Parallel Network Primal-Dual Method on a Shared Memory Multiprocessor
and
A Unified Approach to VLSI Layout Compaction and Wire Balancing

K. Thulasiraman, R.P. Chalasani, P. Thulasiraman and M.A. Comeau

Concordia University, Montreal

Abstract

We present a unified approach to the layout com-
paction and wire balancing problem. We show that the lay-
out compaction problem can be solved by an algorithm
which also solves the primal-dual initialization problem.
We formulate the wire balancing problem as a transship-
ment problem and show that the results of the compaction
problem can also used to initialize the primal-dual method
for solving this transshipment problem. In fact wire bal-
ancing reduces to applying the primal-dual method on a
graph much smaller than the original constraint graph.
Distributed/Parallel algorithms for these problems have
been implemented on BBN Butterfly machine and are now
being tested on benchmark problems.

I. Introduction

Graph and network optimization techniques play
a major role in VLSI CAD. The transshipment problem
generalizes several of the network optimization problems
such as the shortest path, maximum flow and matching
problems. For this reason there has been considerable
effort in the literature towards designing efficient sequen-
tial and parallel algorithms for this problem [3]. All these
efforts have resulted in variations of two very efficient
sequential approaches for the solution of this problem.
They are: the network simplex method and the primal
dual method [1]. A recent paper discusses parallelization
of the network simplex method [6]. However the network
simplex method does not offer much scope for paralleliza-
ton because the pivot operation is inherently sequential in
nature.

The present paper has two objectives. First, we
are concerned with the design of a parallel algorithm for
the network primal-dual method. Second, we provide an
application of this parallel algorithm by presenting a uni-
fied transshipment formulation of the VLSI layout com-
paction and wire balancing problem.

The paper is organized as follows. In Section I,
we present the transshipment problem and the elements of
the primal-dual method. In Section I1I, we present a uni-
fied formulation of the layout compaction and wire balanc-
ing problem. This formulation is in a form ideally suited
for solution by the primal dual method.

II. The Transshipment Problem

Consider a network N with the underlying graph
G = (V,E). Some of the vertices in N represent sources and
are called supply vertices. Some of the others represent
demand centers called sinks. There may be vertices which
neither supply nor demand. These are called neutral verti-
ces. The supply or demand at a vertex v; is denoted by b;.
For a neutral vertex, b=0. Each edge (v; , v) is associated
with a weight w;;, which represents the cost of transporting
a commodity along the edge. Each edge (v; , v)) is also
associated with a capacity cap (i , j) representing the max-
imum amount of the commodity that the edge can accomo-
date. Given the supplies available at the sources and the
demands at the sinks, the transshipment problem is to
arrive at a routing pattern for a given commodity so that
the demands are satisfied at minimum cost. This problem
[1] is a linear programming problem and can be formu-
lated as follows :

minimize : W X
subject to :

A*X=b o)

0<X<C 2

where

W = Row vector of edge weights w;; X = Column vector
of edge flows x;; A" = —A, where A is the incidence
matrix of the graph G underlying the network N; and C =

6th International Conference on VLSI Design — January 1993

0-8186-3180-5/92 $3.00 © 1992 IEEE

242

Column vector of edge capacities cap (i , j).

Associated with any linear programming problem
there is a dual problem. The original problem is then
called the primal problem. The dual of the transshipment

problem has r dual variables y;, v, . . ., ¥,. The optimum

values for y;’s would maximize the sum Zbl.yi. An impor-
tant result in linear programming theory is stated next.

If x;/’s and y;’s represent optimum solutions for
the primal and dual problems, respectively, then

xij=0,ify,-~yj+w,~j>0
xi; = cap(i,j), if y; - ¥ +wy; < 0. (3)

The above conditions are called the complemen-
tary slackness conditions.

There are two distinct approaches to the trans-
shipment problem - the primal and primal-dual approaches
(1]

The primal-dual approach starts with an X and Y
satisfying (2) and (3). It then updates X and Y (without
violating (2) and (3)) until X satisfies (1). This approach is
quite amenable to distributed and parallel implementa-
tions, since it uses the maximum flow and shortest path
algorithms as building blocks.

The primal-dual approach consists of three main
steps : (i) Initialization, (ii) Updating Y, (iii) Updating X.

In the initialization step a pair of vectors X and Y
satisfying (2) and (3) are selected. We can show that this
can be achieved by using a modified version of algorithm
FEASIBLE of [2]. Essentially this algorithm finds y;’s
such that y; - y; + w;; 2 0 for all edges (i, j). The remaining
two steps can be implementated using a shortest path algo-
rithm and a maximum flow algorithm. Details of a distrib-
uted implementation of the primal-dual method and its
simulation on a shared memory multiprocessor are given
in [7]. This implementation uses the shortest path algo-
rithm of [5] and the maximum flow algorithm of [4].

