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Structure of the Submarking-Reachability
Problem and Network Programming

M. A. COMEAU, MEMBER, IEEE, AND K. THULASIRAMAN, SENIOR MEMBER, IEEE

Abstract —Using a linear programming formulation, a unified treatment
of the submarking-reachability problem for both capacitated and uncapaci-
tated marked graphs is presented. In both cases the problem reduces to
that of testing feasibility of the dual transshipment problem of operations
research. An algorithm called REACH is presented for the feasibility
testing problem and its worst-case time complexity is O(mn), where m
and n are, respectively, the number of edges and the number of nodes in
the marked graph. The place of this work in the context of general network
programming problems is highlighted.

1. INTRODUCTION

PETRI NET is a general abstract algebraic structure
originally developed by Carl Adam Petri as a model
for information flow in systems exhibiting asynchronism
and parallelism [1]. Petri net modeling has applications in
computer communication, operating systems, operations
research, artificial intelligence as well as physiological
models of the brain. The generality of the Petri net makes
modeling of complex systems possible. However, the feasi-
bility of analysis becomes questionable and in many cases
the problems are NP-complete, with solutions sometimes
undecidable. As a result, several restricted classes of the
Petri net have been introduced and studied. These include
the computation graph [2], the marked graph [3], [4], and
the state graph.
Our study in this paper is concerned with marked graphs.
A number of papers have appeared in the literature explor-
ing several problems related to marked graphs [3]-[10}. In
[3], Commoner et al. have presented, among other things,
an algorithmic approach to the reachability problem and
have also studied the maximum-marking problem. In [4],
‘Murata has presented a circuit-theoretic approach for the
study of the reachability problem. Recently, Kumagai,
Kodama, and Kitagawa [5], [6] have introduced and studied
the submarking-reachability problem. Related to the prob-
lem of reachability is that of controllability which has been
considered in [7] and [8]). The maximum-weight marking
problem is discussed in [9]. Certain structural properties of
Petri nets are presented in [10].
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In this paper we study the structure of the submarking-
reachability problem and its relationship to a problem in
operations research. Whereas, in the reachability problem,
a final marking is specified on each edge of the given
marked graph G, in the submarking-reachability problem,
a final marking is specified only on a subset of the edges of
G and no marking is specified for the remaining edges.
The submarking-reachability problem concerns determin-
ing whether or not there exists a marking with the speci-
fied final token distribution in the reachable space of a
given initial marking of G. In their pioneering work,
Kumagai, Kodama, and Kitagawa [5] have provided an
approach for the study of the submarking-reachability
problem and have described an approach for constructing
a marking with the specified final submarking that is
reachable from an initial marking, whenever it exists.
However, their study does not fully expose the structure of
the problem. As a result, extension of their approach to the
study of the submarking-reachability problem for the
capacitated case has not been easy [6].

Our paper is organized as follows. First, we formulate
the submarking-reachability problem as a linear program
and demonstrate how to solve this problem after reducing
it to an equivalent smaller problem by relaxing the feasibil-
ity constraints and by introducing an intermediate state
(Sections III-VI). We then define (Section VII) the sub-
marking-reachability problem for the capacitated case and
show that a similar reduction and solution technique ap-
plies to this case too, thereby unifying the study of the
capacitated and uncapacitated cases. In Section VIII, we
point out the link between the submarking-reachability
problem and the problem of testing feasibility of the dual
transshipment problem and present an algorithmic solu-
tion (algorithm REACH) to the problem. The place of
algorithm REACH in the general context of combinatorial
optimization problems is highlighted.

In the following section we summarize the main defini-
tions and results relating to marked graphs.

II. PRELIMINARIES

A marked graph is a directed graph G = (V, E) with
vertex set V, edge set E, a nonnegative integer column
vector M associated with E, called a marking, state or
token distribution of G, and a state-transition function
8,(M) mapping M into a new marking M’ resulting from
firing vertex i € V. The transition function subtracts one
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token from M on each edge incident into i and adds one
token to M on each edge incident out of /, to obtain M’.
Since M’ must be nonnegative, §,(M ) can be applied only
if M has a positive token count on each edge incident into
vertex i. In other words, to be legally fired, a vertex must
have at least one token on each of its input edges. A vertex
is said to be enabled under a marking M if it is legally
firable under M. The enabling number of vertex i is the
minimum of the token counts on the edges incident into i.

