Parallel Computing for Network Optimization:

A Cluster-Based Approach for the Dual Transshipment Problem

Raghu P. Chalasani

Cadence Design Systems, Inc.
555 River Oaks Parkway, MS 2A2
San Jose, CA 95134

Abstract

The traditional simplex method for solving the trans-
shipment problem or its dual [2] does not offer much
scope for parallelization because it moves from one basic
solution to another. To address this problem, we recently
presented a new method [9] called the Modified Network
Dual Simplex method. This method incorporates two novel
features: a technique to convert a non-basic dual feasible
solution to a basic dual feasible solution, and strategies
for performing pivots concurrently. In a more recent paper
[1], the suitability of this approach in the Integrated VLSI
layout compaction and wire balancing problem was dis-
cussed. In this paper, we describe another novel method
for solving the dual transshipment problem. It combines
the concurrent pivoting strategies of [9] with a massively
parallel method for converting a non-basic feasible solu-
tion to a basic feasible solution (without reducing the
objective value). The method employs extensively the
notion of cluster firing. Results of testing of this method on
large scale graphs are also presented.

1 Introduction

Network optimization refers to the class of optimiza-
tion problems defined on graphs. These problems include
the problem of constructing shortest paths, finding a maxi-
mum flow, constructing a min-cost spanning tree, finding
matchings in networks etc. These problems occur in a
variety of applications. While they are themselves signifi-
cant in their usefulness, they also occur as subproblems in
several applications.

Kruskal’s and Prim’s algorithms for the min-cost tree
problem, Dijkstra’s and Bellman-Ford-Moore’s algorithms
for the shortest path problems, Ford-Fulkerson’s algorithm
and its several variants for the maximum flow problem are
among the most fundamental algorithms in network opti-

1063-6374/95 $04.00 © 1995 IEEE

66

K. Thulasiraman

University of Oklohoma
200 Felgar Street, Room 116
Norman, OK 73019-0631

mization theory [12]. They have also served as the basis
for designing corresponding distributed/parallel algo-
rithms.

The transshipment problem which can be formulated
as a linear programming problem is a general class of net-
work optimization problem [2]. Several network optimiza-
tion problems such as those mentioped above are special
cases of the transshipment problgm. Many problems
which occur in engineering and industrial applications can
be formulated either as a transshipment problem or as its
dual. For instance, VLSI layout compaction and wire bal-
ancing can be formulated as a dual transshipment problem
[7], [13]. There are two basic approaches to the transship-
ment problem - the network simplex method and the net-
work primal dual method [2]. Goldberg [5] presented a
variant of the primal-dual method called the e-relaxation
method. References to other g-relaxation methods may
also be found in [5]. These relaxation methods have been
designed primarily to achieve good complexity results for
the transshipment problem. In view of the practical impor-
tance of the transshipment problem, there has been consid-
erable interest in designing distributgd/parallel algorithms
for this problem. Peters [8] has presented a parallel imple-
mentation of the network simplex method. Goldberg’s
algorithms in [5] are also suitable for parallel implementa-
tion. We have discussed in [10] a parallel implementation
of the network primal-dual method. Recently, we have
presented in [9] the Modified Network Dual Simplex
method and its parallel implementation. An interesting
property of this algorithm useful in the context of the inte-
grated layout compaction and wire balancing problem is
presented in [1].

In this paper, we describe development of a novel par-
allel algorithm for the dual transshipment problem. This
algorithm extensively employs the notion of cluster firing
[3], [11] and the strategies developed in [9] for efficiently
performing pivot operations concurrently.

The paper is organized as follows. In Section II, certain
basic definitions are presented. The dual transshipment

problem and the network dual simplex method to solve
this problem are reviewed in Section III. In Section IV, a
new characterisation of the optimum solutions of the dual
transshipment problem is presented. In Section V, a new
approach called Cluster-Based Dual Simplex method to
solve the dual transshipment problem is outlined. Several
issues relating to the implementation of this new approach
are discussed in Section VI. Experimental results on the
implementation of this algorithm are presented and dis-
cussed in Section VIIL.

