IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 5. MAY 1989 639

Concise Papers

An Efficient Distributed Protocol for Finding
Shortest Paths in Networks with Negative Weights

K. B. LAKSHMANAN, K. THULASIRAMAN, AND
M. A. COMEAU

Abstract—In this paper, we are interested in the design of distrib-
uted algorithms for the single-source shortest-path problem to run on
an asynchronous directed network in which some of the edges may be
associated with negative weights, and thus a cycle of negative total
weight may also exist. The only one existing solution in the literature
for this problem is due to Chandy and Misra, and it has, in the worst
case, an unbounded message complexity. We first describe and study
a synchronous version of the Chandy-Misra algorithm and prove that
for a network with m edges and n nodes, the worst case message and
time complexities of this algorithm are O(mn) and O(n), respectively.
This algorithm is then combined with an efficient synchronizer to yield
an asynchronous protocol that retains the same message and time com-
plexities.

Index Terms—Analysis of algorithms, asynchronous network, dis-
tributed computing, message and time complexities, negative cycle,
protocols, shortest paths, synchronizer.

I. INTRODUCTION

Let G = (V, E) be a directed network in which V is the set of
nodes and E is the set of edges, with | V| = nand |E | = m. Each
edge (i, j) has an associated weight w(i, j). The classical single-
source shortest-path problem in such a network is to find the short-
est paths from one distinguished node s, called the source, to every
other node. We assume that every node is reachable from s. Note
that each node is reachable from itself. The distance d (i) of a node
i is the weight of the shortest path from the source node to the node
i. If the weights associated with some of the edges are negative,
then a cycle of negative total weight may also exist. In this case,
if a negative cycle is reachable from s, then all nodes on this cycle
are said to be at a distance —oo from the source. Moreover, every
node reachable from a negative cycle is also said to be at a distance
—oo from the source. For all remaining nodes, the distance values
are finite, and hence their shortest paths are well defined. Networks
with negative weights arise in the context of several applications
[41. [7], 112], [17}.

In this paper, we are interested in distributed algorithms for the
single-source shortest-path problem in a directed network in which
a cycle of negative total weight may exist. At the end of the com-
putation, the algorithm should identify nodes which are at a dis-

Manuscript received July 2, 1987; revised November 11, 1988. This
work was supported in part by Concordia University under Grant CASA-
N67, in part by FCAR Quebec under Grant 87AS2407 of the Actions Spon-
tanées program, and in part by the Natural Sciences and Engineering Re-
search Council of Canada under Grants A9194 and A6638.

K. B. Lakshmanan was with the Department of Computer Science, Con-
cordia University, Montreal, P.Q., Canada H3G IMS8. He is now with
SUNY College, Brockport, NY 14420.

K. Thulasiraman is with the Department of Electrical and Computer
Engineering, Concordia University, Montreal, P.Q., Canada H3G 1M8.

M. A. Comeau is with the Centre de Recherche Informatique de Mon-
treal, Inc., Montreal, P.Q., Canada H3G IN2.

1EEE Log Number 8926732.

tance —oo from the source, besides computing the shortest paths
for the nodes at a finite distance. We assume the existence of a
processor at each of the nodes and that these processors are inter-
connected through communication links as indicated by the edges
of the network. The exchange of messages between two processors
is asynchronous in that the sender always hands over the message
to the communication subsystem and proceeds with its own local
task. The communication subsystem, we assume, will deliver the
message to its destination, without loss or any alteration, after a
finite but undetermined time lapse. The messages sent over any link
also follow a first-in, first-out rule. A detailed description of this
model of distributed computing may be found in [5], {14], [16]. In
our distributed algorithm, all messages are required to be of fixed
length, specifying the type of the message and some Boolean pa-
rameters, except for a few types of messages that may carry dis-
tance estimates, i.e., the weight of some path from the source nodc
s. The message complexity of the distributed algorithm is the total
number of messages transmitted during the execution of the algo-
rithm. The time complexity is the time that elapses from the begin-
ning to the termination of the algorithm, assuming that the propa-
gation delay in any link is at most one unit of time.

A synchronous network differs from an asynchronous one in the
existence of a global clock, so that all network messages are sent
only when a clock pulse is generated. More importantly, a message
sent by any node to its neighbor arrives at its destination before the
end of the clock period, i.e., just before the next pulse [1], [2],
[13]. A synchronizer is a mechanism that helps simulate a syn-
chronous network on an asynchronous one. Recently, Awerbuch
[1] has proposed the use of synchronizers as a general methodolgy
for designing efficient distributed algorithms for asynchronous net-
works.

