4

Information Processing Letters 25 (1987) 103-109
North-Holland

6 May 1987

A TIME-OPTIMAL MESSAGE-EFFICIENT DISTRIBUTED ALGORITHM

FOR DEPTH-FIRST-SEARCH *

K.B. LAKSHMANAN ** and N. MEENAKSHI
Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600 036, India

K. THULASIRAMAN

Department of Electrical Engineering, Concordia University, Montréal, Canada H3G IM8

Communicated by E.C.R. Hehner
Received 17 July 1986
Revised 7 October 1986

In this paper we study the problem of distributed construction of a depth-first-search tree for an asynchronous
communication network. First, we point out that any algorithm requires at least 2n—2 time units and 2m messages in the
worst case, where n and m are the number of nodes and the number of edges in the network, respectively. We then provide a
modification to a recent algorithm due to Awerbuch (1985), and show that the new algorithm is time-optimal, while requiring

less then 4m —(n - 1) messages.

Keywords: Distributed system, asynchronous network, communication graph, depth-first-search,

message and time complexities

1. The model

Consider a distributed computing system con-
sisting of a number of autonomous processors
interconnected through communication links. The
processors do not share a:common memory, have
only local information and hence communicate
frequently to coordinate any computation to be
accomplished. The interconnection network can
be modeled by an undirected communication
graph G = (V, E) where nodes correspond to the
processors and the edges to bidirectional com-
munication links. The processors have distinct
identities, but each processor knows only the iden-
tities of its neighbors. Each processor performs a

* This research was supported in part by the Natural Scien-

ces and Engineering Research Council of Canada under

Grant A0890 at McGill University, Montréal, Canada, and
Grant A4680 at Concordia University, Montréal, Canada.

** Presently visiting the Department of Electrical Engineering,
McGill University, Montréal, Canada H3A 2A7.

variety of local tasks, besides receiving messages
from its neighbors, performing some computation
and sending messages to its neighbors. The ex-
change of messages between two neighboring
processors is asynchronous in that the sender al-
ways hands over the message to the communica-
tion subsystem and proceeds with its own local

. task., The communication- subsystem, we assume,

will deliver the message at its destination, without
loss or any alteration, after a finite but unde-
termined time lapse. The messages sent over any
link also follow a first-in-first-out rule. The mes-
sages received at any processor are stamped with
the identity of the sender and transferred to a
common queue before being processed one by
one. Messages arriving at a node simultaneously
from several neighbors may be placed in any
arbitrary order in the queue. Since several compu-
tations may be in progress concurrently, we as-
sume that the network has suitable mechanisms so
that, at the receiving end, messages corresponding

0020-0190,/87,/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 103

Volume 25, Number 2

to any particular computation initiated by a par-
ticular node can be distinguished and separated
out.

A distributed algorithm consists of the collec-
tion of similar node algorithms residing at the
processors. These node algorithms specify the ac-
tions to be taken in response to the messages that
may arrive at a node. It is assumed that the
actions necessary for processing a message can all
be performed in negligible computation time,
uninterrupted by the arrival of other messages.
Hence, the complexity measures used to evaluate
the performance of distributed algorithms only
relate to the communication aspect. The message
complexity is the total number of messages trans-
mitted during the execution of the algorithm. The
time complexity is the time that elapses from the
beginning until the termination of the algorithm,
assuming that the delay in any link is exactly one
unit of time. It must be recognized that this as-
sumption of unit time -delay in communication
links is made only for the purpose of timing
analysis and the algorithm is expected to operate

correctly under the previous assumption that the

delay is finite, but cannot be bounded. Also, given
a communication graph with n nodes and m edges,
the actual performance of any distributed algo-
rithm, in terms of its message and time complexi-
ties, will depend upon the structure of the graph,
the degree and other characteristics of the node
initiating the algorithm, the delays encountered in
the links, etc., and hence we use only the worst-case
* analysis in comparing two algorithms, as well as in
discussing the optimality of any algorithm.

2. The problem and lower bounds on complexities

Given an asynchronous communication net-
work as described above and a starting node s, we
want to construct a depth-first-search (DFS) tree,
rooted at s, for the communication graph G =
(V, E). All messages are required to be of fixed
length independent of the size of the graph. At the
end of the computation, the DFS tree will be
available in a distributed fashion, each node ex-
cept the root knowing its father in the tree. We
assume that the algorithm is initiated by node s

104

INFORMATION PROCESSING LETTERS

6 May 1987

and that no processor or link failure takes place
during its entire execution.