A marking M’ is reachable from a marking M if some
sequence of legal firings will transform M into M’. The
reachability set R(M) of a marking M is defined as the set
of all markings reachable from M. Since the null sequence
is trivially legal, M € R(M).

A marked graph G is live under a marking M if each
vertex i €G can be enabled through some legal firing
sequence starting from M. The marking M is then called a
live marking. Liveness is characterized in the following
theorem [3] where the term dead subgraph refers to a
token-free directed circuit.

Theorem 1: A marked graph G is live under a marking
M if and only if G contains no dead subgraphs under
M. [ |

Let G be a marked graph with an initial marking M,
and let M € R(M,). Then, the differential marking A ,, 2
M — M, satisfies Kirchhoff’s voltage law in G [4]. Thus if
B, is a fundamental-circuit matrix of G, then

BrA,=0. (1)

In view of (1), we can consider the elements of A,, as
voltages of the corresponding edges of G. Using well-known
network-theoretic results, we can determine a set of node
voltages {0y,0;,---,0,} of G such that o,—0,=4,/(e)
where e = (i, j) € E is the edge directed from vertex i to
vertex j and A, (e) is the component of A,, correspond-
ing to edge e. Let ££[0),0,, - -,0,]’ denote the column
vector of o;’s. Note that

A'Z=4, (2)
where A is the incidence matrix of G. If the smallest entry
in 2 is not a zero, then we can obtain such a vector =, by
adding or subtracting an appropriate number to all entries
in =. It is easy to show that 2, also satisfies (2) and it is
unique for a given value of A,,. The vector 2 is called the
minimum nonnegative firing-count vector and the ¢,’s are
called firing numbers or firing counts. The ith element of
2, indicates the minimum number of times vertex i would
fire in a firing sequence leading from M, to M. The vertex
with zero firing count will be referred to as a datum.

A nonnegative firing-count vector = is said to be execut-
able from M, if a legal firing sequence exists starting from
M, and its firing-count vector is . Note that for any A,,
satisfying (1), existence of = satisfying (2) is guaranteed.
However, this alone does not guarantee executability of =.
Executability of X, or, equivalently, reachability of M
from M,, is characterized in the following theorem [4].
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Theorem 2 (Reachability Theorem): Let M, and M, be
two markings of a marked graph G. Let A, =M, — M,,.
M, is reachable from M, if and only if

1) B/AM =0, and

ii) o, is zero for each vertex belonging to a dead sub-

graph of G, where

t
2y=[01,05,:+,0,]'20
is the minimum nonnegative solution of

A=A, ]

A capacitated marked graph is a marked graph G =
(V, E) in which a lowerbound L(e) and an upperbound
U(e) are specified on the token count M(e) of each edge
e € E, for all markings of G. A marking M of G is called
feasible if and only if L(e) < M(e)<U(e), Ve€ E. We
state this feasibility in vector notation as L < M < U. This
definition reduces to the original definition when L(e) =0
and U(e) =00, Ve € E.

The enabling number of a vertex v € V under a marking
M of a capacitated marked graph G is defined as

po=min{ min {M(e)=L(e))}, min (U(e)~M(e)}]

()

where E and E; are the input and output edge sets of
vertex v, respectively. This reduces to the usual definition
for uncapacitated graphs when L(e)=0 and U(e) = oo,
Ve E. A vertex v is enabled or legally firable under a
marking M is its enabling number under M is greater than
Zero.

Let CC E be a circuit of G and define an arbitrary
orientation for C. Let C, and C_ denote the subsets of C
consisting of all edges following and opposing the orienta-
tion, respectively. A dead subgraph of a capacitated marked
graph G under a marking M is either

i) an edge e € E with L(e) = M(e) =U(e), or

ii) a circuit C=C_UC_C E such that either

M(e)=L(e),YecC, and M(e)=U(e),
VeeC_.