2 Preliminaries

A directed graph G with node set V and edge set E
will be denoted by G = (V, E). The nodes will be denoted
by the integers 1,2, ...,n. Thus V= {1, 2, ..., n}. Anedge ¢
connecting nodes i and j and directed from i to j will be
denoted by e = (i, /). We assume that G is connected. Each
node i will be associated with a real number w;, called the
weight of i. Each edge e = (i, j) will be associated with a
real number m;; called the token of e. W will denote the
row vector of node weights and M, will denote the column
vector of edge tokens. A node j is an oytnode at node i, if
(i, j) is an edge in G. Similarly, a node % is an innode at
node i, if (%, i) is an edge in G. A subset of nodes will be
called a cluster. Given S ' V, S = V - S will refer to the
complement of S in V. (S, S) will refer to the set of edges
connecting the nodes in S with those in S. Thus if (i, j) €
(S, S), then eitheri € Sandje Sori e Sandj € S.

Given a spanning tree T of G. Consider an edge e = (i,
7 of T. Removing e from T will result in two connected
subgraphs T, and T, with node sets V; and V,. Note that
Vi =V -V, Then (V,, V,) will be referred to as the fun-
damental cutset with respect to the edge e of T, and V,
and V, will be referred to as fundamental clusters.

The notion of firing [3], [11] will bg used extensively
in the development of our algorithm in this paper. Positive
firing x times of a node i, is the operation of adding x to
the token of every outgoing edge (i, j) and subtracting x
from the token of every incoming edge (j, i). Negative fir-
ing x times of a node i, is the operation of adding x to the
token of every incoming edge (j, £) and subtracting x from
the token of every outgoing edge (i, j). Firing a cluster x
times results in firing every node in the cluster x times.
The firing number of a node is the number of times this
node has been fired. After a positive (negative) firing of a
node, the node firing number is increased (decreased) by
the appropriate number.

A firing, positive or negative, should not cause any
edge token to be negative. Positive firing is the most com-
monly used notion in the theory of marked graphs [3],
[11]. Hence, unless otherwise stated, positive firing will be

67

referred to simply as firing.

In our model of parallel computation, we assign to
each process exactly ong node of the graph under consid-
eration. Communication among processes is through
shared variables. We permit concurrent reads. No more
than one process can write into a shared variable. Lock
variables are used to achieve this. Number of processes is
not restricted to be equal to the number of processors
available on a parallel machine. In our algorithm, during a
pulse all processes execute the same set of instructions.
Some of the processes may be idle. The actions taken by
the processes during a pulse may vary from one process to
another and will depend on the values of certain variables
at the beginning of the pulse. A phase in the algorithm
will usually consist of several pulses. Our algorithms have
been implemented on the Shared memory BBN Butterfly
machine.

3 The Dual Transshipment Problem (DTP)
and the Network Dual Simplex Method

Consider a directed graph G = (V, E) with node weight
vector W and edge token vector My. Let A denote the inci-
dence matrix of G [12] and A’ be its transpose. The dual
transshipment problem (DTP) is a linear program defined
as follows:

Maximize: W'Y
subject to
A'Y 2-M, (1)
Y>0 73]

In the above, Y is a column vector of node variables,
called firing numbers. Thus y; will denote the firing num-
ber of node i. For each edge (i, j) inequality (1) contains a
contraint of the form

Yi-y;2-my

i - yj + my; is thus the value of the slack variable
associated with the edge (i,j). If we fire each node i, y;
times, then the new token on edge (i, j) will be y; - y; + my;.
This interpretation suggests the name residual token for
the expression y; - y; + m;;. Thus the dual transshipment
problem is to obtain a vector Y such that

1. W'Y is maximum, and

2. the residual token on every edge is non-negative if

the nodes are fired as specified by the firing num-
bers y;’s.

A vector Y is called a feasible solution if Y satisfies
constraint (1). A vector Y is called a basic feasible solu-
tion if G has a spanning tree T such that the residual
tokens of all edges of T become zero when the nodes are
fired as specified by the node firing numbers y;. The tree T
is then called a basic feasible tree corresponding to the

basic feasible solution Y. Such a tree T will also be called
a 0-token spanning tree.