It is well known that a DFS algorithm parti-
tions the edges of an undirected graph into tree
edges and back edges. This requires an exploration
of the graph with the center of activity moving
from one node to another in a systematic way
[4,6]. Initially, the start node s is the center of
activity. When a node becomes the center of activ-
ity for the first time, it marks itself as wvisited.
Also, whenever a node becomes a center of activ-
ity, it tries to identify a neighbor who is not visited
yet and transfers the center of activity to that
node. But if no such neighbor exists, i.e., if the
node is completely scanned, then it shifts the
center of activity to the father node in the tree, or
simply terminates of the node happens to be the
start node itself. .

If there are n nodes in the graph, then it is clear
that there must be 2n — 2 shifts of the center of
activity. It is also easily seen that graphs for which
the DFS tree constructed has. a linear chain of n

"nodes are obvious cases requiring all shifts of the

center of activity to proceed sequentially, no matter
what algorithm is employed. Since each shift of
the center of activity has to be accomplished by a
passage of a message, any distributed algorithm
for DFS should have a worst-case time complexity
of at least 2n — 2.

We have also seen that a node can shift the
center of activity to the father node or terminate
the algorithm only if it has ensured that each one
of the neighbors has been visited. If all the mes-
sages are required to be of fixed length, and
cannot contain the number of nodes in the graph,
the node identities, etc., then each node requires at
least one message to arrive from each of its
neighbors before it recognizes that it has been
completely scanned. Thus, any distributed algo-
rithm for DFS should have a message complexity
of at least 2m, where m is the number of edges in
the graph.

3. Existing solutions

Cheung [3] has presented an algorithm for find-
ing a DFS tree whose message complexity is 2m.

o

Volume 25, Number 2

Thus, bis algorithm is message-optimal. However,
in his algorithm, the messages are all transmitted
one after another in sequence and hence the time
complexity is also 2m. Therefore, Awerbuch [1]
recently considered the problem of constructing a
‘DFS tree in O(n) time. His algorithm requires 4m
messages and achieves a time complexity of 4n — 2
— 2n,, where n, is the number of nodes of degree
one in the graph. The performances of both
Cheung’s and Awerbuch’s algorithms remain the
same uniformly for all cases—best to worst.
Awerbuch’s algorithm requires four kinds of
messages— DISCOVER, RETURN, VISITED, and ACK.
DISCOVER messages are used to shift the center of
activity from a visited node to an univisited one.
RETURN messages are used to shift the center of
activity from a node to its father in the tree.
VISITED messages are used by a node to inform all
its neighbors, except the father, that it has been
visited. ACK messages are sent in response to
VISITED messages. In fact, when a node becomes
the center of activity, VISITED messages are sent

. out to all neighbors, except the father, and only

after ACK messages have been received from these

" neighbors, the center of activity is shifted to
another node. The basic idea is that by the time ~
.the center of activity is shifted to any node, every

node knows exactly which of its neighbors have
been visited. This ensures that DISCOVER messages
are never sent to an already visited node. Thus,
the algorithm requires n — 1 DISCOVER, n — 1 RE-
TURN, 2m—(n—1) VisiTep, and 2m - (n—1)
AcCK messages, all adding up to 4m. More im-
portantly, the VISITED and AcK messages add two
units of time at each node of degree greater than
one to the time complexity. The DisCOVER and
RETURN messages need 2n —2 time units. As a
result, Awerbuch’s algorithm has a time complex-
ity of 4n—2 —2n,, where n, is the number of
nodes of degree one.

In [2], Chang has proposed a graph traversal
scheme called pure traversal which can be used to
construct an arbitrary rooted spanning tree of the
communication graph. The worst-case message and
time complexities of his algorithm are 4m — 2n + 2
and 2d, respectively, where d is the distance of the
farthest node from the starting one in the graph.
Chang’s algorithm requires two types of messages

INFORMATION PROCESSING LETTERS

6 May 1987

—ExpPLORER and EcHO. Segall [5] has also studied

this problem independently and has constructed

an algorithm whose worst-case message and time .
complexities are 2m and 2d, respectively. Interest-

ingly, ' Segall’s algorithm uses only one type of

message and does not require ECHO messages as

in [2]. It is this work that provided the motivation

for us to see if the performance of Awerbuch’s

algorithm can be improved.

4. Our modification

The time complexity of Awerbuch’s algorithm
can be improved and made optimal by simply
eliminating the ACK messages and ensuring that
VISITED messages are always transmitted in com-
munication-time parallel to DISCOVER or RETURN
messages. But this creates a new problem—more
than one DISCOVER message could get sent to a
node.

