Parallel Network Dual Simplex Method
ona
Shared Memory Multiprocessor

K. Thulasiraman, Raghu P. Chalasani and M.A. Comeau

Concordia University, Montreal

Abstract

We Present a parallel algorithm for solving the dual
transshipment problem [1]. The traditional dual simplex
method does not offer much scope for parallelization,
because it moves from one basic feasible solution to
another, performing one pivot operation at a time. We
present a new method called Modified Network Dual Sim-
plex method which uses concurrent pivots. This departure
Jfrom the traditional LP approach raises several issues
such as the need to convert a non-basic feasible solution
10 a basic feasible solution. We present our strategies to
handle these issues as well as the corresponding parallel
algorithms. We also present results of testing this algo-
rithm on large graphs to solve the integrated layout com-
paction and wire balancing problem.

1 Introduction

Network optimization refers to the class of optimiza-
tion problems defined on graphs. These problems include
the problem of constructing shortest paths, finding a maxi-
mum flow, constructing a min-cost spanning tree, finding
matchings in networks etc. These problems occur in a
variety of applications. While they are themselves signifi-
cant in their usefulness, they also occur as subproblems in
several applications.

The transshipment problem which can be formulated
as a linear programming problem is a general class of net-
work optimization problem [1]. Several network optimiza-
tion problems such as those mentioned above are special
cases of the transshipment problem. Many problems
which occur in engineering and industrial applications can
be formulated either as a transshipment problem or as its
dual. For instance, VLSI layout compaction and wire bal-
ancing can be formulated as a dual transshipment problem
[6], [11]. There are two basic approaches to the transship-

1063-6374/93 $03.00 © 1993 IEEE

408

ment problem - the network simplex method and the net-
work primal dual method. Goldberg [4] presented a
variant of the primal-dual method called the £-relaxation
method. References to other €-relaxation methods may
also be found in [4]). These relaxation methods have been
designed primarily to achieve good complexity results for
the transshipment problem. In view of the practical impor-
tance of the transshipment problem, there has been consid-
erable interest in designing distributed/parallel algorithms
for this problem. Peters [7] has presented a parallel imple-
mentation of the network simplex method. More recently,
we have discussed in [8] a parallel implementation of the
network primal-dual method. Goldberg’s algorithms in [4]
are also suitable for parallel implementation.

In this paper, we describe development of a parallel
algorithm for the dual transshipment problem and present
results in the context of an application, namely, the VLSI
layout compaction and wire balancing problem.

2 Preliminaries

A directed graph G with node set V and edge set E
will be denoted by G = (V, E). The nodes will be denoted
by the integers 1,2, ..., n. Thus V= {1,2, .., n}. Anedge e
connecting nodes / and j and directed from i to j will be
denoted by e = (i, j). We assume that G is connected. Each
node ¢ will be associated with a real number w;, called the
weight of i. Each edge e = (i, j) will be associated with a
real number my; called the token of e. W will denote the
row vector of node weights and My, will denote the column
vector of edge tokens. A node j is an outnode at node i, if
(G, j)isanedge in G. Given S C V,§ =V - 8 will refer to
the complement of S in V. (S, §) will refer to the set of
edges connecting the nodes in S with those in S. Thus if (i,
N € (S,S), theneitherie Sandje Sorie Tandje S.

Given a spanning tree T of G. Consider an edge e = (;,
J) of T. Removing e from T will result in two connected
subgraphs T; and T, with node sets V; and V,. Note that
V1=V -V, Then (V}, V) will be referred to as the fun-

damental cutset with respect to the edge e of T.

The notion of firing [2], [9] will be used extensively in
the development of our algorithm in this paper. Positive
firing of a node i, x times is the operation of adding x to
the token of every outgoing edge (i, j) and subtracting x
from the token of every incoming edge (j, i). Negative fir-
ing of a node i, x times is the operation of adding x to the
token of every incoming edge (j, {) and subtracting x from
the token of every outgoing edge (i, j). A subset of nodes
will be called a cluster. Firing a cluster x times results in
firing every node in the cluster x times. The firing number
of anode is the number of times this node has been fired.
After a positive (negative) firing of a node, the node firing
number is increased (decreased) by the appropriate num-
ber.