II1. Layout Compaction and Wire Balancing: A
Unified Approach

In layout compaction one starts with an initial
layout and seeks to achieve a final mask layout (without
changing the topology) which has minimum chip area and
is consistent with the design rules. Invariance of network
topology is required in order not to render the previous
steps of placement and routing obsolete. At the end of lay-
out compaction relative positions of all the circuit ele-
ments will be available. Changing the positions of these
elements (to be precise, those elements which lie on a
longest path between the chip boundaries) will result in
increased chip width. But the positions of the others could

be varied without causing design rule violations and yet
maintaining compacted chip width. In wire balancing,
one seeks to achieve minimum overall wire length by
adjusting the positions of the elements which do not lie on
the longest paths mentioned above.

The constraint graph approach to the above prob-
lem [8] proceeds as follows. From the initial layout a
graph G = (V, E), called the constraint graph, is con-
structed. We assume that the layout is Manhattan, i.e.,
edges of each circuit element are cither horizontal or verti-
cal. Each vertex of G represents a circuit element or a
group of circuit elements that are physically connected.
Each vertex v; is associated with a variable y; representing
the position of the corresponding circuit element. In the
following the circuit element corresponding to vertex v;
will also be referred to as v;. In G, there is an edge between
two vertices, if there is a design rule constraint between
the corresponding elements. There are three types of con-
straints: minimum, maximum and equality constraints.

Minimum constraint of the type y; - y; > a states
that v; is to the left of vj and there is a minimum spacing
requirement of ‘a’ units between them. This constraint is
represented in G by an edge (v;, v;) directed from v; to v;
with an associated weight w; of value -a.

A maximum constraint of the form y; - y; < b or
equivalently y; - y; 2 -b is represented by an edge (v;, v;)
directed from v; to v; with weight w;; of value “b”.

An equality constraint can be regarded as a pair
of minimum and maximum constraints. Thus an equality
constraint will be represented by a pair of oppositely
directed edges both with zero weight.

Two special vertices, called the source (v,) and
the sink (v,), are used to represent the right most boundary
and the left most boundary of the layout, respectively. Cir-
cuit elements which correspond to vertices with no outgo-
ing edges could be placed at the left boundary, and so we
add to G edges directed from each one of these vertices to
the sink v,. These edges have zero weight. For a similar
reason, we add to G zero-weighted edges directed from the
source v, to the vertices with no incoming edges. The
additional edges so added ensure that the circuit elements
will not be moved beyond the left and right boundaries.
They play a key role in the wire balancing phase.

Besides weights, edges are also associated with
costs to indicate the relative costs of wires. We derive ver-
tex costs from edge costs. Let ¢;; denote the cost of the
edge (v; v;) directed from v; to v;. Then the cost y; of ver-

tex v; is given
V=X Cij‘ECji

Jev T jev

Here we assume that ¢;; = 0 if there is no wire
between v; and v;. Thus a negative vertex cost indicates
that moving the vertex to the right will decrease the over-
all wire length and a positive vertex cost indicates that
moving a vertex to the right will increase the overall wire
length.

Let Y denote the vector of y;’s, W the vector of

Wij ’s and v, the vector of vertex costs. Also let A = -A*,

Then in layout compaction we seek to obtain a Y = 0 such
that

AlY>2-W

and that the difference between the largest and
the smallest y;’s is as small as possible. Thus we can for-
mulate this problem as an LP problem as follows.

Layout Compaction

Mim'mizeZyi
i

AY>-W

Y=0 @

Our algorithm FEASIBLE of [2] in fact solves
the above problem if there are no negative-weight directed
circuits in G. If we assume that there are no such circuits,
then the y;-values obtained at the end of FEASIBLE repre-
sent the positions of the different circuit elements. Each
vertex v; with y; = 0 will be at the left boundary and each v;
with the maximum y; will be at the right boundary. It can
be shown that the maximum y;-value in fact is the length
of the most negative length path in G from the source to
the sink. In traditional approaches, such a path in fact cor-
responds to a longest path from the sink v, to the source v,.

Let y; = A; at the end of Algorithm FEASIBLE.

Recall that this algorithm modifies the edge weights at
each step. When all the edges are non-negative (that is A; -
Kj + w;; 2 0), the algorithm terminates. Interestingly, at ter-
mination the weights of the edges on the most negative
directed path from v, to v, will all be zero. So by a simple
traversal of G starting from v, we can identify all the ver-
tices on these most negative paths. Let S; denote the set of
these vertices.

As we mentioned before, our aim in wire balanc-
ing is to keep each vertex v; € S; at y; = A; and adjust the y-
values of the vertices in §; and achieve minimum wire
length. Thus we have the following formulation of the
wire balancing problem.

244

Wire Balancing

Minimizezyiyi
[

subject to A’Y > -W (5)

yi=A,forv;e S, (6
y;20forallv;
Constraint (6) can be replaced by:
Yi-Yj+w;=0 7

for every edge (v;, v;) on a most negative path
from v, 0 v,.