For the case of networks with nonnegative edge weights, a num-
ber of distributed algorithms for the single-source shortest-path
problem have been proposed in the past [6], [8], [10], [11]. The
only existing solution for the problem of finding distributively the
shortest paths in an asynchronous network with negative cycles is
due to Chandy and Misra [5]. They construct an algorithm which
can be viewed as a distributed implementation of the sequential
Ford-Bellman-Moore algorithm, combined with an elegant way to
detect negative cycles through additional messages. The mecha-
nism Chandy and Misra use to detect negative cycles is based on
the earlier work of Dijkstra and Sholten [9] in the context of ter-
mination detection for diffusing computations. The emphasis in
their paper is on correctness arguments rather than on a complexity
analysis. It can be shown that, if there is a negative cycle, the
number of messages exchanged in the Chandy-Misra algorithm
cannot be bounded. Even if there is no negative cycle, the pattern
of delays in communication links could be such that the number of
messages exchanged becomes exponential in the number of nodes
[31.

In this paper, we describe an asynchronous distributed algorithm
whose worst case message and time complexities are O (mn) and
O(n), respectively. We permit negative cycles in the network. Our
approach is to obtain a synchronous version of the Chandy-Misra
algorithm and then combine it with an efficient synchronizer. An
interesting aspect of the synchronizer we design is that messages
can be handled one by one as soon as they arrive, in the same order,
whether they are ‘‘too early’’ or are ‘‘out of date.’” Thus, the use
of this synchronizer permits the execution of the Chandy-Misra
algorithm to remain “‘totally asynchronous,’’ as termed by Bert-
sekas and Eckstein [4].

0098-5589/89/0500-0639$01.00 © 1989 IEEE

640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL

II. CHANDY-MISRA ALGORITHM

In this section, we take a brief look at the asynchronous Chandy-
Misra algorithm. The definitions of terms such as predecessor, suc-
cessor, neighbor, etc., and a detailed proof of correctness as well
as termination of the algorithm may be found in [5].

The Chandy-Misra algorithm basically works in two phases. In
the first phase, all nodes at a finite distance from the source com-
pute their final distance values, and in the second phase, nodes at
distance —oo from the source are so informed. Two kinds of mes-
sages, LENGTH and ACK, are made use of in the first phase.
Whenever a node discovers a path from s which is shorter than that
currently known, it updates its distance and sends appropriate
LENGTH messages to its successor nodes so that they can update
their distances, if necessary. A node acknowledges each LENGTH
message it receives by sending an ACK message. A LENGTH
message is acknowledged by a node either 1) when this LENGTH
message causes no update of the distance values of the node, 2)
when the node has received ACK messages for all the LENGTH
messages it transmitted to its successors, or 3) when a later
LENGTH message arriving at the node causes an update of its dis-
tance value.

In the absence of a negative cycle, all nodes are at a finite dis-
tance from the source, and so the activity with LENGTH messages
will eventually cease. The source node terminates execution of the
first phase when all the LENGTH messages it sent out have been
acknowledged. It is interesting to note that the same signaling
scheme using ACK messages can be used to terminate execution
of phase I, even in the presence of negative cycles. Since nodes in
or reachable from a negative cycle will continue to receive smaller
and smaller LENGTH messages from each other, they will even-
tually release ACK messages for all the LENGTH messages re-
ceived from nodes that are at a finite distance from the source.
Thus, if the source node itself is not in a negative cycle, it will
eventually receive all ACK messages for the LENGTH messages
it sent out, at which point it will detect termination of the first phase
of computation. If the source node is in a negative cycle, it ter-
minates phase I when it receives a LENGTH message with a neg-
ative distance estimate.

Since the delays in the communication links are arbitrary, the
ACK messages to be received by the source node, before it can
terminate phase I, could suffer long delays. In the meantime, the
nodes in the negative cycles could keep sending messages in a cyclic
fashion, updating their distances all the time. As a result, the worst
case number of messages exchanged in the first phase of the asyn-
chronous Chandy-Misra algorithm is really unbounded.

As regards phase II, the source node initiates this phase and
broadcasts messages to inform all the nodes about the completion
of phase I. When a node receives this message, it checks to see if
ACK messages are yet to be received for some of the LENGTH
messages it sent out. If so, the node recognizes the presence of a
negative cycle and suitably communicates this information to all
the other nodes. Clearly, the second phase requires only O(m)
messages and O(n) time. Hence, to improve the performance, we
need to concentrate only on phase I of the Chandy-Misra algo-
rithm.

