nodes, our sequential SA algorithm always
takes less CPU time than the Kernighan-Lin algorithm
and the Saab-Rao algorithm 3.1. For the SA algorithm,
we compare the random neighborhood search and the
sequential neighborhood search under the same cooling
schedule for the same set of graphs with node numbers
ranging from 50 to 500. The results show that the se-
quential neighborhood search outperforms the random
neighborhood search in computation time for all the
graphs and in solution quality for most graphs. We
conclude that sequential SA algorithm is a very pow-
erful tool for solving large-scale GB problem.

References

[1} S. Bhatt and F. Leighton. “A framework for solv-
ing VLSI graph problem.” J. Comput. Syst. Sci.,
Vol. 28, No. 2, pp. 300-343, Apr., 1984.

[2] V. Cerny. “Thermodynamical approach to the
traveling salesman problem: an efficient simula-
tion algorithm.” Journal of Optimization Theory
and Applications, Vol. 45, pp. 41-45, 1985.

(3] D. T. Connolly. “An improved annealing scheme
for the QAP.” European Journal of Operational
Research, Vol.46, pp. 93-100, 1990.

(4] A. Drexal. “A simulated annealing approach to
the multiconstraint zero-one knapsack problem.”
Computing, Vol.40, pp.1-8, 1988.

[5] A. Dunlop and B. Kernighan. “A procedure for
placement of standard-cell VLSI circuits.” IEEE
Trans. Computer-Aided Design, Vol. CAD-4, pp.
92-98, Jan., 1985.

[6] R. W. Eglese. “Simulated annealing: A tool for
operational research.” European Journal of Oper-
ational Research, Vol. 46, pp. 271-281, 1990.

[7] S. Kirkpatrick, C. D. Gelate Jr., and M. P. Vecchi.
“Optimization by simulated annealing.” Science,
Vol. 220, pp. 671-680, 1983.

{8] B.W. Kernighan and S. Lin. “An efficient heuristic
procedure for partitioning graphs.” The Bell Tech-
nical Journal, Vol. 49, pp. 291-307, Feb., 1970.

[9] P. J. M. Van Laarhoven and E. H. L. Arts. “Sim-
ulated annealing : theory and applications.” D.
Reidel Publishing Company, Chapter 7, 1987.

[10] M. Lundy and A. Mees. “Convergence of an an-
nealing algorithm.” Mathematical Programming,
Vol. 34, pp. 111-124, 1986.

[11] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A.
Teller, and E. Teller. “Equation of state calcu-
lations by fast computing machines.” Journal of
Chemical Physics, Vol. 21, pp. 1087-1092, 1953.

[12] D. La Potin and S. Directer. “Mason: A global
floorplanning approach for VLSI design.” IEEE
Trans. Computer-Aided Design, Vol. CAD-5, pp.
477-489, Oct., 1986.

{13] Y. Perl, M. Snir. “Circuit partitioning with size
and connection constrains.” Networks, Vol. 13,
No. 3, pp. 365-375, 1983.

[14] Y. G. Saab and V. B. Rao. “Fast effective heuris-
tics for the graph bisectioning problem.” IEEE
Trans. Computer-Aided Design, Vol. CAD-9, pp.
91-98, Jan., 1990.

[15] M.R. Wilhelm and T. L. Ward. “Solving quadratic
assignment problem by simulated annealing.” IIE
Transactions, Vol. 19, pp. 107-119, 1987.