M(e)=U(e),VeeC, and M(e)=L(e),
VeeC._.

A capacitated marked graph is /ive under a marking M
if each vertex i €G can be enabled through some legal
firing sequence starting at M. Liveness of a capacitated
marked graph is characterized in the following theorem.

Theorem 3: A capacitated marked graph G is live under
a marking M if and only if G has no dead subgraphs
under M. a

Necessary and sufficient conditions for reachability of
capacitated marked graphs are given in the following theo-
rem.

Theorem 4 (Capacitated-Reachability Theorem): Let M,
and M, be two feasible markings of a marked graph G. Let
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A, =M, — M, M, is reachable from M, if and only if
1) B/A, =0, and
i) o, 1s zero for each vertex belonging to a dead sub-
graph of G, where

t
2= [01,0,,-- ,0,]'>0
is the minimum nonnegative solution of
S
AZT=A,,. ]

Finally, the concept of enabling of a node can be
extended to that of a subgraph. This leads to the notion of
a diakoptic transition in a marked graph G =(V, E) as
explained below.

Let S and §=V —S be a partition of ¥ and let (S, S
denote the cut (S,S )+ U<S, S)_ consisting of the for-
ward cut edges (S,S), directed from S to S and the
backward cut edges (S, S)_ directed from S toS. Let
G(S) be the subgraph induced on S by removing (S, S)
from G. Similarly, let G(S ) be the subgraph induced on S
by removing (S, S) from G. If G(S) and G(8) are both
connected, then (S,S) is called a cutser of G. Let us
assume (S, S) is an arbitrary cut of G.

The enabling number of G(S) is defined as

#(G(s) 2min{ min  (M(e)=L(e)),
ee(S,5)_
Lmin (U()=M()}] (@)
If the graph G is uncapacitated then p(G(S)) reduces to
G() % min  {M(e)}. ()

An elementary diakoptic firing of a vertex-induced sub-
graph G(-) of a marked graph G is any legal firing
sequence confined to vertices in G(-) which fires each
vertex in G(-) exactly once. Note that this definition
includes subgraphs G(-) consisting of disjoint components.

Theorem 5 (Diakoptic-Transition Theorem): An elemen-
tary diakoptic firing of a vertex-induced subgraph G(S) of
a marked graph G is legal under a live marking M if and
only if p(G(S)) > 0. |

Proof of the above theorem may be found in [9].

III. FORMULATION OF THE SUBMARKING-

REACHABILITY PROBLEM

We are given a marked graph G = (V, E) with an initial
marking, M,. The edge set is partitioned into the con-
trolled set E for which a final marking M,(E.) is speci-
fied and the free set E for which a final marking M,(E)
is not specified. The partitioning of E into E. and Eg
partitions V into V. and Vg, where V. is the set of all
vertices of G incident to an edge of E. and Vy=V—V,.
The vertices in V. are called the controlled vertices and
those in V. are called the free vertices. The incidence
matrix A of G partitions as follows:

E. Ep
A= [ACC ACF] VC B
0 Apr Ve
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Fig. 1. a) A marked graph with initial marking M. b) The final sub-

marking.

As an example, Fig. 1(a) illustrates a marked graph G
with an initial marking M,. Here, edges are numbered
1,2,3, - -,44. The final submarking is shown in Fig. 1(b).
The controlled edges are drawn as heavy lines to dis-
tinguish them from the remaining free edges. The con-
trolled vertex set V.= {a,b,---,s} and the free vertex set

= (1).

Let 2=[2L,2%)" be a firing-count vector associated
with ¥V, partitioned according to ¥, and Vj, respectively.
Every executable = on G from the initial marking M,
results in a marking M given by the state equation M =
M, + A'Z. Partitioning the state equation accordingly gives

M(Ec) = MO(EC)+AICC2C (6)
M(Ep) =My(Ep)+ AcpZc+ Ape2y. (7

The submarking-reachability problem is to decide
whether or not M,(E_) is reachable from M, and if so,
determine the minimum firing-count vector £ leading from
M, to some marking M for which M(E.)= M,(E.) and
M(E[) is feasible; i.e., M(Eg) > 0. Clearly, the minimum
firing-count vector realizing such an M from M, must
satisfy the dead-subgraph condition of the reachability
theorem (Theorem 2).