III. SYNCHRONOUS VERSION OF THE FIRST PHASE

The synchronous version of the first phase of the Chandy—Misra
algorithm also requires two kinds of messages: LENGTH and ACK.
The detailed set of actions to be initiated on receipt of these mes-
sages can be seen in the program segments of the Appendix. As in
the asynchronous version, LENGTH messages are used to update
distance estimates of successor nodes, whereas ACK messages are
used to inform predecessor nodes that the corresponding LENGTH
messages have been handled suitably. Since, in a synchronous pro-
tocol, messages can be transmitted only when a clock pulse is gen-
erated, the processing of messages does not trigger immediate dis-
patch of further messages. But suitable data structures are updated,

15. NO. 5. MAY 1989

and information regarding messages to be transmitted at the next
clock pulse is recorded. For example, in the synchronous algo-
rithm, if a LENGTH message arrives at the node i and causes an
update of its distance estimate, a Boolean variable called change (/)
is set to true, so that in the next pulse, the effect of the updated
distance can be propagated to the successor nodes through appro-
priate LENGTH messages. Also, a data structure called ackset (i)
is used to keep track of the identities of the predecessors in the
previously known shortest paths for which ACK messages have to
be sent. A careful analysis will show that, for the correct working
of the algorithm, this data structure must really be implemented as
a multiset, permitting as many as two copies of each element. When
a new clock pulse is generated, the procedure newpulse is exe-
cuted. At that time, all the LENGTH and ACK messages are trans-
mitted. If the variable change (i) is true, it is switched back to
false after sending LENGTH messages to successor nodes, until,
of course, another LENGTH message causing an update of the dis-
tance estimate is received. The number of LENGTH messages
propagated by the node i that are yet to be acknowledged is re-
corded in a variable called num (i). If we ignore ACK messages,
it is clear that this synchronous algorithm is essentially a distrib-
uted implementation of the Ford-Bellman-Moore algorithm, with
each pulse causing one sweep of all the edges [10].

The proof of correctness and termination of the above synchro-
nous protocol follows along the same lines as in [S]. Consider
num (i) and change (i), two pieces of data maintained by node i.
As in the original asynchronous Chandy-Misra algorithm, at any
time, node { will have at most one LENGTH message for which it
has not generated an ACK message. This ACK message, if it is
pending, should really go to the predecessor node in the current
shortest path. Also, the fact that an ACK message is pending at
node i is indicated by the truth of the compound Boolean condition
(num(i) > 0 or change(i) = true). Thus, at the termination of
phase I, this compound Boolean condition can be used to identify
nodes in a negative cycle and those that are not. The following
theorem summarizes these results.

Theorem 1: The synchronous version of phase I of the Chandy-
Misra algorithm terminates, and at the end of that clock period and
beyond, the following hold.

1) For each node i at a finite distance from the source s, d(i)
contains its final stable distance value, and num(i) = 0 and
change(i) = false.)

2) For each node i at a distance —o from the source, and only
for such nodes, either num(i) > 0 or change (i) = true or there
is a node j on a path from the source to i such that num(j) > 0
or change(j) = true.

As regards the complexity of the synchronous algorithm, we have
the following resuit.

Theorem 2: The synchronous version of phase I of the Chandy-
Misra algorithm terminates in O(n) clock pulses using O(mn)
messages.

Proof: First, consider only those nodes at a finite distance
from the source node. Since in a synchronous network all messages
suffer at most one unit time delay, it follows that if the shortest
path from node s to a node v consists of exactly one edge, then the
distance value of node v will reach its final stable value at the end
of the first clock period, i.e., just before the second clock pulse.
Using this result, along with induction on the number of edges in
a shortest path from s, it is easy to see that each node v at a finite
distance from the source will reach its final stable distance value
before the nth pulse. Even after reaching the final distance value,
each node will transmit at its next pulse LENGTH messages car-
rying this value, but will transmit no LENGTH messages thereafter
because no further update of its distance is possible. Thus, after n
pulses, only ACK messages can flow among the finite-distance
nodes of the network.

Consider next a node v in a negative cycle having, say, e edges.
Let the weight of this cycle, be —W where W > 0. Suppose at
pulse k, node v receives a LENGTH message carrying a weight

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 5, MAY 1989 641

equal to ¢. This message will be acknowledged at the next pulse if
it does not result in an update of the distance value of v; otherwise,
it will be acknowledged within the next (e + 1) pulses because
during this period it will definitely receive a LENGTH message
carrying a weight value <t — W. Thus, every LENGTH message
received by node v will be acknowledged within (e + 1) pulses of
receipt of this message. In particular, any LENGTH message re-
ceived at pulse k from a finite distance node, say u, will be ac-
knowledged by node v at the (k + e + 1)th pulse or earlier. Since
k represents the number of edges in a path from the source node to
the node v, (k + e) < n. This means that after (n + 1) pulses
there will be no ACK messages flowing from nodes in negative
cycles to finite-distance nodes.

Since ACK messages get propagated towards the source by trig-
gering the dispatch of other ACK messages, it should be clear from
the above that the source node, if it is not in a negative cycle, will
receive ACK messages for all the messages it sent out within 2n
pulses and thus can detect termination of phase 1 in O(n) pulses.
If the source node is itself in a negative cycle, then it will receive
a LENGTH message carrying a negative weight within the first n
pulses and thus will recognize the presence of a negative cycle in
O(n) pulses. We therefore conclude that the synchronous version
of phase I will terminate in O(n) clock pulses.