In our modified algorithm, a node marks itself
as visited when it receives a DISCOVER message for
the first time. It also tries to identify a neighbor
which has not been visited yet and to send a
DISCOVER message to it, at the same time infor-
ming, through VISITED messages, its status to all
other neighbors except, of course, the father. Since
VISITED messages could suffer long delays in the
communication links, a node trying to identify an
unvisited neighbor may not have the correct and
complete information regarding the status of all of.
its neighbors. It may, therefore, choose an already
visited neighbor and send a DISCOVER message to
it, simply bacause it has not received any message
from that neighbor at that stage. But, luckily, it is
possible to recover from such a mistake because a
DISCOVER or VISITED message sent by that neigh-
bor will eventually arrive at its intended destina-
tion. In order to enable this kind of recovery, the
sender of a DISCOVER message always records the
identity of the neighbor to whom such a message
is sent, so that if a DISCOVER or VISITED message
is received from that neighbor, an alternative
neighbor, if any, can be found to shift the center
of activity. This strategy also means that a Dis-
COVER message received at an already visited node
can simply be ignored, except for the purpose of

105

Volume 25, Number 2

recognizing that the sender has also been visited
already. The detailed algorithm is presented in
Appendix A.

Observe that the depth-first-search tree built as
a result of execution of the algorithm is really not
dependent on the pattern of delays encountered in
the communication links. It is only dependent on
the order in which the neighbors are selected by
an already visited node to send DISCOVER mes-
sages. On the other hand, the number of messages
exchanged during the execution of the algorithm is
dependent on the delays encountered in the com-
munication links. The best-case situation arises
when the communication delay in any link is one
- time unit, the same assumption to be made for the
time complexity analysis. Recall that VISITED mes-
sages are always sent in communication-time
parallel to DISCOVER or RETURN messages. The
above assumption implies that by the time a node
becomes a center of activity, all VISITED messages
sent by its neighbors should have been received
and processed. Thus, there will never be a mistake

made of sending a DISCOVER message to an al-

. ready visited node. In other words, exactly n — 1
DiscOoVER messages will be sent in the best case,
consuming exactly n — 1 units of time. Also, ex-

actly n—1 RETURN messages will be sent, con--

suming an additional n — 1 units of time. Hence,
the time complexity of our algorithm is 2n — 2,
which is optimal.

Now, in order to determine the number of
messages exchanged in the best case we still have
to account for VISITED messages. Every node i of
degree d; clearly sends out at least d; — 2 VISITED
messages. But, the start node s and those nodes
which finally appear as leaf nodes in the DFS tree
will send out one more VISITED message each.
Thus, the total number of VISITED messages ex-
changed in the best case is 2m — 2n + £+ 1, where
¢ is the number of leaf nodes in the DFS tree
constructed. Including the DisCOVer and RETURN
messages, the total number of messages exchanged
in the best case is 2m + £~ 1. Clearly, here ¢> 1.
If the graph G is complete, then ¢=1 so that in
such a case the number of messages exchanged
during the execution of our algorithm could be as
low as 2m, the optimum value.

In order to evaluate the number of messages

106

INFORMATION PROCESSING LETTERS

6 May 1987

exchanged by the algorithm in the worst case, we
observe that the pattern of delays in communica-
tion links could be such that every DISCOVER or
VISITED message that can prevent the mistake of
sending a DISCOVER message to an already visited
node is received at its destination only after such a
DiscOvER message has been dispatched in the
opposite direction. In other words, every node in
the graph may have to send a DISCOVER message
to every one of its neighbors other than the father.
Thus, the start node s will send as many as d,
Di1scover and d, — 1 VISITED messages. Any other
node i, of degree d;>2, will send d;—1 Dis-
COVER, d; — 2 VISITED, and one RETURN messages.
A node of degree one can only send a RETURN
message. Summing up, the total number of mes-
sages in the worst case is 4m — 2(n — 1) + (] —1),.
where n} is the number of nodes of degree one in
the graph, excluding the start node s. Thus, the
message complexity of our algorithm could vary’
between 2m and 4m — (n — 1) — 1, depending on
the structure of the graph and the pattern of
delays in the communication links. Also, observe
that if the communication graph G is a tree by
itself, then m=n—1 and /=n], and thus in this
case our algorithm will require exactly 2m + n] — 1
messages independent of the nature of delays in
the communication links.