Since the dead-subgraph condition must be satisfied and
can be checked easily after M is known, then we may
simply neglect this restriction for now by considering live
problems only. At first, this seems as if it could be compu-
tationally difficult if there exist multiple markings M
satisfying (6) and (7). However, by further specifying that
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M should be the nearest such marking to M, in the sense
that the minimum firing-count vector realizing M from
M, is minimum among all minimum firing-count vectors
realizing such a marking from M, we render the solution
to the submarking-reachability problem unique. If the
minimum firing-count vector realizing the nearest M,
whenever it exists, does not satisfy the dead-subgraph
condition of the reachability theorem, then, nor will any
other. Thus we may state the submarking-reachability
problem for live marked graphs as the linear program
minimize 3
subject to
AccZe=M(Ec)— My(Ec)
AepSc+ App2p> — My(Ep)
2=>0
in which the notation “minimize =” means ‘“minimize
¥r_,0,”, henceforth.

®)

IV. STRUCTURE OF THE PROBLEM

Let us investigate the structure of (8). The edge induced
subgraph G- = G(E.) = (V, E-) may consist of a number
of maximally connected subgraphs or components and
consequently, the equality constraints in (8) decompose
into disjoint subsystems—one for each component of G.
Let G. consist of r components Gt=(V}, EY), GZ=
(V2 E2), -+, G- = (V{, EL). Then, the incidence matrix of
G has the following structure:

[ Elé E¢ E¢ E.  Ep X
AC C VC
Alc 0 vé
Acr
A= 0 Ak 23
Az v
| 0 A | Ve

(©)

and hence, the equality constraints in (8) decompose to
(A’(‘:C)IE(‘}=M,(E§)—MO(E§), k=1,2,---,r (10)

where A% is the incidence matrix of G&= (V¥ EE) and
=% is the firing-count vector associated with VX,

To illustrate this structure, Fig. 2 shows the controlled
subgraph G, = (V, E) of the graph G = (V, E) shown in
Fig. 1, obtained by simply removing the free edges and the
free vertices from G. Each of the isolated portions of G, is
a maximally connected subgraph or component of G.

The solution to each subsystem in (10) is unique to
within an additive constant, if it exists. Each one of these
subsystems corresponds to an independent reachability
problem on the corresponding controlled component.
Clearly, if M,(Ek) is not independently reachable from
My(EE) on any component G&= (VX EE) of G.=
(Ve, Ec), then M (E.) is not reachable from M, on G.
Thus in order to solve the submarking-reachability prob-
lem, we must first solve a number of reachability subprob-
lems.
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=P
G

Fig. 2. The controlled subgraph.

Assuming that (10) has a solution, let 2’5 denote the
minimum_nonnegative solution for the kth subsystem.
Clearly, 2% leads from My(EX) to M,(EX). Each 3k
contains at least one zero entry and every solution to the
kth subsystem in (10) can be expressed as

SE=SE+ [V Yo Vedaxwa (1)

for some scalar constant y,. As an example, we have given
in Fig. 2 (the controlled subgraph) the components of 3
within the corresponding vertices. In order to obtain a
uniform notation, let w = |Vz| and consider each free vertex
i€V as a trivial controlled component of G with no
controlled edges. Thus the minimum firing-count of vertex
i is 2% = 6, = 0 and, obviously, any firing count of vertex i
can be expressed as 3t = 3%+ y,. We now have a v, for
every controlled component of G, including the trivial
components. Let 2. =[(2L),(22),- - -,(21)"]" denote the
vector of the Sk vectors, let £,=[3L,82... S»r=0
and let 2= [AC, A;]’. Then, any solution to (8) can be
expressed as

=%+« (12)
where k is a binary matrix of size (n X (r + w)), whose

(i, j)th entry is 1 if vertex i of G is in component j of G
and O, otherwise. The column vector

F=[71772""77r+wll (13)

has an entry y; for each component J of G. We now
proceed to pose (8) in terms of T, with 2 fixed.