A firing, positive or negative, should not cause any
edge token to be negative. Positive firing is the most com-
monly used notion in the theory of marked graphs [2], [9].
Hence, unless otherwise stated, positive firing will be
referred to simply as firing.

The token of a directed path will refer to the sum of
the tokens of the edges on this path. The token of a
directed circuit is defined similarly. d;; will denote the
token of a minimum-token directed path from node i to j.
A minimum-token path from i to j will be referred to as a
shortest path from i toj. For definitions of other standard
graph-theoretic terms, [10] may be referred to.

3 The Dual Transshipment Problem

Consider a directed graph G = (V, E) with node weight
vector W and edge token vector Mg. Let A denote the inci-
dence matrix of G {10] and A’ be its transpose. The dual
transshipment problem is a linear program defined as fol-
lows:

Maximize: W'Y
subject to
AY > -M,)
Y20 (2)

In the above, Y is a column vector of node variables,
called firing numbers. Thus y; will denote the firing num-
ber of node i. For each edge (i, j) inequality (1) contains a
contraint of the form

yi-y; 2 -my;

yi - yj + my; is thus the value of the slack variable
associated with the edge (iy). If we fire each node i, y;
times, then the new token on edge (i, /) will be y; - y; + m;;.
This interpretation suggests the name residual token for
the expression y; - y; + my;. Thus the dual transshipment
problem is to obtain a vector Y such that

1. WY is maximum, and

409

2. the residual token on every edge is non-negative if
the nodes are fired as specified by the firing num-
bers y;’s.

A vector Y is called a feasible solution if Y satisfies
constraint (1). A vector Y is called a basic feasible solu-
tion if G has a spanning tree T such that the residual
tokens of all edges of T become zero when the nodes are
fired as specified by the node firing numbers y;. The tree T
is then called a basic feasible tree corresponding to the
basic feasible solution Y. Such a tree T will also be called
a 0-token spanning tree.

Since during firing no residual token should become
negative, it follows that a node i can be fired at most y;
times where y; is the smallest residual token on any
incoming edge (j, i). Note that if residual tokens permit
independent firings of nodes i and j, then these firings can
be done concurrently without making any resulting resid-
val token negative. It is this property that we take advan-
tage of in developing our parallel algorithm.

Let Y be a basic feasible solution and T be the corre-
sponding basic feasible tree. Consider an edge (i,) and let
(S, S) be the corresponding fundamental cutset (see defini-
tions in the previous section) withi € Sandj e S. Then S
and S will be called fundamental clusters with respect to
edge (i, j) of tree T. A pivot operation is permissible if

W(S) 2 0 where W(S) = ¥ W (i) . A pivot operation con-
ies§
sists of firing the cluster S the maximum possible number

of times and constructing the new basic feasible tree. Note
that firing S results in a new Y vector and new residual
tokens. It can be shown that the new Y is also a basic fea-
sible solution.

The network dual simplex (NDS) method is essen-
tially the simplex method of linear programming [1]
applied to solve the DTP. Thus the method consists of the
following steps.

1. Construct an initial basic feasible solution Yy, if it
exists. This is achieved by constructing an auxil-
iary network and applying the simplex method on
this network. This step detects infeasibility of the
DTP, whenever that is the case.

Perform a pivot operation.

3. Check the new basic feasible solution for optimal-
ity [1]. If it is optimal, then the algorithm termi-
nates. Otherwise, repeat step (2) starting from the
current basic feasible solution.

Unboundedness of the DTP is detected if we encounter

a fundamental cluster S such that W(S) > 0 and every edge
in (S, S) is directed from a node in S to a node in 5. To
avoid cycling, Bland’s anti-cycling rule [1] can be used in
step (2) while selecting a pivot operation. For all details
relating to the simplex method, [1] may be consulted.

