ALLERTON CONFERENCE ON COMMUNICATIODN, CONTROL AND
COMPUTRS, SEPTEMBER 1987

AN EFFICIENT ASYNCHRONOUS DISTRIBUTED PROTOCOL TO TEST
FEASIBILITY OF THE DUAL TRANSSHIPMENT PROBLEM

S M. A. COMEAU K. THULASIRAMAN
Tt e Centre de recherche informatique de Montréal Dept. of Elecrrical and Computer Engineering
Montréal (Canada) Concordia University, Montréal (Canada)

K. B. LAKSHMANAN
Dept. of Computer Science
Concordia University, Monwéal (Canada)

ABSTRACT

An asynchronous distributed protocol to test feasibility of the dual wransshipment problem is presented,
The message and time complexities of this protocol are O(mn) and O(n), respectively, where m and a are the
number of edges and the number of nodes in the graph underlying the problem. This protocol can be easily
modified to construct a starting solution required to initialize the primal-dual method. A mechanism is

S Z'."': incorporated in these protocols to detect infeasibility, whenever it occurs.

L INTRODUCTION

_Network optimization refers to the class of optimization problems defined on graphs and networks. In
recent years, efficient distributed protocols or algorithms have been obtained for several network optimization
problems such as the single-source shortest-path problem, the maximum-flow problem, the problem of
conftructing 2 maximum marching, etc. In this paper, we are concemed with certain issues in the design of
dis&ibuted protocols for the transshipmeat problem {1) which generalizes several of the network optimization
problems such as the ones stated above.

The transshipment problem can be formulated as a linear program and therefore can be solved by the
simplex method using any one of the three approaches, namely, the primal, the dual or the primal-dual

methods. The network simplex algorithm is an efficient implementation of the primal method for solving the -

transshipment problem and has been extensively studied in the literature. However, the dual method has
received very little auention, though one can construct an optimum solution of the problem from an
optimum solution of the dual. Our recent investigations (2} indicate that the network simplex algorithm is
essentially sequential in nature and does fiot offer much scope for an efficient distributed implementation. This
has motivated us to select the dual and the primal-dual methods as candidates in our study of issues in
distributed protocol design for network optimization problems.

The simplex method involves two phases. In the first phasé. feasibility of the given problem is tested
and 2 basic feasible solution is constructed, if such a solution exists. The second phase starts with a basic
feasible solution and through a sequence of pivot operations constructs an opdmum solution, if available.

In this paper, we will be primarily concerned with the first phase of the dual transshipment problem.
Thus, we are interested in designing an efficient distributed protocol to test feasibility of this problem. In
Section II, we present the dual transshipment problem and present the important features of a sequential
algorithm to test feasibility. This algorithm is of time complexity O(mn) where m and n are, respectively,
the number of edges and the number of nodes of the graph underlying the dual transshipment problem. In
Section III, we show that the algorithm of Section II can be suitably modified to construct a starting solution
required to initialize the primal-dual method. In Section IV, we present the model we use for disaibuted
computation and then present, in Section V, the essential features of a synchronous distributed protocot for
the feasibility testing problem. This protocol is of message complexity O(ma) and time complexity O(n).
Combining this synchronous protocol with the a-synchronizer of Awerbuch [3].{4] or with the simples
synchronizer presented in (10] leads o an asynchronous protocol whase message and time complexities are
the same as those of the synchronous protocol.

This research was supported in part by Concordia University under grant CASA-N67 and by FCAR
Québec under grant 87A52407 of the “Actions Spontanées” program.



IL. ALGORITHM FEASIBLE: TESTING FEASIBILITY OF THE DUAL
TRANSSHIPMENT PROBLEM

Given a weighted graph G = (V,E) on n nodes and m edges, with the weight vector My associated with
the edge set E, let A denote the incidence matrix of G. Then the dual transshipment problem is a linear
program defined as follows: ’

minimize 25
subject to A'E 2-My (4]
z20 @)

where Z is a column vector of dimension a and Qs a row vector also of dimension n. Vectors £2 and M are
specified.