Since at most one LENGTH message to any successor and two
ACK messages to any predecessor are sent by a node during each
clock pulse, the algorithm requires only O (mn) messages. O

From the arguments presented in the above proof, it is clear that
every node at a distance —oo from the source will receive at least
one LENGTH message after n, but within 2n, clock pulses of its
operation. Since it is possible to traverse the network, count the
number of nodes, and deliver this information to each site before
the shortest-path computation begins, using only O(m) messages
and O(n) time, one can visualize an alternative algorithm in which
each node terminates the execution after exactly 2n clock pulses.
In this case, ACK messages are not needed, and each node can
decide on its own whether or not it is at a distance —oo from the
source. However, our interest in this correspondence is to retain
the elegance of the Chandy-Misra algorithm and modify it only to
improve its efficiency. Hence, we use ACK messages. Moreover,
if the shortest paths constructed contain very few edges compared
to n, use of ACK messages can indeed speed up the termination.

1V. IMPLEMENTATION OF A SYNCHRONIZER

The synchronous algorithm presented in the previous section can
be used on an asynchronous network, provided there is a way to
simulate a sequence of clock pulses. A synchronizer is such a
mechanism. In [15], we have drawn attention to certain difficulties
one may face in the implementation of a synchronizer if we insist
that the processing of a message cannot be delayed once received
[16]. However, for the algorithm at hand, a simple and time-effi-
cient synchronizer can be designed as discussed below. In contrast
to the a-synchronizer described in [1], our synchronizer requires
fewer additional message types and also does not require the mes-
sages to carry the pulse number. More importantly, our synchro-
nizer permits handling of messages one by one without additional
delay, in the same order as they arrive, whether they are “‘too
early’” or are ‘‘out of date,”” as explained later.

The basic idea in the synchronizer mechanism is as follows. The
computation proceeds in ‘‘rounds,’’ trying to simulate the actions
of the synchronous algorithm pulse by pulse. A node may start the
actions corresponding to a new pulse once it is sure that the mes-
sages sent by its neighbors, if any, in the previous pulse of the
synchronous algorithm have all arrived. For this purpose, each node
waits for an explicit GO message from every one of its neighbors.
Also, every node sending a message to its neighbor ensures that all
useful messages of the synchronous algorithm are sent before a GO
message. Thus, by the first-in, first-out property of the communi-
cation link, arrival of GO messages from all neighbors signals a
node to initiate actions corresponding to the next pulse. Observe

that GO messages basically add O(m) message and O(1) time
complexity overheads per pulise of the synchronous algorithm.

In order to implement such a simulation, we need an initializa-
tion phase so that all nodes wake up and send GO messages to their
neighbors. Then every node performs round one, corresponding to
the first pulse of the synchronous algorithm. The program segments
in the Appendix corresponding to WAKEUP and GO messages pre-
sent all the actions to be taken in detail. The propagation of the
WAKEUP message follows the protocol given by Segall [16]. Its
message and time complexities are O(m) and O(n), respectively.

We remarked earlier that there are certain difficulties in the im-
plementation and use of a synchronizer. This basically stems from
the asynchronous nature of the network. Consider a data structure
called goreceived (i) needed at node i to keep track, at various
stages, of the set of neighbors from which GO messages have been
received. It is tempting to think that this set can be implemented at
each node as a bit vector of size equal to the number of neighbors
of that node. Unfortunately, this will not work. Consider a stage
of execution when two neighboring nodes i and j have completed
(k — 1) pulses of the synchronous algorithm. Then, each one must
have transmitted a GO message, permitting the other to go through
the kth round. But it is quite conceivable that before node i receives
GO messages from all its neighbors and proceeds with the kth puise,
node j may receive all its GO messages and hence proceed to com-
plete the actions corresponding to the kth pulse, thereby releasing
another GO message to node i. Thus, sometimes more than one
GO message could arrive at node i from j, and hence the data struc-
ture goreceived (i) should really be implemented as a multiset,
permitting more than one copy of an element. It is clear, however,
that node j cannot start the (k + 1)th pulse before node i completes
its kth pulse and sends a GO message. Thus, at any point in time,
the number of pulses of activity gone through by two neighboring
nodes can differ by at most one. This has two implications. The
first is that at any point in time there could be at most two GO
messages received at a node from any of its neighbors. The second
implication is that over the entire network, the number of pulses of
activity gone through by any two arbitrary nodes can differ by as
much as the length of the shortest path between these two nodes in
the undirected communication network.