Since during firing no residual token should become
negative, it follows that a node i can be fired at most y;
times where y; is the smallest residual token on any
incoming edge (j, ©). Note that if residual tokens permit
independent firings of nodes i and j, then these firings can
be done concurrently without making any resulting resid-
ual token negative. It is this property that we take advan-
tage of in developing our parallel algorithm.

Let Y be a basic feasible solution and T be the corre-
sponding basic feasible tree. Consider an edge (i, /) and let
(S, S) be the corresponding fundamental cutset (see defini-
tions in the previous section) with i € S and j € S. Recall
that S and S are called fundamental clusters with respect
to edge (i, j) of tree T. A pivot operation is permissible if
W(S) 20 where W(S) = 3 W (i) . A pivot operation con-

ieS
sists of firing the cluster S the maximum possible number
of times and constructing the new basic feasible tree. Note
that firing S results in a new Y vector and new residual
tokens. It can be shown that the new Y is also a basic fea-
sible solution.

The network dual simplex (NDS) method is essen-
tially the simplex method of linear programming [2]
applied to solve the DTP. Thus the method consists of the
following steps.

1. Construct an initial basic feasible solution Y, if it
exists. This is achieved by constructing an auxil-
iary network and applying the simplex method on
this network. This step detects infeasibility of the
DTP, whenever that is the case.

Perform a pivot operation.

3. Check the new basic feasible sotution for optimal-
ity [2]. If it is optimal, then the algorithm termi-
nates. Otherwise, repeat step (2) starting from the
current basic feasible solution.

Unboundedness of the DTP is detected if we encounter

a fundamental cluster S such that W(S) > 0 and every edge
in (S, S) is directed from a node in S to a node in S. Note
that in such a case the cluster S can be fired an unbounded
number of times leading to an unbounded value for the
objective W* Y. To avoid cycling, Bland’s anti-cycling rule
[2] can be used in step (2) while selecting a pivot opera-
tion. For all details relating to the simplex method, [2]
may be consulted.

4 A Characterisation of Optimum Solu-
tions for the DTP

Consider a directed graph G defining a DTP. Let V,, be
the set of negative weight nodes in G. Then, given a feasi-

68

ble solution to the DTP, cluster C;, for each negative node
i € V,, is defined as the set of nodes reachable from i
through O-token directed paths. The negative node i is
called the source of the cluster C;. The weight of the clus-
ter C; is the sum of the weights of all the nodes in that
cluster.
Clusters C; and C; are said to be mutually exclusive if
C; N C;=. Three or more clusters are mutually exclusive
if every pair of them are also mutually exclusive. Clusters
C; and C; are said to be linked if C; N C;# .
A collection S; of clusters is said to be maximally
linked,
1. if acluster C; € Sy, then all clusters that are linked
to C; are also in Sy, and
2. ifaclusterC; & Sp thenC; N C; =G, forall C; €
S
We now present an alternate characterisation of opti-
mality in terms of the clusters defined above.

Theorem 1

A solution to the DTP is optimum iff the correspond-
ing clusters satisfy the following properties:
P1l. For each negative node i, the weight of the cluster
C, is non-negative.
The weight of the union of two or more clusters is
non-negative.

P2.

Proof
Necessity

Suppose a solution Y is optimum and the correspond-
ing clusters do not satisfy (P1.) or (P2.). Then there would
exist a group S of nodes with W(S) < 0. Since the edges
going out of each cluster have non-zero residual tokens, it
follows that S can be fired negatively a non-zero number
of times, thus improving objective W’ Y. This contradicts
the optimality of Y. Thus the clusters corresponding to Y
satisfy (P1.) and (P2.).

Sufficiency

Suppose that the clusters corresponding to a solution Y
satisfy (P1.) and (P2.). We show that for every group S of
nodes with W(S) < 0, there is a zero token edge going out
of S. This could then mean that no further negative firing
of nodes is possible and hence the objective W’ Y cannot
be improved any more (establishing the optimality of Y).

Consider a group S of nodes with W(S) < 0. Let vy, v,,
..., Vi be the negative nodes in S and C,, C,, ..., C; be the

corresponding clusters. Suppose all these clusters lie
entirely in S. By (P2.), the union of these clusters have
non-negative weight. Since the negative nodes vy, vy, ...,
v}, are all in this union, the weight of S will be non-nega-
tive contradicting that W(S) < 0.