Now it is a simple matter to represent each of the
above equality constraints by adding to G oppositely ori-
ented edges with weights w;; and w;; between v; and v; ,
and between v; and v; and then proceed with the solutxon of
the optimization problem. However, such an approach will
result in a significant increase in the size of the graph. In
fact, we can considerably reduce the size of the graph as
discussed below.

Constraint (7) suggests that in any new solution
of the wire balancing problem,

yi=A +k, forv;e S

where £ is a fixed constant. We can take advan-
tage of this property as follows.

We construct a new graph G by replacing the
vertices in S; by a single new vertex, say, v;, and then
removing all the edges connecting the vertices in S, Con—
sider now an edge (v;, v) in G. If v; ¢ S;and v; ¢ S;, G
will have an edge (v;, v)) with weight w;;. If v; € S 5> then G
will have an edge (v;, j) with weight (A; + wy). If Vi€ Sy
then G will have an edge (v;, v)) with weight (- -Aj + wlj) If
after this contruction, there are parallel edges inG,
between two vertices then we can remove all of them
except the one with the smallest weight. Let the new graph
be denoted by G .InG the weight of every vertex v; ¢ S;
will be equal 10 ¥;. For the new vertex v; representing S;,
the cost y; will be given by

PIR?

v, € S,

We now have the following formulation of the
wire balancing problem; where ;, y;, w;; refer to the quan-
tities defined for G .

Wire Balancing

Minimizey vy,
i

subject to A’ Y > -W (8)

Y=0
where A is the incidence matrix of G .

The dual of the above problem is:

Maxzmtzez (—wij) X
ij

subject to AX T 9)

X220

where X is the flow variable associated with edge (v;, vj)
and yis the vector of v;’s. Equivalently, we have

MmtmzzeZwijxij
l,]

such that A* X >-Y (10)

Xz0

Recall that A* = -A.

‘We can convert the above LP formulation into the
form of the transshipment problem presented in Section
I1. For this purpose we first add to G a dummy vertex v,
Then, for each vertex v; in G~ add an edge (v;, vg) with
Z€ero cost.

We have thus cast the wire balancing problem
into a standard transshipment problem. The primal-dual
method discussed in Section II and its parallel implemen-
tation can now be used to solve the wire balancing prob-
lem. A most important observation at this point is that we
can initiate the primal dual with

y;=MA;forallv; e S, and

y; = 0 for the vertex v; representing S,.

Thus the y;-values obtained at the end of our
compaction phase can be used to initialize the primal dual
method to be applied to solve the wire balancing problem!

The y;-values at the end of the application of the

primal dual method will provide the relative locations of
the elements in the final layout.

245

IV. Summary

We have presented a unified approach to the lay-
out compaction and wire balancing problem. We have
shown that the layout compaction problem can be solved
by an algorithm which also solves the primal-dual initial-
ization problem. We have formulated the wire balancing
problem as a transshipment problem and have shown that
the results of the compaction problem can also used to ini-
tialize the primal-dual method for solving this transship-
ment problem. In fact wire balancing reduces to applying
the primal-dual method on a graph much smaller than the
original constraint graph. Distributed/Parallel algorithms
for these problems have been implemented on BBN But-
terfly machine and are now being tested on benchmark
problems.

V. References

[1] Chvatal, V., Linear Programming, Freeman Com-
pany, Potomac, Maryland, 1983,

Comeau, M.A., K. Thulasiraman and K.B. Laksh-
manan, “An Efficient Asynchronous Distributed Pro-
tocol to Test Feasibility of the Dual Transshipment
Problem,” Proc. Allerton Conf, on Communication,
Control and Computing, Sept, 1987.

Goldberg, A.V., “Efficient Graph Algorithms for
Sequential and Parallel Complexity,” Ph.D. Thesis,
Lab. for Computer Science, M.L.T., Cambridge, MA,
1987.

Goldberg, A.V,, and R.E. Tarjan, “A New Approach
to the Maximum Flow Problem,” J. ACM, Vol. 35,
921-940, 1988.

Lakshmanan, K.B., K. Thulasiraman and M.A.
Comeau, “An Efficient Distributed Protocol for the
Single Source Shortest Path Problem in Networks
with Negative Weights,” IEEE Trans. Software Engi-
neering, 639-644, May 1989.

Peters, J., “The Network Simplex Method on a Mul-
tiprocessor,” Networks, Vol. 20, No. 7, 845-859,
1990.

Thulasiraman, P, “A Distributed Protocol for the
Network Primal-Dual Method and Simulation on a
Shared Memory Multiprocessor,” M.A.Sc. Thesis,
Dept. of Elect. & Comp. Engg., Concordia Univer-
sity, Montreal, 1991.

Yoshimura, T., “A Graph-Theoretic Compaction

Algorithm,” Proc. Intl. Symp. Circuits and Systems,
1445-1458, 1985

(2]

(3]

(4]

(5]

[6]

(73

(8]