A vector 2 0 which satisfies (1) is called a feasible solution of the dual transshipment problem. If
such a vector exists, then the given dual transshipment problem is feasible.

Theorem 1: :
The dual transshipment problem is feasible if and only if the weighted graph G has no directed circuit of
negative weight. //

Let d;; denote the weight of a minimum-weight directed path from node i to node j. Let
Y= max{0, 'minl{dl']}}’ i= 1,20, 3

Theorem 2:
The vector = (71.72.*.7")‘ is a feasible solution of the dual transshipment problem if the weighted

graph G has no directed circuit of negative weight. //
Proof of the above theorems may be found in (11].

To present an algorithm which obtains the feasible solution given in the above theorem, let us define the
node firing operation as follows. Firing x times a node v refers to the operation of adding x to the weight
of every outgoing edge at v and subtracting x from the weight of every incoming edge at v. In the following,
M(e) denotes the weight of edge e.

Algorithm FEASIBLE:

1.ILet M= Mo.
2.While there exists an edge ¢ = (iy) such that M(e) < O, fire node i, -M(e) nmu. updating M. //

Theorem 3: ‘
If the weighted graph has no negative-weight directed circuits under the weight vector My, then
Algorithm FEASIBLE terminates in a finite number of steps after firing each node { exactly ; times. //

Proof of correctness and termination of this algorithm may be found in [11].

We next present an implementation of the above algorithm which achieves a time complexity of O(mn).
The main steps in this implementation are:
Step 1: For each i, set 7; = 0. Let M be the initial weight vector associated with the edge set.
Step 2: For each i, compute
0; = max{0, -min;{M(i)}}
Step 3: Fire each node f, o; times and update ¥; by adding o; to its current value (Note that firing results
in updating M also).
Step 4: If 0; = 0 for all i, STOP. ELSE return to Step 2.



We now proceed to prove that the above implementation of Algorithm FEASIBLE achieves a
complexity of O(nn). Our proof also shows that this implementation computes ¥;'s correctly whenever there

is no circuit of negative weight in G.

In the following, we shall refer to one execution of Step 2 and Step 3-as a sweep. Also, whenever there
is no negative-weight directed circuits, it can be proved that the graph has at {east one node i with 7 = 0.

Such a node will be referred to as a datum node. Note that in a graph, there may be more than one datum
node. It can be proved that Algorithm FEASIBLE will never fire a datum node. A directed path of weight -7;

will be denoted by p; ;- where {” is clearly a datum node. We refer to the number of edges in a path as the
length of the path.
Theorem 4: )

Assume that G has no negative-weight directed circuits under the initial weight vector M. Consider any
node i for which ¥, > 0. If the length of the path p;; is k, then the node { will have been fired 7; times at the
end of the & sweep in the above implementation of FEASIBLE.

Proof:

Let pp = idpdp.ip. 0" At the beginning of the first sweep, the weight on the edge (ig_ 1) is -7 ;.
Also. ¥ is never fired. So at the end of the first sweep, node ;.7 will have been fired 7, , times. At the
beginning of the second sweep, ip_; is a datum in the new weight pattern and the weight on the edge
(ig-24dg. 1) will be -, 5. So, during this sweep, node i;_5 will be fired 7, , times. Repeating these
arguments, we can see that at the end of the k% sweep, node i will have been fired ¥, times. //

- Theorem 5:
If G has no neganve-welght directed circuits under My, then Algomhm FEASIBLE will terminate in

no more than n sweeps, where n is the number of nodes in G.

Proof:
Each directed path p;» in G is of length < a-1. So, by Theorem 4, each node { will be fired a total of ¥;

times in no more than n-1 sweeps and the theorem follows. //

During each sweep, O(m) edges are examined. Thus, each sweep takes O(m) time and, hence, we have
the following theorem. .

Theorem 6:
"The complexity of Algorithm FEASIBLE is O(mn) if G has no negative-weight directed circuits under
the initial weight pattern M. //

" Any 0;> 0 after the n# sweep of Algoﬁthin FEASIBLE indicates the presence of a negative-weight
directed circuit. We can also incorporate in this algorithm a mechanism to detect the edges in such a circuit.
Algorithm FEASIBLE can be suitably modified to handle the general case where there are upper as weil as
lowerbounds specified on the firing numbers.