If, on the other hand, C; - S # @, for some C;, 1 <i <k,
then there exists an edge (v,,, v;,) with zero residual token
and with v, € S and v, ¢ S. Thus, for every group S of
nodes with W(S) < 0, there is a zero-token edge going out
of S. a

S CBDS: A Cluster-Based Dual Simplex for
the DTP

The optimality criteria proved in Theorem 1 has the
following algorithmic implication.

Suppose there are k negative nodes and hence & clus-
ters which satisfy (P1.). Then to test for property (P2.), we
need to generate all the 2k - 1 combinations of clusters and
check if any one of these combinations is negative. The
solution is optimum if all of them are non-negative. An
approach based on this optimality criteria will be attractive
only for values of k < 3. So, our approach to be presented
next will not employ the test for property (P2.) though it
will be based on clusters which satisfy property (P1.). For
this reason, we shall refer to this approach as the Cluster
Based Dual Simplex (CBDS) method.

The main steps of the CBDS method for the DTP are:

1. Feasibility Testing.

2. Cluster Forming.

3. Cluster Optimization.

4. Cluster Union.

5. Firing Zero Combinations.
6. Concurrent Pivots.

We first test if the DTP is feasible (Step 1). The algo-
rithm would terminate if the DTP is not feasible. Other-
wise, we form clusters (Step 2). If any of these clusters has
negative weight, then we fire these clusters in an appropri-
ate manner until all the clusters have non-negative weight
(Step 3).

If, at the end of Step 3, the subgraph of zero residual
tokens is not connected, then each connected component
will correspond to a set of maximally linked clusters. In
Step 4, we combine these clusters, and treating each such
combination as a cluster, we return to Step 3.While opti-
mizing these combinations, it may so happen that some of
these combinations may be reduced in size. When this
happens, the clusters inside these combinations may not be
connected with a zero-token edge. So, to avoid this case, if
any combination is reduced in size, the algorithm will go
back to Step 2 to form new clusters.

69

If, at the end of Step 4, the weight of the sum of the
nodes in every connected component of zero-token edges
is zero, then we fire these components in an appropriate
manner to create a connected spanning subgraph of zero-
token edges (Step 5).

At this point, a O-token spanning tree will be available.
Using this tree, we perform in Step 6 concurrent pivots as
described in [9].

Step 5 will not be required if, at the end of Step 4, the
subgraph of zero-token edges is connected and spans all
the nodes in the graph.

Steps 2-6 would be repeated if optimality is not
detected at Step 6.

These steps will be discussed in detail in the following
sections.

6 Implementation of CBDS
6.1 Feasibility Testing

We test the feasibility of the DTP by applying algo-
rithm FEASIBLE discussed in [4]. If the problem is not
feasible, then the algorithm stops here; otherwise it will
proceed to the next step. Note that at the end of this step, if
the DTP is feasible, then the residual edge tokens will all
be non-negative.

6.2 Cluster Forming

In this step, a cluster C; is formed for each negative
node i € V,. It involves finding for each negative node i,
the set of all nodes reachable from i by directed paths with
zero residual tokens. A cluster can also be viewed as a O-
token subtree rooted at each negative node. A cluster can
be overlapping with other clusters either completely or
partially.

Clusters are only a ‘soft’ grouping of nodes i.e., the
nodes in a cluster are not contracted into one single node
as in our previous algorithm. They still keep their individ-
ual identities and are aware of all the clusters in which
they are present.

There are two phases in this step. The first one, called
Cluster Initialization, will be used to form a initial cluster
at each negative node consisting of only itself. The second
phase, called Cluster Expansion, will be used to expand
each cluster as much as possible. The following data struc-
tures are used to explain the details of these phases.

token a 2-dimensional array of integers.

token [i] [j] represents the value of
the token of the edge (i, j), if there
is such an edge in the original graph

G; otherwise it contains a special
value INFINITY outside the range
of edge tokens.

an array of integers. At any time,
firingNo [i] represents the current
firing number of node i.

an array of integers. nodeWeight [i]
represents the weight of the node i.
an array of integers. Each cluster-
Weight [i] is initialized to node-
Weight [i] which is the weight of
node i. At termination, cluster-
Weight [i] represents the weight of
the cluster, if node i is the source of
the cluster..