4 Parallel Network Dual Simplex Method

As can be seen from the outline of the dual simplex
method, this method moves from one basic feasible solu-
tion to another, performing one pivot operation at a time.
Any parallel implementation of this method will focus on
the parallelization of the pivot operation. But during a
pivot operation only a small subgraph of the given graph
will be involved. Thus such an approach does not offer
much scope for achieving good speed up.

We resolve the above difficulty by permitting concur-
rent pivot operations. But at the end of concurrent pivots,
the resulting solution may not be basic. So, we need an
algorithm to generate a basic feasible solution from a
given feasible solution. But while doing so we should
ensure that the objective value WY never decreases. Our
method to be called Modified Network Dual Simplex
Method takes care of these considerations. An outline of
this method is as follows.

Modified Network Dual Simplex Method
S1: Test feasibility of the DTP. If feasible, construct
a feasible solution.

Given a feasible solution Y, construct a basic
feasible solution Y’ with WY~ > WY,

Check the optimality of the basic feasible solu-
tion Y” obtained in S2. If it is optimal, the algo-
rithm terminates. Otherwise, perform concurrent
pivot operations starting from Y”, (This involves
selecting the fundamental clusters defined by the
basic feasible tree T corresponding to Y~ and fir-
ing them in an appropriate manner).
S4: Repeat S2.

We now proceed to discuss each step in the above
algorithm and describe the details of a parallel algorithm.
In our model of computation, we assign to each process
exactly one node of the graph under consideration. Com-
munication among processes is through shared variables.
We permit concurrent reads. No more than one process can
write into a shared variable. Lock variables are used to
achieve this. Number of processes is not restricted to be
equal to the number of processors available on a parallel
machine. In our algorithm, during a pulse all processes
execute the same set of instructions. Some of the processes
may be idle. The actions taken by the processes during a
pulse may vary from one process to another and will
depend on the values of certain variables at the beginning
of the pulse. A phase in the algorithm will usually consist
of several pulses. All our algorithms have been imple-
mented on the Shared memory BBN Butterfly machine.

S2:

S3:

410

4.1 Feasibility Testing

It can be shown that the DTP is feasible if the graph
has no directed circuit of negative token. Let 0, = Max {0,
—min { d;;}}. Then we have the following result [2).

Theorem 1

The vector Y = (6, ..., G,) is a feasible solution of the
DTP if the graph G has no directed circuit of negative
token.]

In [3], we have presented a distributed algorithm to test
feasibility of a given DTP. This algorithm can easily be
adapted for shared memory implementation. For proof of
correctness and other details of this algorithm [3] may be
consulted.

This method does not require constructing an auxiliary
network to test feasibility. This is an attractive feature
from the point of view of designing distributed/parallel
implementations. Also, we need no explicit synchronizer
mechanism unlike in our distributed implementation dis-
cussed in [3]. The inherent synchronization available
when one spawns different processes in the BBN itself
serves as a synchronizer.

4.2 Constructing a Basic Feasible Solution

Given a feasible solution Y of the DTP, we would like
to construct a basic feasible solution Y~ such that WY~ >
WY. To do so we proceed as follows.

First, we fire the non-negative weight nodes concur-
rently as much as possible. We then repeat these concur-
rent firings until no further firings are possible. These
firings will not decrease the value of the objective WY.

We now illustrate a difficulty that we may encounter if
we perform the node firings as above. Consider the graph
shown in Fig. 1. During the first pulse of concurrent fir-
ings, all the nodes will be fired exactly once. After twenty
pulses of these firings, the residual tokens will be as shown
in Fig. 1(b). After the 231d pulse, the residual tokens will
be as shown in Fig. 1(c). The total number of firings of
each node is also given in this figure.

On the other hand, suppose we first determine the
okens of the shortest paths from node a to all other nodes.
We find that these tokens are precisely the number of times
the different nodes could be fired as in Fig 1(c). This is not
an accident. In fact we can prove the following.