Consider now the execution of the synchronous protocol for
phase I combined with the synchronizer proposed above. Since each
node executes its kth pulse only after it is aware that each of its
neighbors has executed the (K — 1)th pulse and that no messages
destined for it are still in transit, one may assume that execution of
the combined protocols will pretty much be the same as that of the
synchronous one. But there is a minor problem. We have already
seen that if i and j are two neighboring nodes, there is the possi-
bility that node j can complete the actions of its kth pulse after i
completes (k — 1) pulses, but before it begins its kth pulse. This
then implies the possibility of a message sent by node j in the kth
pulse modifying some data structures maintained by node i, in the
process altering what node i would have done otherwise during the
kth pulse of the synchronous algorithm. Suppose, for example, the
distance estimate maintained at node i had changed as a result of a
LENGTH message sent by a neighboring node during its (k — 1)th
pulse of activity. Normally, node i would propagate this fact to its
successors through appropriate LENGTH messages only during its
kth pulse. But suppose a neighboring node j completes its k th pulse
before node i begins this pulse, and it sends a LENGTH message
that causes a further update of the distance estimate maintained at
node i; then, the LENGTH messages sent by node 7 during the its
kth pulse will carry updated values. In other words, the LENGTH
messages node i would have sent normally during its & th pulse do
not get sent now. Moreover, the “‘early’’ arrival of a LENGTH
message from node j to node i can sometimes cause some other
LENGTH message arriving at node i corresponding to the (k —
1)th pulse of activity to be “‘out of date.”’

Luckily, these facts do not cause any harm for the algorithm at
hand. This is because the distance estimates maintained at each

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. t5. NO. 5. MAY 1989

node are nonincreasing, and the values contained in the LENGTH
messages flowing along any edge are always monotonically de-
creasing. Thus, “‘*early’’ or ‘‘out-of-date’’ arrival of LENGTH
messages at node i from neighboring nodes cannot cause an error
in the computation. To be more precise, one can assert that the
distance estimate maintained at node i before it executes its kth
pulse in the protocol simulated using the synchronizer will always
be less than or equal to the distance estimate maintained before the
execution of the kth pulse in the synchronous version of the algo-
rithm. Similarly, it is easy to observe that early arrival of ACK
messages cannot cause an error in the computation. However, the
data structure ackset (i), which keeps track of the predecessors for
whom ACK messages have to be sent from node i, will now have
to be implemented as a multiset permitting as many as three copies
of an element, whereas for the synchronous algorithm, an imple-
mentation as a multiset permitting at most two copies of an element
would be sufficient. Such subtle issues make the implementation
and use of synchronizers not a routine matter, but a crucial step
requiring careful analysis and verification. As far as the sending
and processing of ACK messages is concerned, it is possible to add
a 2-bit parameter (to indicate a number between 1 to 3), so that
multiple ACK messages to be sent one after another can be re-
placed by a single ACK message with the parameter suitably set.

In phase II, TERMINATE messages are propagated, in a man-
ner similar to that of the WAKEUP messages, but also using the
results of Theorem 1 to identify nodes at a finite distance from the
source node and those that are not. This phase is basically the same
as in the original Chandy-Misra algorithm [5].

As regards the time and message complexities of phase I result-
ing from LENGTH and ACK messages, the results of Theorem 2
still hold because the source can detect termination of phase I be-
fore it executes no more than 2n pulses. Since at every other node
the activity with go messages stops only after the first TERMI-
NATE message arrives at that node, it could simulate by that time
as many as 3n clock pulses. Since the simulation adds O (m) mes-
sage and O(1) time overheads per pulse, the additional costs in
message and time complexities are O (mn) and O(n), respectively.
Thus, the overall complexity of the asynchronous algorithm re-
sulting from LENGTH, ACK, WAKEUP, GO, and TERMINATE
messages is only O(mn) in messages and O(n) in time. Clearly,
the algorithm is time-optimal asymptotically.

V. CONCLUDING REMARKS

In this paper we have considered the single-source shortest-path
problem in an asynchronous network with negative cycles and
modified the existing asynchronous Chandy-Misra algorithm so that
the worst case message and time complexities are O(mn) and
O(n), respectively. The algorithm is time-optimal asymptotically.
In contrast, the original algorithm, the only one available so far in
the literature for this problem, requires an unbounded number of
messages in the worst case. The approach we have taken is to ob-
tain a synchronous version of the Chandy-Misra algorithm and use
a synchronizer to simulate the actions of the synchronous protocol
on an asynchronous network. For this purpose, we have designed
a simple and time-efficient synchronizer whose message and time
complexity overheads are O(m) and O(1), respectively, per pulse
of the synchronous algorithm. This form of synchronizer is not
guaranteed to work correctly in combination with any arbitrary
synchronous protocol [15]. However, we showed that the level of
synchronization provided by this synchronizer is sufficient for the
problem at hand. The synchronous protocol given in [13] for find-
ing centers and medians in a network is another one that can take
advantage of this form of synchronizer. Also, observe that for any
graph problem on a network, it is always possible to construct an
algorithm which routes all topological information to a single site
and then uses sequential techniques for solving the problem. Such
a ‘“‘degenerate’’ algorithm will also have a worst case message
complexity of O(mn), but will not be considered *‘truly’’ distrib-
uted [2].

APPENDIX
FORMAL PRESENTATION OF THE ALGORITHM

Messages of the Algorithm

LENGTH (¢) Sent to inform a successor node of a path of total
weight 1.