V. REDUCTION OF THE PROBLEM

Having obtained 2, let us take G to the marking M
reachable from M, through a possibly illegal firing se-
quence executing 2. Thus

M=M,+ A'S. (14)
Clearly, M(E.)= M(E). If M(E;)>0, then £ is the
unique solution to (8); otherwise, M is an infeasible state.
Suppose that M is infeasible. Then, our approach is to pull
G out of M and move it to a feasible state M of G through

additional firings or determine that this is not possible.
Assuming such a feasible state M is reachable, then, we
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can write M as
M=M,+ A(2 +«T)
=M + A%T. (15)

Since we require that M(Ec) = M,(E.) it follows that
M(E.) = M(E_). So, we get from (15),
(4&c) Tu=0, (16)

k=1,2,---,r
where

Fk=[yk’7k""’yk]t' (17)

But, (16) is satisfied for any arbitrary value of y,. Thus in
any firing sequence leading from M to the feasible state
M, all the vertices in each component G% will be fired an
equal number of times, namely y, times. So, we may
consider such a firing sequence as a sequence of diakoptic
firings. During this firing process, the markings on the
edges in G£ are not altered and only those on the remain-
ing edges may change. So, we need to focus our attention
on the edges connecting different components including
the trivial components. This suggests that we direct our
attention only to the contracted graph G obtained by
short-circuiting all the vertices within each component and
removing all the edges of E,.

The graph G may have free-edge self-loops. If any of
these self-loops has a negative marking under M then (8) is
infeasible since the state of a self-loop can never change
under a diakoptic firing. This simple observation implies
that we may remove all self-loops from G and proceed
from there, provided all self-loops are feasibly marked
under M. Thus assume G is free of self-loops. Also, G may
contain parallel edges. Let E;; denote the set of all edges
directed from vertex i € G to vertex j € G. For each edge
e € E;;, we have M(e) = M(e)+ ¥; — ;- Thus the feasibil-
ity condition is

‘Yi_.Y_j}_M(e)s

(18)
Clearly, feasibility is satisfied for all e € E;; if and only if

v~ %> max { - M(e)}. (19)

Therefore, for any i and j, i # j, we may remove all the
parallel edges, except the minimally marked one, that is,
the one for which the right-hand side of (19) is obtained.

At this point G has no self-loops nor parallel edges. If G
is disconnected then the problem breaks into smaller sub-
problems. Hence, we assume G is connected. With the
contracted graph established, let us relax the notation to
help simplify our presentation. That is, from this point on,
let A denote the incidence matrix of G and let M and M
mean the same as before, but for edges of G only. Then (8)
reduces to

VeEE,j‘

minimize T
subject to AT > — M,
r'>0.

We wish to emphasize the fact that in the above formu-
lation of the submarking-reachability problem, we do not

(20)
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Fig. 3. a) The graph in state M. b) Graph after contraction. ¢) The
contracted graph G.

distinguish between the firings of the controlled compo-
nents, namely, the G&’s, and the firings of the free vertices.
Also, in any firing sequence leading from M to the feasible
state M, firing a vertex of G corresponds to a diakoptic
firing of the corresponding component in G.

Returning to our example, Fig. 3 illustrates the contrac-
tion of the marked graph. Fig. 3(a) shows the marked
graph of Fig. 1 in state M. The number within each vertex
is the firing count of that vertex in the minimum solution
of (10). Fig. 3(b) shows the graph which results after
short-circuiting the vertices within each component. All
self-loops are feasibly marked and Fig. 3(c) shows the
contracted graph G with the reduced intermediate state M,
obtained by removing all self-loops and all but the mini-
mally marked parallel edges.
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V1. A SOLUTION TO THE
SUBMARKING-REACHABILITY PROBLEM

As stated previously, if M > 0, then the solution to (20)
is T'=0. Thus we are interested in the case where M # 0.
With this in mind, we proceed as follows. Let G = (V, E).
Let p,; denote a directed path leading from vertex i € Vto
vertex j € V. Also, let p,, denote a directed circuit through
vertex i € V. Clearly, if we sum the inequality constraints
in (20) along any directed circuit

Pi= {(i’ul)’(ul’u2)7”"(umi)} Eé
we obtain
Ul 7R P b e e S PR I Rl 7

Y Me)

€eEp;
Thus a necessary condition for the existence of a solu-
tion to (20) is simply

Y M(e)>0,

eeC

V directed circuits C in G. (21)

In other words, for the existence of a solution to (20) it is
necessary that every directed circuit in G has a nonnega-
tive token count.