I INITIALIZATION OF THE PRIMAL-DUAL METHOD
The upperbounded transshipment problem is as follows:

minimize cx
subject 0Ax = b, 0SxSu “@

To initialize the primal-dual method, one is required to determine a set of xif 's and % s such that



I.OS::,-I-Su,-I- (5)
2.x,-j = 0 whenever 7, + cjj2 % ()]

3.x,-j=u,-j whenever}'i+c,'j<7;- m

It can be seen (2] that the initialization problem reduces to finding y‘-‘s.such that
%o+ ci 20 8

whenever Ujjm oo, If such ¥/'s can be found then we can set

0 if 7;.+c‘.].27}
Xija u..if (9)
‘I ‘)".+Cij<}} .

Suppose we modify Algorittm FEASIBLE so that edges for which uj; < o are ignored while
computing ;. Then we can see that such a modified algorithm will compute correctly a set of s (whenever
such a set exists) satisfying (9). ‘

1V. MODEL OF DISTRIBUTED COMPUTATION

For synchronous computations, we follow the model used in (3] - {5] and for asynchronous
computations, we follow the model used in {3], (4], [6] - [9). These models are by far the most commonly
used ones. It might be pointed out that in these models it is necessary that all the messages received at a
processor are transferred to a single common queue before being processed one by one. Itis also assumed that
the actions necessary for processing a message can all be performed in negligible computation time, without
wait once started, and also uninterrupted by the arrival of other messages. Note also that in the asynchronous
model, the communication subsystem is assumed to deliver a message to its destination after a finite but,
undetermined time lapse. On the other hand, in a synchronous network model, we assume the existence of a
global clock, so that.all messages are sent only when a clock pulse is generated. Moreover, a message sent
by any processor to its neighbor arrives at its destination before the next pulse is generated.

It must be emphasized that in all our protocols, no processor is assumed to be aware of the number of
processors in the system.

As regards complexities, the message complexity of a distributed protocol is the total number of
messages transmitted during the execution of the algorithm. The time complexity (both in the synchronous
and the asynchronous cases) is the time that elapses from the beginning to the termination of the algorithm,
assuming that the delay in any link is exactly one unit of time. Note that this assumption of unit delay in
links, even for the asynchronous case, is made only for the purpose of timing analysis. ’

V. A SYNCHRONOUS DISTRIBUTED PROTOCOL

We now present the essential features of a synchronous distributed protocol for testing feasibilitjr of the
dual mansshipment problem. This protocol is given in two phases. In the following, we shall assume that
each node processor v is aware of the weights of all the outgoing edges at v.

After the usual WAKE-UP protocol, a leader s is first elected and a tree T rooted at s is constructed.
The root s then informs all the nodes to start Phase 1. (Note that leader election requires O(m + n log n)
messages and O(n) time [12]).

Phase 1:
To start with, the firing number ¥, of each node w is set to zero.

Two types of messages -WAVE and ACK- are used. During the first pulse of activity each node
processor w sets itself 1o the START state, sets PRED(w) = w and computes the minimum of the weights
of all the outgoing edges incident atw. Let this minimum be d,,. If 3, >0 then node w changes its state to



SUCCESS. Otherwise, it updates the weight of each outgoing edge by adding |3,,} to its current weight and
updates its firing number by adding |d,,! to the current value of 7. Also, a WAVE message carrying the value
13,.] is broadcast along each incoming edge at w.

During each subsequent puise the node w processes the messages received, one at a time. Consider the
WAVE message received along the i*h outgoing edge. Let FIRE(]) denote the value carried by the message.
Now node w updates the weight of the #* outgoing edge by adding -FIRE()) to its current weight, Let
MIN(w) denote the minimum of the current weights of all the outgoing edges at w after all the WAVE
messages have been processed.