an array of sets. The variable
sources [i] contains the set of the
sources of all the clusters in which
node i is present.

an array of sets. The variable newS-
ources [i] contains the set of the
new sources inviting node i to join
their clusters.

firingNo

nodeWeight

clusterWeight

sources

newSources

6.2.1 Cluster Initialization

There is only one pulse in this phase. Each node keeps
track of the clusters in which it is present by using a set
variable called sources. Each sources [i] will contain all
the sources in whose clusters node i is present. To initial-
ize the process, each negative node i will add its node
number i to its sources [i] and its node weight to cluster-
Weight [i].

6.2.2 Cluster Expansion

In the first pulse of this phase, each node will calculate
its zero outnodes and propagate its sources information to
any new zero outnodes. In the subsequent pulse, each node
will examine its newSources variable and if any new
sources have been added to it since the last iteration, then
it will propagate this new sources information to each of
its zero outnodes. It will also update the cluster weights of
new sources by adding its node weight to the weight of
each of their clusters. This pulse is repeated until there is
no new propagation at any node in one pulse.

The above implementation can be done in an asyn-
chronous manner. Also, each node doesn’t have to wait or
synchronize for any particular data; it propagates as and
when it ‘sees’ it.

70

6.3 Cluster Optimization

There are two phases in this step. The first phase is to
fire those clustérs whose weights are negatiye. The second
phase is to expand the clusters that have been fired in the
first phase. These two phases will be repeated until all the
clusters in the graph have become non-negative weighted.
We will explain each of these phases in detail in the fol-
lowing subsections.

6.3.1 Cluster Firing

There are four pulses in this phase. The first pulse is
used to check if there is any negative weighted cluster in
the graph. If not, then this phase is terminated and the
algorithm proceeds to the Cluster Union step.

The firing number for each cluster is calculated in the
second pulse. To find the firing number of a cluster C,
each node in that cluster will examine its outgoing edges
one by one. It will examine only those outgoing edges that
are also going out of the cluster C; and pick the minimum
residual edge token. Note that the outgoing edges at a node
i that are going out of the cluster Cj may not be the same as
the ones that are going out of the cluster Cy if node i is
present in both the cluster C; and the cluster Cy. So, a node
may have to process its outgoing edges more than once if
it is present in more than one cluster.

The minimum residual edge token computed by a node
in Cluster C; will be the maximum number of times this
cluster could be fired. After computing this firing number,
it will compare this value with that of the source and make
the smaller of these two as the new firing number of the
source. This process is repeated by each node in the clus-
ter. Thus, the most constraining firing number of all the
nodes in the cluster C; will be written as the cluster firing
number at the source.

In the third pulse, each negative node will examine its
cluster weight. If the cluster weight is non-negative, then
that cluster is not permitted to fire unless if it is part of
another negative cluster. Therefore, each negative node
will make its cluster firing number zero if the weight of its
cluster is non-negative and it is not part of any negative
cluster. If its cluster weight is non-negative and it is part of
negative cluster(s), then it will initialize its cluster firing
number to the greatest of the firing numbers of the nega-
tive clusters which it is part of.

In the fourth pulse, each node i will get the cluster fir-
ing number from each of its sources. The maximum of
these numbers is its firing number and it will fire by that
amount. Thus, if a node i is present in more than one clus-
ter, then it will fire along with the cluster whose cluster fir-
ing number is greater than or equal to the cluster firing

numbers of the other clusters in which it is present. After
this firing, node i will not be part of those clusters whose
firing numbers are less than its firing number. The weights
of these clusters will be adjusted accordingly. This also
means a cluster which has non-negative weight in one iter-
ation may become negative weighted and need to partici-
pate in the subsequent iterations of these pulses. One can
easily verify that this scheme will not make the residual
edge tokens of any node negative.

Suppose a cluster is negative weighted and there is no
edge going out of this cluster, then this cluster can fire o
times which implies that the problem is unbounded. This
can easily be detected in this phase and the algorithm will
exit with appropriate error messages.

6.3.2 Cluster Expansion

Every cluster that has been fired will create at least one
0-token outgoing edge from the cluster. In the second
phase, clusters will expand along with these newly created
0-token edges.This phase is the same as the one explained
in Section 6.2.2.