We now establish a simple lowerbound on the residual
firing count v, of the contracted component G/. If we sum
the constraints in (20) along a directed path p,; &
(G ), iy, 1), (3, ,),(u,, j)} €G leading from
vertex i€V to vertex j€V through the intermediate
vertices {u;, u,,- - -, u,}, then we obtain

Yi—y“1+yl‘1—y“z+ +.Yun—l_Yun+Yun_‘Yj
L M(e)
eEp;;

or simply,

- X M(e)

e€p;

=Y > (22)

and hence, v, >
ity requirement on T, namely Y2
ing.

Lemma 1: v;> max{0,-X.c, M(e)), Vp;, € G.

Using this lower bound on the ‘residual firing numbers,
we establish the solution to (20), whenever it exists, in the
following theorem.

Theorem 6 (Submarking-Reachability Theorem): Let the
token count of every directed circuit in G be nonnegative
under M. If d,; denotes the shortest distance from vertex
ieG to vertex j € G under M(E), then the unique solu-
tion to (20) is given by

yiémax{O, - mjin{dij}>’

2Y,—L.e Iy M(e). Imposing the nonnegativ-
> 0, we obtain the follow-

vieV. (23)
Proof: Let pij denote a shortest-path from vertex i to

vertex j in G, under M(E ), with distance d

Zocp ‘M(e). We must prove feasibility and opumahty of

the solution (23). Note that the assumption that G under
M has no directed circuit of negative token count guaran-
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tees that all the shortest distances exist and they satisfy the
triangle inequality. Thus d,;+d;, > d,, for distinct i, j,
and k.

Feasibility: We prove the feasibility of (23) by showing
that such an assignment, whenever it exists, results in a
feasible final marking of G. We prove this by a series of
contradictions. Assume that the assignments indicated in
(23) do not correspond to a feasible final marking of G.
Then, there exists at least one edge e= (i, j) € E such
that

Y.‘_'Yj<_M(e)- (24)

Now, consider the assignments of y, and v, as in (23).
There are four cases to consider.

Case I: min,{d, k} >0, min,{d;} >

In this case, v,=v,=0. Since d,k >0, Vk eV, it follows
that d;;> 0. However with y,=v,=0, assumption (24)
implies M(e) <0, contradicting that d;; > 0.

Case 2: min,{d;} >0, min,{d,} <0.

In this case, y;=0. Let the minimization in (23) occur
on vertex v € V for the assignment of v,. That is, vertex v
is a closest one to vertex j in G under the intermediate
marking M. By hypothesis, d,, >0, Vk €V and specifi-
cally, d,, > 0. The triangle inequality property of the short-
est distances requires that d,, < M(e)+ d;,. Combining
this with the requirement d;, > 0 implies that M(e)+

>0o0rd;, > — M(e). Now, the assumption (29 estabhshes
the contradiction by requiring that 4, < — M(e).

Case 3: min, {d,;} <0, min,{d;}>0

Proof in this case follows as in Case 2.

Case 4: min, {d; } <0, min,{d;} <0.

Let the minimization in (23) occur on vertex u € V and
vertex v € ¥ for the assignments of ¥; and v;, respectively,
where possibly # =v. Then vertex u is a closest one to
vertex i and vertex v is a closest one to vertex j. Thus
d,, <d,, Vk €V and, specifically, d,, < < d,;,- The triangle
1nequal1ty property requires that d,, < M(e)+ d,. Hencc

< M(e)+ d;,. Finally, assumption (24) 1mphes d;,
M (e)+d,, estabhshmg the contradiction.