Theorem 2

If there exists a directed path from i to Jj of token x,
then the node i can be fired at most x times. Q

So computing first the tokens of shortest paths and then
firing would save a large number of pulses. (Note that, for
this example, shortest path computations will take only 5
pulses). In our algorithm we employ this strategy. Note
that since we are interested in firing only positive weight
nodes, we need to compute for each positive node j, the
token of a shortest path from a non-positive weight node.

Note that some of the residual edge tokens correspond-
ing to a feasible solution may be equal to zero. But a node
i with an incoming edge (j, i) of zero token cannot be fired
at all, if node j is negative-weighted. In such cases, we
should group nodes i and j into one cluster and consider
firing this group. So, our strategy is to first partition the
node set V into subsets Sy, ..., Sy such that each S; with IS;|
> 1 has at least one non-positive weight node and all nodes
reachable from this node from a directed path of zero
residual token are also in S;. If a node is reachable from
more than one non-positive weight node, then all such
non-positive nodes will also be in S;. Firing these clusters
of nodes is then considered.

Summarizing, our approach to construct a basic feasi-
ble solution from a given feasible solution involves
repeated applications of the following phases.

1. Clustering.

2. Contraction. (Note that if we find, after contraction,
that the nodes of G have joined to form one single
cluster, then we have reached a basic feasible solu-
tion. In this case, the phases listed below will not
be necessary. See Section 4.2.3.)

3. Shortest path computation and firing.

4.2.1 Clustering

Clustering involves finding for each non-positive
weight node i, the set of all nodes reachable from i by
directed paths with zero residual tokens. If a positive
weighted node is reachable from more than one non-posi-
tive weighted node, then the union of the corresponding
sets will represent the cluster containing node j. The root
of a cluster is the least-numbered non-positive weighted
node in that cluster. In our description of the clustering
process, we use the following data structures.

source is an array of integers. The variable source [i]
at the end of this phase represents the least numbered non-
positive node in the cluster in which node i is present.
source [i] is initialized to NOTHING if the weight of the
node i is positive, otherwise it is initialized to i. zeroNodes
is an array of sets. zeroNodes [i] contains all zero outnodes
at node i. job_done is an array of boolean. In the begin-
ning, each job_done [i] is initialized to FALSE. As each
node propagates its source to all of its zero-outnodes, it
will change its job_done [i] to TRUE. Note that node j is a
zero-outnode at node i if node j is an outnode at node i and
the residual token of (i, j) is zero.

The clustering phase has three subphases.

Subphase 1: For the first pulse of this subphase, variables
are initialized as described above. During subsequent
pulses each node i performs the following actions.

If source [i] = NOTHING,; no action is taken. Otherwise, if
job_done [i] = FALSE, then node i sets job_done [i] =
TRUE and performs the following for each zero outnode ;.

Figure 1. llustration of a Problem

411

(23)

1. If source [j] = NOTHING, node i writes source [j]
= source [i].

If source [j] # NOTHING. then node i will do the
following operations.

(a) Node i examines the source variables in the
order source [i], source [source [i]], ...,
source [source {... [source [i] ...]]Jand picks
the first node k in this sequence for which
source (k] = k.

Node i examines the source variables in the
order source [j], source [source [j]], ...,
source [source [... [source [j] ...]Jand picks
the first node ! in this sequence for which
source [l] = 1.

If I < k, then node i writes source [k] = I and
source [i] = I; otherwise it writes source (1] =
k.

The above pulses of operations are repeated until job_-
done (i) = TRUE for every node i or no action is taken by
any processor during a pulse.

Note that at the end of the first subphase each non-pos-
itive node i will have source [i] < i. It is likely that certain
positive nodes have their source variables equal to NOTH-
ING, unchanged from their initial values. For such nodes
we set source [i] = i before initiating subphase 2.

(b

(©

Subphase 2: In this subphase only non-positive nodes will
be active. During this subphase, each node i performs the

following actions.
Node i examines the source variables in the order
source [i], source [source [i}], ..., source [source [...