ACK Sent to inform a predecessor that the LENGTH mes-
sage sent by that node has been processed.

WAKEUP Sent to all neighbors at the beginning of the com-
putation.

GO Sent to all neighbors, permitting them to execute the

actions corresponding to the next pulse.

TERMINATE(b) Sent to successor nodes to terminate distance updat-
ing activity. The Boolean variable b is true if the
sender node is reachable from a negative cycle; it
is false otherwise.

Variables Kept at Node i

d(i) Current estimate of the distance, i.e., weight of the
shortest path from the source node. Initially, d (i)
is set to oo for all nodes.

pred(i) Predecessor node in the current shortest path. Ini-
tially, pred (i) = i for all nodes. Finally, pred (i)
= i only for the source node s.

num (i) Number of unacknowledged messages at node i. Ini-
tially, num (i) = O for all nodes.

change (i) A Boolean variable set to true if d(i) changed since

the last sending of LENGTH messages; it is false
otherwise. Initially, change(i) = false for all
nodes.

A Boolean variable set to true if node i is reachable
from a negative cycle; it is false otherwise. Ini-
tially, negcycle (i) = false for all nodes.

negeycle (i)

awake (1) A Boolean variable set to true if a WAKEUP mes-
sage has been received and a TERMINATE mes-
sage has not been sent or received; it is false oth-
erwise. Initially, awake (i) = false for all nodes.
visited (i) A Boolean variable set to true if a TERMINATE

message has been received; it is false otherwise.
Initially, visited (i) = false for all nodes.

Set of neighbors of node i (input).

Set of successors of node i (input).

Number of successors of node i (input).

Subset of predecessor nodes to whom ACK messages
have to be sent. Initially, ackset (i) is set to empty
for all nodes. It should be implemented as a mul-
tiset.

Subset of neighbors from whom GO messages have
been received. Initially, goreceived (i) is set to
empty for all nodes. It should be implemented as
a multiset.

neighbors (i)
successors (i)
s(i)

ackset (i)

goreceived (i)

To trigger the algorithm, the source node delivers a WAKEUP
message, followed by a LENGTH (0) message to itself.

Algorithms at Node i

for LENGTH(f) message from j do
begin
ift < d@)
then {if it is source node, detect negative cycle}
if pred(/) = iand d(i) = 0
then begin negcycle(i) : = true;
execute procedure phase2
end
else begin {generate ACK for current predeces-
sor, if not done so already}
if num(i) > O or change(i)=true
then include pred(i) in ackset(i);
{update shortest path}
d(i):=t; pred(i): =j;
{if there are successors, changed
distance should be propagated}
ifs@i)=0
then include pred(i) in ackset(i)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 5. MAY 1989 643

else change(i): = true
end
else {new length does not denote a shorter path}
include j in ackset(i)
end
for ACK message from j do
begin

{decrement the count of unacknowledged LENGTH mes-

sages}

num{i):=num({i) — 1;

{if all LENGTH messages sent have been acknowledged and
no new distance update took place, generate ACK to pred-
ecessor, provided one exists}

if num(i) =0 and change(i)=false

then {if it is source node, start the second phase}
if pred(i)=i and d(i)=0
then begin negcycle(i): =false;
execute procedure phase2
end
else include pred(i) in ackset(i)
end C
procedure newpulse;
begin

{send ACK messages}

for all k € ackset(i) do
send ACK to k;

ackset(i): =¢;

{send LENGTH messages to all successors, if necessary}

if change(i) =true
then begin for all & € successors(i) do

send LENGTH(d (i) + w(i,k)) to k;
num(i):=num(i) + s();
change(i): =false

end
end
for WAKEUP message from j do
begin

if awake(i) = true
then ignore the message
else begin awake(i): =true;
{propagate WAKEUP}
for all k € neighbors(i) do
send WAKEUP to k;
{propagate GO to start first pulse}
for all k € neighbors(i) do
send GO to k

end
end

for GO message from j do
begin
include j in goreceived(i);
if goreceived(i) 2 neighbors(i) and awake(i)=true
then begin goreceived(i): =goreceived(i) — neighbors(i);

‘execute procedure newpulse;
{propagate GO to start next pulse}
for all k € neighbors(i) do

send GO to k
end
end
procedure phsae2;
begin

awake(i): =false;
if negcycle(i) =true
then for all k € successors(i) do
send TERMINATE(true) to k&
else for all k € successors(i) do
send TERMINATE(false) to &
end

for TERMINATE(b) message from j do
begin :
awake(i): =false;
if b=true
then {reachable from a negative cycle}
if negeycle(i) =true
then ignore the message
else begin negcycle(i): =true;

for all k& € successors(i) do

send TERMINATE(true) to k
end)
else {check for negative cycle, if not done so already}
if visited(i) =true
then ignore the message
else begin if num(i) > 0 or change(i) =true

then begin negcycle(i): =true;

for all k € successors(i) do
send TERMINATE(true) to k

end

else for all k € successors(i) do
send TERMINATE(false) to &

end;

’
{record that at least one TERMINATE message has been
processed}
visited(i): =true
end
ACKNOWLEDGMENT

The authors thank the anonymous referees for suggesting several
improvements to the presentation.