If MIN(w) 2 0, then node w sends an ACK message to every neighbor from which 2 WAVE message
has been received. If MIN(w) < 0, then node w updates its firing number by adding {MIN(w)] to its current
value. The weight of every outgoing edge is updated by adding [MIN(w)] to the current weight and then an
ACK message is sent to PRED(w) if PRED(w) # w. Node w then arbitrarily selects an edge, say the edge
(w.k) whose current weight is zero, sets PRED(w) = &, and sends ACK messages for all the WAVE messages
processed, except for the one which was received along the edge (w.k). Finally, a WAVE message which
carries the value of [MIN(w)| is sent along each incoming edge. If no incoming edge is present at w, an ACK
message will be sent to PRED(w).

Note that at any time an ACK message will be pending on no more than one outgoing edge incident at
any node. When node w has received ACK messages for all the messages it has sent, it transmits an ACK

message to PRED(w).

Node w sets its state to SUCCESS when it has received ACK messages for all the messages it has
seat during its first pulse.

. When a node w and all its descendants in the tree T have reached the SUCCESS state, node w informs
its father in T accordingly. When the leader s recognizes that all the nodes including itself are in the
SUCCESS state, it initiates Phase 2, }

Phase 2: ' :

The objective of Phase 2 is o test for the presence of a directed circuit of negative weight. This is done
by the leader transmitting messages along T and checking if at any node an ACK message is pending on an
outgoing edge. If so, it indicates the presence of a negative-weight directed circuit, and all the nodes are then
switched to the INFEASIBLE state (indicating infeasibility of the problem.) Otherwise, all the nodes are
switched to the FINISHED state; in this case the current firing numbers of the nodes give a feasible
solution for the given dual transshipment problem.

VI. CORRECTNESS AND COMPLEXITY OF THE SYNCHRONOUS PROTOCOL

To prove the correctness and establish the complexity of the synchronous protocol, first note that the
actions taken by the nodes during any pulse of the first phase are essentially the same as those during the
corresponding sweep of the sequential Algorithm FEASIBLE. Thus, if we assume that there are no
negative-weight directed circuits, then the firing numbers of all the nodes would reach the values as given by
(3) in no more than n pulses and hence, the weights of all edges would attain nonnegative values within this
period. No WAVE messages will flow in the graph after the n‘? pulse. The crucial problem then is to prove
the correctness of the mechanism we have used to let every node know that all the edges have attained
nonnegative weights and that the objective of the protocol has been achieved.

To do 50, let us first assume that there are no negative weight directed circuits and that all the edges with
negative weights are incident out of a single node w. Let the edge having the most negative weight be (w.i).
Thus, during the first pulse of the first phase, node w is the only one which initiates 2 WAVE message. Any
node x initiating a WAVE message during the first pulse will be considered as initiating the x-wave. The
purpose of the w-wave is to fire node w so that the weight of the edge (w.) becomes zero. However, this
firing may cause weights of some of the edges incident into node w to become negative and thus will, in turn,
trigger new WAVE messages (in fact w-wave messages). Let G, denote the set of all edges traversed by the

w-wave messages.



Note that a WAVE message received at, say, node j, along edge (j.k) is acknowledged either i) when it
triggers no new WAVE messages or ii) when all the WAVE messages it riggered have been acknowledged or
iii) when a later WAVE message arriving at j causes further firing of node j. In all these cases, all the edges
traversed by the w-wave message received at node j along edge (j.k) would have attained nonnegative values.
This means that when node w has received ACK messages for all the messages it sent during the first pulse,
all edges in G,, would have artained nonnegative values. Therefore, at this point, node w detects completion

of the mission of the w-wave message and sets itself to the SUCCESS state.

In the general case, more than one node may initiate a wave during the first pulse. The subgraphs
traversed by the waves may not be distinct, When all the edges in any one of these subgraphs have attained
nonnegative weights, the node initiating the corresponding wave would set itself to the SUCCESS state.
When all the nodes reach the SUCCESS state, the root node can detect this and in the second phase it will
inform all the nodes about the successful termination of the protocol.