[source [i] ...]]and picks the first node k in this sequence
for which source [k] = k. Node i then writes source [i] = k.

We can show that at the end of the second subphase,
source [i] for each non-positive node will contain the least
numbered non-positive node in its cluster.

Subphase 3: In this subphase, each positive node i will
write source [i] = source [source [i]].

It can be shown that, at the end of the third subphase,
all nodes with the same value for their source variables
represent the members of a cluster. This source value will
also give the least-numbered non-positive node in that
cluster if the cluster has cardinality greater than 1. Thus,
source [i] is in fact the root of the cluster containing node
i.

4.2.2 Contraction

Let Sy, ..., S; be the clusters formed by the clustering
phase. Recall that source [i] denotes the root of cluster S;.
Now we wish to contract all the nodes in each cluster and
construct implicitly a graph G” in which each node repre-

412

sents a cluster. Also in this graph, there will be at most one
edge directed from source [i] to any source [j], j # i. The
residual token of such an edge will be the minimum of the
tokens of all edges in G directed from a node in S; to a
node in S;. The weight of each cluster and the correspond-
ing node in G” will be the sum of weights of all the nodes
in that cluster.

Our algorithm for the contraction phase assumes that
the following data structures are available at each node.
clusterWeight is an array of integers. Each clusterWeight
[i] is initialized to nodeWeight {i] which is the weight of
node i. At termination, clusterWeight [i] represents the
weight of the cluster i containing node i. outNodes is an
array of sets. outNodes [i] is a set containing all the nodes
Jj such that (7,) is an edge in the given graph G. activeOut-
Nodes is an array of sets. activeOutNodes [i] is a set con-
taining all the nodes j such that (i, j) is an edge in the
current contracted graph G”. This variable is initialized to
outNodes [i]. tokens is a 2-dimensional array of integers.
tokens [i] [j] represents the value of edge-token for the
edge (i, j) in the given graph G. If this edge is not in G,
tokens [i] [j] contains a special value INFINITY. activeTo-
kens is a 2-dimensional array of integers. activeTokens [i]
[j] represents the value of the residual edge-token for the
edge (i, j) in the current contracted graph G, If this edge is
not in G', activeTokens [i] [j] contains a special value
INFINITY outside the range of edge tokens. This variable
is initialized to tokens [i] [j]. lock is an array of integers.
Each lock [i] is initialized to zero.

Now we proceed to the details of our algorithm to con-
struct the contracted graph G” from G.

In G, each cluster will be represented by its root. The
weight of a root will be the weight of the corresponding
cluster. To compute this weight, each node i, if it is not a
root, will add its weight to its root’s weight. The value of
the source variable will also tell if a node is a root node or
it belongs to a cluster, or simply if it is a node by itself. If
source [i] is equal to i, then the node i is the root of the
cluster containing node i. If source [i] is equal to NOTH-
ING (a special value), then the node i belongs to a cluster
of cardinality equal to unity. This could be the case for
some positive nodes especially after the Feasibility phase.
If source [i] is not equal to i and is also not equal to
NOTHING, then the node i belongs to the cluster contain-
ing source (i]. In this case, node i should add cluster-
Weight [i] to the clusterWeight {source [i]].

That is, node i writes

clusterWeight{source[i]] = clusterWeight [source[i]] +
clusterWeight [i], if source [i] # 1.
Since there may be more than one node trying to

access the source’s clusterWeight variable at the same
time, they lock the clusterWeight variable of the source

before they update it. After the update, the node will
unlock it so that another node can update it. Note the lock-
ing and unlocking of each source’s clusterWeight variable
can be done independently.

Next the set of activeOutNodes as well as residual
tokens of edges (activeTokens) in G” have to be calculated.
This is accomplished in two steps.

First, each node i will process its activeOutNodes [i]
set one by one. For example, assume node i is processing
activeQutNodes [i]. Suppose k is the source for the node i.
Further, suppose that there is an edge from node i to j, and
therefore j is an out-node at i and [is the source of the
cluster in which j is present. Then node i takes the follow-
ing actions. '

1. Remove j from activeOutNodes [i].

2. Ifk#1, add I to activeOQutNodes [i].

3. If activeTokens [i] [1] > activeTokens [i] [j], then

write activeTokens [i] [1] = activeTokens [i] [f].