REFERENCES

[1] B. Awerbuch, ‘‘Complexity of network synchronization,”” J. ACM,
vol. 32, no. 4, pp. 804-823, Oct. 1985.

[2] —, “*Reducing complexities in the distributed max-flow and breadth-
first-search algorithms by means of network synchronization,’” Ner-
works, vol. 15, pp. 425-437, 1985.

[3] D. Bertsekas and R. G. Gallagher, Data Networks. Englewood
Cliffs, NJ: Prentice-Hall, 1987.

[4] D. Bertsekas and J. Eckstein, ‘‘Distributed asynchronous relaxation
methods for linear network flow problems,”” in Proc. IFAC '87. Ox-
ford, UK: Pergamon, 1987.

[5] K. M. Chandy and J. Misra, ‘‘Distributed computation on graphs:
Shortest path algorithms,”” Commun. ACM, vol. 25, no. 11, pp. 833-
837, Nov. 1982.

[6] E. J. H. Chang, ‘‘Decentralized algorithms in distributed systems,”
Ph.D. dissertation, Univ. Toronto, Toronto, Ont., Canada, 1979:
also, Tech. Rep. CSRG-103.

(7] M. A. Comeau, K. Thulasiraman, and K. B. Lakshmanan, **An ef-
ficient asynchronous distributed protocol to test feasibility of the dual
transshipment problem,’” in Proc. 25th Annu. Allerton Conf. Com-
mun., Contr., Comput., Urbana, IL, Sept. 30-Oct. 2, 1987.

[8] N. Deo and C. Y. Pang, ‘‘Shortest path algorithms: Taxonomy and

- annotation,” Networks, vol. 14, no. 2, pp. 275-323, 1984.

[9] E. W. Dijkstra and C. S. Scholten, ‘*Termination detection for dif-
fusing computations,”” Inform. Processing Lett., vol. 11, no. 1, pp.
1-4, Aug. 1980.

[10] S. Even, Graph Algorithms. Potomac, MD: Computer Science
Press, 1979.

[11] G. N. Frederickson, ‘‘A single-source shortest path algorithm for
planar distributed network,”” in Proc. STACS 85 (Lecture Notes Com-
put. Sci., Vol. 182). Berlin: Springer-Verlag, 1985, pp. 143-150.

[12] A. V. Goldberg and R. E. Tarjan, *‘Solving minimum-cost flow prob-
lems by successive approximations,”” in Proc. 19th ACM Symp. The-
ory of Comput., New York, May 25-27, 1987, pp. 7-18.

[13] E. Korach, D. Rotem, and N. Santoro, ‘‘Distributed algorithms for
finding centers and medians in networks,”” ACM Trans. Programming
Lang. Syst., vol. 6, no. 3, pp. 380-401, July 1984.

[14} K. B. Lakshmanan, N. Meenakshi, and K. Thulasiraman, ‘*A time-
optimal, message-efficient distributed algorithm for depth-first-
search,’” Inform. Processing Lett., vol. 25, no. 2, pp. 103-109, May
1987.

[15] K. B. Lakshmanan and K. Thulasiraman, ‘‘On the use of synchroniz-

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL

ers for asynchronous communication networks,” in Proc. 2nd Int.
Workshop Distrib. Algorithms, Amsterdam, The Netherlands, July 8-
10, 1987.

[16] A. Segall, “‘Distributed network protocols,”” IEEE Trans. Inform.
Theory, vol. 1T-29, pp. 23-25, Jan. 1983.

[17] P. Spirakis and A. Tsakalidis, ‘‘A very fast, practical algorithm for
finding a negative cycle in a digraph,’” in Proc. ICALP 86 (Lecture
Notes Comput. Sci., Vol. 226). Berlin, West Germany: Springer-
Verlag, 1986, pp. 397-406.

An Efficient Distributed Knot Detection Algorithm

ISRAEL CIDON

Abstract—A distributed knot detection algorithm for general graphs
is presented. The knot detection algorithm uses at most O(n log n +
m) messages and O(m + n log n) bits of memory to detect all knots’
nodes in the network (where n is the number of nodes and m is the
number of links). This is compared to O(n’) messages needed in the
previous published best algorithm. The knot detection algorithm makes
use of efficient cycle detection and clustering techniques.

Various applications for the knot detection algorithms are pre-
sented. In particular, we demonstrate its importance to deadlock de-
tection in store and forward communication networks and in transac-
tion systems.

Index Terms—Clustering, cycle detection, deadlock detection, dis-
tributed algorithms, knot detection.