Consider next, the case when there are some negative directed circuits. Suppose a node, say j, in such a
circuit sends a WAVE message along edge (k.j) during the first pulse. Since j is in a negative-weight directed
circuit and the length of a circuit is at most », this node will be fired again within the first » pulses, resulting
in 2 WAVE message along (k.j). This, in turn, sends an ACK message for the message sent along (k.5)
during the first pulse and a new ACK message will be pending on (k). Thus node j will be able to set itself
to the SUCCESS state within the first # pulses. The new pending ACK message on (k,)) indicates the
presence of a negative-weight directed circuit and will be detected during the second phase. It can be shown
that an ACK message will be pending at at least one node in a negative-weight directed circuit.

It is clear from the above discussion that all nodes will reach the SUCCESS state within the first n
pulses. The root will detect this in O(n) pulses. The second phase will terminate in O(n) pulses. Furthermore,
the number of messages during each pulse is O(m). As pointed out above, leader election can be accomplished
using O(m + n log n) messages and O(n) time. Thus, we have the following theorem.

Theorem 7:

A feasible solution, if it exists, to a dual transshipment problem defined on a network of m edges and »
nodes can be computed using a synchronous distributed protocol which requires O(mn) messages and O(n)
time. //

VI. AN ASYNCHRONOUS DISTRIBUTED PROTOCOL

Combining the synchronous protocol of the previous section with the a-synchronizer of Awerbuch [3},
[4] or the simpler synchronizer presented in {10], an asynchronous distributed protocol requiring O(mn)
messages and O(n) time can be constructed for testing feasibility of the dual transshipment problem. Note that
the synchronizer is required only for Phase 1 of this protocol.

"' VII. CONCLUSIONS
We have shown that an asynchronous distributed protocol of message complexity O(mn) and time
complexity O(n) can be constructed to test feasibility of a dual transshipment problem defined on a network of
medges and n nodes.
VIL. REFERENCES
[1] V.Chvétal, “Linear Programming”, Freeman Company, San Francisco, 1983.
{2] Marc Comeau, “Reachability and Sequencing in Marked Graphs and State Graphs: Algorithms Based on
Network Programming”, Ph.D. thesis, Dept. of Electrical Engineering, Concordia University, June
1986.

{31 B. Awerbuch, “Complexity of Network Synchronizaton”, J. Assoc. Comput. Mach., Vol. 32, No. 4,
Oct. 1985, pp. 804-823.



[4

(31

{61

{81

191

B. Awerbuch, “Reducing Complexities of the Distributed Max-Flow and Breadth-First-Search
Algorithms by means of Network Synchronization”, Networks, Vol. 15, 1985, pp. 425-437.

E. Korach, D. Rotem and N. Santoro, “Distributed Algorithms for finding centers and medians in
Networks”, ACM Trans. Prog. Lang. Systems, Vol. 6, No. 3, July 1984, pp. 380-401.

K. M. Chandy and I. Misra, “Distributed Computation on Graphs: Shortest-path Algorithms”, Comm.
Assoc. Comput. Mach, Vol. 25, No. 11, Nov. 1982, pp. 425-437.

R. G. Gallager, “Distributed Minimum Hop Protocols”, Technical Report LIDS-P-1175, Massachusetts
Institute of Technology, U.S.A., Jan 1982

K. B. Lakshmanan, N. Meenakshi and K. Thulasiraman, “A Time-Optimal Message Efficient
Distributed Algorithm for Depth-First-Search”, Info. proc. Letters, Vol. 25, No. 2, May 1987.

A, Segall, “Distributed Network Protocols”, IEEE Trans. Info. Theory, Vol IT-29, No. 1, Jan 1983,
pp. 23-35.

{10] K. B. Lakshmanan and K. Thulasiraman, “On the Use of Synchronizers for Asynchronous

Communication Networks”, Proceedings of the 274 International Workshop on Distributed Algorithms,
Amsterdam, July 1987,

[11} M. A. Comeau and K. Thulasiraman, “Structure of the Submarking Reachability Problem and Network

Programming”, To appear in the IEEE Transactions on Circuits and Systems.

{12} B. Awerbuch, “Optimal Distributed Algorithms for Minimum Weight Spanning Tree, Counting, Leader

Election and Related Problems”, Proc. 19% Annual ACM -Symp. on Theory of Computing, New York
City, May 1987.