In the second step, each node will process the edges in
activeOutNodes [i] so that root’s activeTokens set will
contain only the most constraining edges, and then com-
bine its activeQutNodes set with that of the root. That is, it
will calculate activeOutNodes[i] \J activeQutNodes
[source [i]].

Note that there may be conflicts among nodes when
they try accessing their source’s data structures. Therefore
locking and unlocking of a source’s data structure is neces-
sary in this step. But the data structure of each source can
be locked and unlocked independent of each other.

At the end of the second step, all nodes except the
roots will become inactive, thus making contraction of the
graph complete.

4.2.3 Shortest Path Computations and Firings

We now have a contracted graph G” in which each
node represents a cluster of nodes of the given graph G.
We also have for each node in G its weight (the weight of
the corresponding cluster) and for each edge its residual
token.

We now need to find for each positive node i in G"a
shortest path from a non-positive weight node. The token
of such a path specifies the number of times node i could
be fired without resulting in any negative residual token.
These shortest path computations can be done in parallel
by generalizing Bellman-Ford-Moore’s single-source
shortest path algorithm to the multiple-source case. We
refer to [5] for details of such an algorithm. It should be
noted that the graph G” under consideration will have no
negative residual tokens and so successful termination of
this shortest path algorithm will occur in less than n

413

pulses. Also, it should be noted that if a positive weight
node i is not reachable from any non-positive node, then
the shortest path algorithm will terminate with distance (i)
= oo, This indicates unboundedness of the DTP because of
the node i can be fired an unbounded number of times
increasing the value of WY to an unbounded value.

This completes our discussion of the three phases in
our algorithm to construct a basic feasible solution.

Summarizing, our algorithm to construct a basic feasi-
ble solution starting from a given feasible solution Y is as
follows.

1. Perform on G, the following sequence of opera-
tions.

(a) Clustering.
(b) Contraction.
(c) Shortest path computation and firings.

2. If clustering results in a graph G” which consists of
exactly one node, proceed to step (3), otherwise let
G =G’ and repeat step 1.

3. (At this point, we have a spanning subgraph of G in

which residual tokens of all edges are equal to zero
and so the node firing numbers represent a basic
feasible solution.) Build a O-token spanning tree of
G. This tree is a required basic feasible tree.

A 0O-token spanning tree as required in step (3) above
can be easily built using a parallel depth-first search of the
subgraph of zero-token edges referred to in step (3), if at
each node i we maintain the set consisting of the nodes
adjacent to i. Maintaining such a set has not been neces-
sary for any of the algorithms discussed thus far in this
section. Note that we have so far used only the sets out-
Nodes [i]. We have designed a parallel algorithm to build
the required spanning tree using only these sets. To con-
serve space, the details of this algorithm are not included.

4.3 Concurrent Pivots

Given a basic feasible solution Y and the correspond-
ing basic feasible tree, concurrent pivoting essentially
involves traversing the tree bottom up (starting from the
leafs), identifying the fundamental clusters and firing them
in an appropriate manner.

We assume that the following data structures are avail-
able at each node.

For each node i, father [i] will denote the unique father
of i obtained by a depth-first-search of T. At the end of a
cluster finding pulse, origin [i] will denote the root of the
fundamental cluster which contains node i (Note that this
fundamental cluster will also define a unique subtree of T
rooted at origin [i].) and clusterWeight [i] will denote the
weight of this cluster. Initially, clusterWeight [i] = node-

Weight [i]. Similarly, clusterFringNumber [i], at the end
of the cluster finding pulse, will denote the minimum
residual token of all edges (j, /) where node j is not a mem-
ber of the cluster in which node i is present. This variable
is initialized to INFINITY. treeNodes [i] will denote the
set of nodes adjacent to i in T. Initially, num_tree_edges [i]
will denote the number of nodes that are adjacent to i in T.
As the bottom-up traversal of T proceeds, the edges will
be contracted and the tree will shrink dynamically.