I. INTRODUCTION

A knot in a directed graph is a strongly connected subgraph with
no edge directed away from the subgraph. A knot is a useful con-
cept for describing deadlocks in computer systems. In [1], [2],
deadlocks in store and forward networks are described as knots in
the buffer graph of the network. The concept of a knot in the buffer
graph is also used for deadlock resolution techniques when the
deadlock is resolved by discarding packets at nodes. The minimum
number of packets that should be discarded in order to resolve the
deadlock is exactly one packet in each knot [3], [4]. Knots were
also found to be useful for representing deadlocks in transaction
systems [5], [6].

A distributed knot detection algorithm is the basis for developing
a distributed deadlock detection algorithm. In [3], a deadlock de-
tection algorithm for buffer deadlock in store and forward networks
is described which is based on a knot detection for a general graph.
The algorithm developed here can replace the knot detection of [3],
resulting in a more efficient deadlock detection algorithm.

Various distributed knot detection algorithms have been sug-
gested in the literature. Some of them are imbedded in more gen-
eral deadlock detection algorithms. Three basic classes of algo-
rithms have been suggested.

1) Collecting the complete graph topology at each node and de-
tecting the knot by each individual node [2].

2) Testing individually at each node whether it is a member of
a knot using a search algorithm. A distinct search is used for each
node [4]-[6].

3) Using cycle detection and clustering technique in which
cycles of clusters are detected and merged into bigger clusters [3].

Manuscript received May 27, 1987; revised May 17, 1988.

The author is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598.

IEEE Log Number 8926734,

15. NO. 5. MAY 1989

Class 1) is the most inefficient in terms of 1o1al number of mes-
sages and bits sent and the amount of memory needed to support
its operation. Here. the graph topology is collected at each node
by means of flooding. resulting in communication cost of O(nm)
messages and a total of O(m”) bits (where n is the number of nodes
and m the number of edges). The memory required at each node is
O(m) bits. resulting in a total of O(nm) bits. However. this al-
gorithm is very simple and very fast.

A more efficient algorithm can be developed using 2). Here.
since for each node a complete search in the graph is performed.
O(m) messages are needed to test if a single node belongs to a
knot. For detecting all nodes, O (fiim) messages are needed. How-
ever, comparing to 1), each message is only O(log n) bits long
(stamped with the origin node identity) and the total memory needed
in the network for this algorithm is O (n’ log n) bits. This tech-
nique is considerably more complex than that of 1).

Using the third technique, in [3], the total number of messages
is reduced to O (n?) in the worst case, each of O(log n) bits and a
total of O(m + n log n) bits of memory are needed. This improve-
ment in the communication and the memory costs is accomplished
by considerably increasing the complexity of the algorithm and re-
ducing its speed. In [4], it is explained why a low communication
cost and especially a low memory cost deadlock detection algo-
rithm are invaluable in the environment of buffers deadlock in store
and forward networks. In such a network, a deadlock situation oc-
curs when too many packets are waiting to be served by the net-
work while there is not enough memory to accomplish this service.
Deadlocks occur under heavy load of traffic and shortage of mem-
ory. This is the main motivation for developing protocols which
use fewer messages and less and memory at the expense of com-
plexity and speed.

The algorithm of this paper belongs to the third class. We suc-
ceed in further improving the efficiency of the knot detection by
employing phase numbers in the spirit of [7]. The total number of
messages needed is reduced to O(m + n log n), each of O(log n)
bits and the total number of memory bits is O(m + n log n).

In Section II, we give the model of the system and the definition
of a knot. In Section III, we describe the outline of the new knot
detection algorithm. In Section IV, a detailed description of the
algorithm is given. In Section V, the communication and the mem-
ory costs are evaluated.

II. THE MobEL

A network consists of a set of communication nodes N and a set
of bidirectional communication links L that interconnect the nodes
of N.

Regarding links, the following properties are assumed. They are
FIFO (do not lose, reorder, or duplicate messages); there is no
bound on the amount of time that it takes a message to traverse a
link; any message placed on the link arrives at the other side of the
link in finite time; links never fail.

We assume that at each node i, each attached link / may be des-
ignated as an outgoing link. (In deadlock detection, this implies
that there is a request pending for this specific link.)

Let (V, E) be a directed graph where V = N is the set of vertices
in the graph and E a set of directed edges where a directed edge (i,
J) indicates that in node i the link (i, j) is designated as an out-
going link. A rie Tin (V, E) is a set of nodes with no links directed
fromTtoN — T.

A knot K is a tie of which any subset is not a tie. This implies
that K is a set of strongly connected nodes. Alternatively, node i
is a member of a knot if i is reachable from all nodes which are
reachable from /. In that case, the knot is the set of nodes which
are reachable from i (including i itself). Obviously, any tie con-
tains at least one knot. In Fig. 1, an example for a knot and ties is
depicted.

0098-5589/89/0500-0644801.00 © 1989 IEEE