5. Concluding remarks

In this paper, we have presented a modification
to an algorithm proposed by Awerbuch for the
distributed construction of a DFS tree in an
asynchronous communication network, with gains
in three dimensions—number of different types of -
messages, message complexity, and time complex-
ity. The modified algorithm presented in Appen-
dix A uses only three types of messages. But
observe that RETURN and VISITED messages basi-
cally play the same role and that all RETURN
messages can be replaced by VISITED messages in
the algorithm. Thus, the algorithm really requires
only two types of messages. However, if, at the
end of computation, each node should know not
only its father in the DFS tree but also its children,
all three types of messages are needed. Besides,

Volume 25, Number 2

the worst-case message complexity of the al-
gorithm is less than 4m—(n—1). More im-
portantly, the algorithm is time-optimal. The fact
' that the ACK messages of Awerbuch’s algorithm
can be eliminated helps us recogize that it is the
VISITED messages that really enable us to achieve
an O(n) time complexity. Moreover, the fact that
no node will receive more than one DISCOVER
message if the communication delay in any link is
exactly one time unit shows that if the communi-
cation delays in all links are nearly the same, the
message complexity of our modified algorithm
will be very close to the optimal value of 2m.

In Section 3, we referred to Segall’s algorithm
for pure traversal. This algorithm for building an
arbitrary spanning tree with a specified root, which

Appendix A. The formal presentation of the algorithm

Messages of the algorithm
Discover
visiting,
RETURN
VISITED
Variables kept at node i

neighbors(i)
father(i)

INFORMATION PROCESSING LETTERS

6 May 1987

is reliably informed of the completion of the
traversal before the termination of the algorithm,
can be shown to be both message- and time-opti-
mal. On the other hand, whether there exists an
algorithm for constructing a DFS tree which is
both message- and time-optimal is an open ques-
tion.

Acknowledgment

The authors thank the unknown referees for
pointing out an error in the earlier version of.the
algorithm and for suggesting improvements to the
presentation.

— sent to a neighbor who is not known to have been visited, for the purpose of

— returns the center of activity to the father,
- informing neighbors of the status.

— set of neighbors of node i (input),
—~ father of i in the DFS (output); initially, father(i) =i for all nodes; finally,

father(i) =i only for the start node,

nomessage(i) — subset of neighbors(i) including those neighbors not known to have been
visited, i.e., no VISITED, DISCOVER or RETURN messages have been received
from them; initially, nomessage(i) = neighbors(i) for all nodes.

visited(i)

— boolean flag set to true once visited, i.e., on receiving the DISCOVER message

for the first time; initially, visited(i) is false for all nodes,

explore(i)

— the identity of a neighbor in nomessage(i) to whom a DISCOVER message has

been sent; initially, explore(i) =i for all nodes.

To trigger the algorithm, node s delivers a DISCOVER message to itself. This message is not counted in

the complexity.
Algorithm at node i
for DISCOVER message from j do

begin
delete j from nomessage(i);

107

Volume 25, Number 2 INFORMATION PROCESSING LETTERS ’ 6 May 1987

108

execute procedure recover;
“if node i has already been visited
then do nothing
else begin
set visited(i) to true;
set father(i) to j; ¢
execute procedure shift-center-of-activity;
for all p € neighbors(i) and p # father(l) and p # explore(i) do
send VISITED top
end
end;

for VISITED message from j do
begin
delete j from nomessage(i);
execute procedure recover
end; |

for RETURN message from j do
begin
delete j from nomessage(i);
execute procedure shift-center-of-activity
end;

procedure recover; / * initiate recovery, if necessary * /
begin
if explore(i) =}
then execute procedure shift-center-of-activity
else do nothing
end;

procedure shift-center-of-activity;

begin
if there exists k € nomessage(i)
then begin
set explore(i) to k;
send DISCOVER to k
end
else begin
set explore(i) to i;
if father(i)=1i
then TERMINATE / * start node * / H
else send RETURN to father(i)
end : .
end; '

a?

Volume 25, Number 2

References

[1] B. Awerbuch, A new distributed depth-first-search al-
gorithm, Inform. Process. Lett. 20 (3) (1985) 147-150.

[2] E.J.H. Chang, Echo algorithms: Depth parallel operations
on general graphs, IEEE Trans. Software Engrg. SE-8 (4)
(1982) 391-401. :

[3] T. Cheung, Graph traversal techniques and the maximum

INFORMATION PROCESSING LETTERS

6 May 1987

flow problem in distributed computation, IEEE Trans.
Software Engrg. SE-9 (4) (1983) 504-512.

[4] S. Even, Graph Algorithms (Computer Science Press,
Potomac, MD, 1979).

[5] A. Segall, Distributed network protocols, IEEE Trans. In-
form. Theory IT-29 (1) (1983) 23-35.

[6] M.N.S. Swamy and K. Thulasiraman, Graphs, Networks
and Algorithms (Wiley, New York, 1981).

109