Concurrent pivoting involves two phases: cluster firing
and determining new clusters.

Cluster Firing: In this phase, there are two subpulses: the
positive cluster firing pulse and the negative cluster firing
pulse.

Positive Cluster Firing: During the positive firing pulse,
only nodes i with num_tree_tree [i] < 1 and clusterWeight
[i] > 0 will be active. Each such node i will process the
edges in tree_nodes [i] one by one and discard those edges
(, §) with origin (j] = origin [i]. From the remaining
edges, it will calculate the minimum residual edge token,
say, f;. After calculating £, node i will lock the clusterFir-
ingNumber variable of origin [i] and will write
clusterFiringNumber [origin [i]] = f,
if f; < clusterFiringNumber [origin [i]].
At the end of this pulse, clusterFiringNumber [origin
[i]] will give the number of times each node in the cluster
with origin {i] as root can be fired positively. Each node i
will find its firing number from clusterFiringNumber {ori-
gin [i]] and update the residual edge-tokens accordingly.

Negative Cluster Firing: This is similar to the positive
cluster firing pulse except that each node will examine the
outgoing edges instead of incoming edges, and perform
negative firing instead of positive firing.

Note that the above two pulses will not be executed
concurrently.

Determining New Cluster: The purpose of this phase is
to determine new fundamental clusters and determine their
weights. There are two pulses in this phase.

In the first pulse, each node i with num_tree_edges [i]
=1 will do the following.

1. Write clusterWeight [father [i]] = clusterWeight

[father [i]] + clusterWeight [i].

2. Decrement by 1 num_tree_edges [i].

3. Decrement by 1 num_tree_edges [father/[i]].

4. Write origin [i] = father [i].

During the second pulse only nodes with
num_tree_edges [i] = 0 will be active. Each such node i

414

will write
origin [i] = origin [origin [i]]
Thus at the end of this pulse each node will have the

origin of the fundamental cluster it is in as well as the
weight of this cluster.

4.4 Avoidance of Cycling

We have incorporated in the Concurrent pivot phase,
Bland’s anti-cycling rule [1] to avoid occurrence of
cycling. The details of the implementation of this anti-
cycling strategy are omitted here for lack of space.

S5 Experimental Results

As we mentioned in Section I, VLSI layout compac-
tion and wire balancing (or wire length minimization) is an
area of application of our work. Wire balancing problem
can be formulated as a dual transshipment problem [6],
[11]. In this formulation, Y will denote the vector of posi-
tions of nodes (cells) and each node weight w; will denote
the relative change in cost due to unit change in y;. Each (-
m;;) will denote the minimum spacing required between
nodes i and j.

In layout compaction, we are required to place the
nodes (cells) in a layout so that the chip area is minimum.
We have shown in [8] that this, in fact, is equivalent to
testing feasibility of a DTP. That is, testing if the con-
straints

A'Y > M,
Y20
have a feasible solution. Thus our algorithm described in
Section 4.1. achieves layout compaction in parallel.

After placing the nodes at positions specified by the
values of ;s (See Theorem 1), positions of some of the
nodes can be adjusted (without violating feasibility or
increasing chip area) if one is interested in minimizing
wire length after compacting the chip. This problem called
the integrated layout compaction and wire balancing
problem, involves the following steps:

1. Find the feasible vector Y as specified in Theorem

1.

2. For certain nodes, fix their values as specified by
the Y obtained in step 1. (These nodes are in fact
those which lie on longest paths in G.) Then solve
the DTP.

Our parallel algorithm for the DTP can thus be adapted
to solve the different problems related to compaction and
wire balancing mentioned above.