The cluster optimization step is summarized below.
while (there is at least one cluster with negative
weight) do

a) Fire Negative Weight Clusters
b) Expand Clusters
end while

6.4 Cluster Union

When the algorithm enters this step, there is a cluster
rooted at each negative node and the weight of every such
cluster is non-negative. Thus, the clusters satisfy property
(P1.) in Theorem 1.

In the Cluster Union Step, clusters which are overlap-
ping with each other are combined into one. If there are
more than one combinations at the end of this step, then
the algorithm goes back to the Cluster Optimization step at
the end of which all the combinations are non-negative
weighted.

There are four pulses in this step like in the previous
step. In the first pulse, all positive nodes with no zero out-
nodes will examine their source variables. If they have
more than one source, then they pick the least numbered
source as the root and inform every one in the source vari-
able about this root. They use a variable combination to
propagate this root information. combination is an array of
sets. The variable combination [i] contains the set of the
sources that should be combined with the source i. Also,
each source (negative node) i will re-initialize its cluster-
Weight [i] 10 zero.

71

In the second pulse, each source will check its combi-
nation variable and propagate the root information to other
sources in that combination. This pulse will be repeated
until all nodes complete the propagation. At the end of this
pulse, all sources will be aware of the root of the combina-
tion.

In the third pulse, each node will get the root informa-
tion from their sources and add its weight to the cluster-
Weight of the root. Each node i will also re-initialize its
sources [i] 10 root.

The fourth pulse will be used to check if there is any
negative combination formed in this step. If so, then the
algorithm will go back to the Cluster Optimization step to
fire and expand those negative combinations. Otherwise, it
will praceed to the next step: Firing Zero Combinations. In
this pulse, each root will also increase by 1 the
no_of clusters variable so that the algorithm will know if
there are more than one combination when it goes to the
Firing Zero Combinations phase.

6.5 Firing Zero Combinations

If the number of combinations formed at the end of the
Cluster Union step is more than one and if the weight of
each such combination is non-negative, then each of these
combinations has zero weight. This is because we are
assuming that the sum of the weights of all the nodes in
the graph is zero. At this stage, the algorithm has to use the
Concurrent Pivots step to check the optimality of the solu-
tion, but there may not be any O-token spanning tree avail-
able. So, in the Firing Zero Combinations step, each zero
combination is fired appropriately to merge with other
zero combination(s), until all the nodes are coalesced into
one combination.

There are, again, four pulses in this step. In the first
pulse, each zero combination will calculate its firing num-
ber as explained in the Cluster Optimization step. It will
also find out the root of the other combinations they are
going to merge with, if it fires by its firing number.

In the second pulse, each combination will check if it
is allowed to fire. If cluster i is allowed to fire and if it is
going to merge with cluster j, then cluster j is not allowed
to fire. This is decided on a first-come first-serve basis.

In the third pulse, each cluster i that is allowed to fire
will fire by the amount it calculated in the first pulse.

In the fourth pulse, each cluster that is fired in the pre-
vious pulse will merge with the other cluster j. Again, the
smaller of (i, j) will become the root of that combination.
Since these are non-overlapping clusters, the weight of the
combination will be sum of the weights of the clusters.

6.6 Concurrent Pivots

At the end of Step 5 (Firing Zero Combinations), a 0-
token spanning tree is available and we have a basic feasi-
ble solution. So, the algorithm builds a O-token spanning
tree and tests it for optimality using the Concurrent Pivots
step (Step 6). This step described in [9] is explained below
for the sake of completeness. If the solution is not opti-
mum, then the algorithm goes back to the Cluster Forming
step.

Given a basic feasible solution Y and the correspond-
ing basic feasible tree, concurrent pivoting essentially
involves traversing the tree bottom up (starting from the
leafs), identifying the fundamental clusters and firing them
in an appropriate manner.

We assume that the following data structures are avail-
able at each node.