We have adapted our algorithm for the integrated lay-

out compaction and wire balancing problem and tested this
on several graphs (representing layouts of industrial
designs received from Cadence Design Systems, Inc.). To
estimate parallel speed-ups, the algorithm has been tested
for different numbers of processors. The test results are
given in Tables 1-3. We notice that the computer times ini-
tially decrease as the number p of processors used
increases and then stabilizes after reaching a minimum.

Acknowledgement

We would like to thank Ravi Varadarajan of Cadence
Design Systems, San Jose for providing us with test
graphs as well as giving insight into the integrated layout
compaction and wire balancing problem.

We would also like to thank Paul Gaudet of BBN Sys-
tems, Inc. for giving us access to the BBN Butterfly
machine and helping us through whenever we had prob-
lems while using this machine.

6 References

[1] Chvatal, V., Linear Programming, Freeman Company,
Potomac, Maryland, 1983.

[2] Comeau, M.A. and K. Thulasiraman, “Structure of the
Submarking Reachability Problem and Network Program-
ming,” IEEE Trans. Circuits and Systems, Vol. CAS-35,
89-100, 1988.

[3] Comeau, M.A., K. Thulasiraman and K.B. Lakshmanan,
“An Efficient Asynchronous Distributed Protocol to Test
Feasibility of the Dual Transshipment Problem,” Proc.
Allerton Conf. on Communication, Control and Computer,
Univ. of lllinois, Urbana, 634-640, Sept. 1987.

[4] Goldberg, A.V., “Efficient Graph Algorithms for Sequen-
tial and Parallel Computers,” Ph.D. Thesis, Lab. for Com-
puter Science, M.I.T., Cambridge, MA, 1987.

{5] Lakshmanan, K.B., K. Thulasiraman and M.A. Comeau,
“An Efficient Distributed Protocol for Finding Shortest
Paths in Networks with Negative Weights,” IEEE Transac-
tions on Software Engineering, Vol. 15, No. 5, 639-644,
May 1989.

[6] Lengauer, T., Combinatorial Algorithms for Integrated
Circuit Layout, John Wiley & Sons, England, 1990.

[7] Peters, J., “The Network Simplex Method on a Multipro-
cessor,” Networks, Vol. 20, No. 7, 845-859, 1990.

[8] Thulasiraman, K., R.P. Chalasani, P. Thulasiraman and
M.A. Comeau, “Parallel Network Primal-Dual Method on
a Shared Memory Multiprocessor and A Unified Approach
to VLSI Layout Compaction and Wire Balancing,” Proc.
VLSI Design ‘93, Bombay, India, 242-245, Jan. 1993.

[9]1 Thulasiraman, K. and M.A. Comeau, “Maximum-Weight
Markings in Marked Graphs: Algorithms and Interpreta-
tions Based on the Simplex Method,” IEEE Transactions
on Circuits and Systems, Vol. CAS-34, No. 12, 1535-1545,

December 1987.

[10] Thulasiraman, K. and M.N.S. Swamy, Graphs: Theory and
Algorithms, Wiley-InterScience, New York, 1992.

[11] Yoshimura, T., “A Graph Theoretical Compaction Algo-
rithm,” Proceedings of the 1985 IEEE International Sym-
posium on Circuits and Systems, 1455-1458, 1985.

Table 1: Graph with 149 nodes

Processors Time in Parallel
P Seconds Speed up
—_— e
1 2297 1.0
4 7.63 3.0
6 5.98 38
8 430 53
10 3.90 59
13 3.93 59
14 3.84 6.0
15 3.65 63

Table 2: Graph with 157 nodes

Processors Time in Parallel
P Seconds Speed up
———eeeee e ——————————————
1 18.29 1.0
4 5.60 33
6 445 4.1
8 3.06 6.0
10 3.01 6.1
1 2.97 6.2
16 2.76 6.6
17 2.79 6.6

Table 3: Graph with 2087 nodes

Processors Time in Parallel

P Seconds Speed up
1 10572.73 1.0

2 5111.41 2.1

4 2600.39 41

8 1631.72 6.5

12 1174.22 9.0

15 1010.37 10.5
17 996.62 10.6
20 948.61 11.1

415