For each node i, father [i] will denote the unique father
of i obtained by a depth-first-search of T. At the end of a
cluster finding pulse, origin [i] will denote the root of the
fundamental cluster which contains node i (Note that this
fundamental cluster will also define a unique subtree of T
rooted at origin [i].) and clusterWeight [i] will denote the
weight of this cluster. Initially, clusterWeight [i] = node-
Weight [i]. Similarly, clusterFringNumber [i], at the end
of the cluster finding pulse, will denote the minimum
residual token of all edges (j, i) where node j is not a mem-
ber of the cluster in which node i is present. This variable
is initialized to INFINITY. treeNodes [i] will denote the
set of nodes adjacent to i in T. Initially, num _tree edges
[i] will denote the number of nodes that are adjacent to 7 in
T. As the bottom-up traversal of T proceeds, the edges will
be contracted and the tree will shrink dynamically.

Concurrent pivoting involves two phases: cluster firing
and determining new clusters.

Cluster Firing: In this phase, there are two subpulses: the
positive cluster firing pulse and the negative cluster firing
pulse.

Positive Cluster Firing: During the positive firing pulse,
only nodes i with num_tree_tree [i] <1 and clusterWeight
[i] > 0 will be active. Each such node i will process the
edges in tree_nodes [i] one by one and discard those edges
(j, i) with origin [j] = origin [i]. From the remaining
edges, it will calculate the minimum residual edge token,
say, f.. After calculating f;, node i will lock the clusterFir-
ingNumber variable of origin [i] and will write

clusterFiringNumber [origin [i]] = f;, if f; < clusterFir-
ingNumber [origin [i]].
At the end of this pulse, clusterFiringNumber [origin

[i]] will give the number of times each node in the cluster
with origin [i] as root can be fired positively. Each node i

72

wil find its firing number from clusterFiringNumber [ori-
gin [i]] and update the residual edge-tokens accordingly.

Negative Cluster Firing: This is similar to the positive
cluster firing pulse except that each node will examine the
outgoing edges instead of incoming edges, and perform
negative firing instead of positive firing.
Note that the above two pulses will not be executed
concurrently.
Determining New Cluster: The purpose of this phase is
to determine new fundamental clusters and determine their
weights. There are two pulses in this phase.
In the first pulse, each node i with num_tree _edges [i]
=1 will do the following.
1. Write clusterWeight [father [i]] = clusterWeight
[father [i]] + clusterWeight [i].
2. Decrement by 1 num_tree_edges [i].
Decrement by 1 num_tree_edges [father[i]].
. Write origin [i] = father [i].
During the second pulse only nodes with

num_tree_edges [i] = 0 will be active. Each such node i
will write

origin [i] = origin [origin [i]]
Thus at the end of this pulse each node will have the

origin of the fundamental cluster it is in as well as the
weight of this cluster.

6.7 Avoidance of Cycling

We have incorporated in the Concurrent pivot phase,
Bland’s anti-cycling rule {2] to avoid occurrence of
cycling. The details of the implementation of this anti-
cycling strategy are omitted here for lack of space.

7 Experimental Results

The CBDS method has been implemented on the BBN
Butterfly machine. The algorithm has been tested on sev-
eral large graphs generated using NETGEN [6] program.
To estimate parallel speed-ups, the algorithm has been
tested for different numbers of processors. These results
and those for the Modified Network Dual Simplex
(MNDS) method of [9] are tabulated in Tables 1-5 where
an iteration refers to the number of times the concurrent
pivot step is performed. Our main purpose in testing is to
demonstrate the scalability of these algorithms. So, the
shared memory and processes created are distributed ran-
domly among the hardware processors. Therefore, the
inter-process communication is large and varies for each
run and configuration. This is the reason for the large exe-
cution times of these algorithms. We notice that initially

the computer times decrease as the number of processors

used increases and then stabilizes after reaching a maxi-

mum. Also, CBDS has better execution times and speed- 522_ MNDS CBDS
ups as the size of the graphs increases. sors | Timein | Parallel | Timein | Parallel
p Seconds | Speed up | Seconds | Speed up
8 References
1 1502.96 1.0 1068.46 1.0
{11 Chalasani, RP, K. Thulasiraman, and M.A. Comeau, 2 784.19 1.9 554.06 1.9
“Integrated VLSI Layout Compaction and Wire Balancing 4 42592 3.5 302.05 3.5
on a Shared Memory Multiprocessor: Evaluation of a Par- 7 268.51 5.6 196.64 5.4
allel Algorithm”, ISPAN 94, Japan, 49-56, 1994. 10 187.34 8.0 168.44 6.3
[2) Chvatal, V., Linear Programming, Freeman Company, 12 211.36 7.1 156.83 - 6.8
Potomac, Maryland, 1983. 14 193.97 7.7 116.13 9.2
[3] Comeau, M.A. and K. Thulasiraman, “Structure of the
Submarking Reachability Problem and Network Program- {t:(:)rlfs- 7 4

ming,” IEEE Trans. Circuits and Systems, Vol. CAS-35,

89-100, 1988. Table 1: Graph with 500 nodes and 12000 edges
[4] Comeau, M.A., K. Thulasiraman and K.B. Lakshmanan,

“An Efficient Asynchronous Distributed Protocol to Test

Feasibility of the Dual Tr‘a.ns.shipment Problem,” Proc. Pro- MNDS CBDS
Allerton Conf. on Communication, Control and Computer, ces-
Univ. of Hlinois, Urbana, 634-640, Sept. 1987. SOrS Time in Parallel Time in Parallel
[S] Goldberg, A.V., “Efficient Graph Algorithms for Sequen- p Seconds | Speedup | Seconds | Speed up
tial and Parallel Complexity,” Ph.D. Thesis, Lab. for Com-
puter Science, M.LT., Cambridge, MA, 1987. 1 25542.71 1.0 11360.06 1.0
[6] Klingman, D., A. Napier and J. Stutz, “NETGEN: A Pro- 2 12920.70 2.0 5978.98 1.9
gram for Generating Large Scale Capacitated Assignment, 4 5896.98 43 3005.84 38
Transportation and Minimum Cost Flow Problems,” Man- 7 3436.68 7.4 1829.64 6.2
agement Science, 20, 814-821, 1974. 10 2191.07 11.7 1231.60 92
[71 Lengauer, T., Combinatorial Algorithms for Integrated 13 2804.87 9.1 1107.76 103
Circuit Layout, John Wiley & Sons, England, 1990. 15 18 1291 141 96272 118
[8] Peters, J., “The Network Simplex Method on a Multipro-
cessor,” Networks, Vol. 20, No. 7, 845-859, 1990. It.era- 5 3
[9] Thulasiraman, K., R.P. Chalasani and M.A. Comeau, “Par- tions

allel Network Dual Simplex Method on a Shared Memory
Multiprocessor,” Proc. 5th IEEE Symp. on Parallel and
Distributed Processing, Dallas, 408-415, 1993.

Table 2: Graph with 1200 nodes and 35000 edges

[10] Thulasiraman, K., R.P. Chalasani, P. Thulasiraman and
M.A. Comeau, “Parallel Network Primal-Dual Method on Pro- MNDS CBDS

a Shared Memory Multiprocessor and A Unified Approach SOrS Time in Parallel Time in Parallel
to VLSI Layout Compaction and Wire Balancing,” Proc.

IEEE VLSI Design ‘93, Bombay, India, 242-245, Jan. P | Seconds | Speedup | Seconds | Speed up

1993. 1 [3702275| 10 | 4066769 | 1.0
[11] Thulasiraman, K. and M.A. Comeau, “Maximum—Weight 2 1869769 20 20888.46 1.9
Markings in Marked Graphs: Algorithms and Interpreta- 4 9385.40 3.9 10877.06 3.7
tions Based on the Simplex Method,” IEEE Transactions 7 5113.30 72 5355.38 76

on Circuits and Systems, Vol. CAS-34, No. 12, 1535-1545,
December 1987 5 | s6a70 | 1is | w62 | 125
[12] Thulasiraman, K. and M.N.S. Swamy, Graphs: Theory and 1) y : -

Algorithms, Wiley-InterScience, New York, 1992. 15 3895.15 9.5 2826.16 13.1
[13] Yoshimura, T., “A Graph Theoretical Compaction Algo- Itera- 3 3

rithm,” Proceedings of International Symposium on Cir- tions
cuits and Systems, ISCAS 85, 1455-1458, 1985.

Table 3: Graph with 2000 nodes and 30000 edges

73