Thus we have established the feasibility of the solution
(23) to (20).

Optimality: With the feasibility of (23) established, opti-
mality of (23) follows from Lemma 1. [ ]

The existence conditions follow easily as a corollary of
Theorem 6.

Corollary 6.1: The solution of (20) defined in Theorem
6 exists if and only if ZeecM(e) >0 for all directed
circuits of G.

Proof: The existence of solution (23) is predicated on
the existence of the shortest distances which, in turn, exist
if and only if no negative-length directed circuit is present
in G under M. ]

As in Section II, a vertex of G is called a datum vertex
of G if it need not be fired in reaching the nearest feasible
marking of G, whenever it exists. A datum vertex is
characterized in the following Corollary of Theorem 6.

Corollary 6.2: A vertex i €V is a datum vertex of G if
and only if © M(e) > 0 for all directed paths p, ,; from

EEp
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vertex i in G.
Proof: From Theorem 6, v, =0 if and only if 4;,> 0,

Vj € V which is clearly equivalent to the condition
Yy M(e) >0, vieV.

€€ p;

Vp,€G, u

Finally, we have the following.

Corollary 6.3: If the solution to (20) exists, then G has
at least one datum under M.

Proof: Consider any vertex i. Let u be a vertex closest

to i so that d,,<d,,, for v€V. We claim vertex u is a
datum. If not, then d,; <0 for some j € V. Since d,, < d
we get, using the triangle inequality, d;, <d,;<d;,+4d,;
So, d,; > 0, contradicting the assumption d,;<0. [ ]

We can now construct the solution to the submarking-
reachability problem by combining the component solu-
tions with the solution to the reduced problem. The
minimum firing-count vector realizing the overall solution
is defined as

S=3%+«T (25)

where 2 is the minimum nonnegative solution of (10) and
T is the solution to (20) as given in Theorem 6. The
corresponding final marking of G is simply

M=M,+ A'S. (26)

Returning to our example, we have shown, again, the
contracted graph in Fig. 4. Here the weights on the edges
refer to the token counts. To calculate v,’s, we first obtain
the shortest distances between all pairs of vertices using
Floyd’s Algorithm [11]. These distances are given below in
matrix form.

1 2 3
N
) 2 0 1 -3
3 2 0 0 -3
[dij] -4 5 4 5 0
5 ©© 00 0 00
6 ©© 00 0 00
. ©© 0 o 00
g © 00 o
9 L -2 -3 -3 -6
Using this matrix we get v,’s as follows:
v =12, y,=11, v,=11
Y4=85 75=4a ‘Yﬁ=0
¥=2 %=0, Y=l

In Fig. 4 we have indicated v,’s within the circles repre-
senting the vertices. The marking shown in Fig. 5 is a
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5 6 7 8 9
-8 -12 -5 -11 3|
-7 -11 -4 -10 4
-4 -11 -4 -1 4
-4 -8 -1 -6 8
0 -4 3 4 o
9 0 7 8
2 -2 0 1 o
9 0 7 0 o
-10 -14 -7 -14 0 |

feasible marking of the contracted graph reachable from
the marking shown in Fig. 4, and it is obtained using the
v,’s shown in Fig. 4. Using the marking in Fig. 5, the
specified final marking on the controlled edges, and the
intermediate marking of the free-edge self-loops and com-
puting the final marking on the paralle] edges that were
removed, we obtain the feasible marking in Fig. 6. The
firing numbers realizing this marking are indicated within
circles in this figure.



96

VII. THE CAPACITATED
SUBMARKING-REACHABILITY PROBLEM

Recall that a capacitated marked graph is a marked
graph G = (V, E) with an integer lowerbound L(e) and
an integer upperbound U(e) specified on the token count
M(e) of each edge e € E. A feasible marking M of G is
one satisfying L(e) < M(e)<U(e), Ve€ E or simply,
L < M < U in column-vector format. We assume that L <
U. The capacitated submarking-reachability problem is
defined in a fashion similar to the uncapacitated version.
The graph G is marked with a feasible initial marking M,
and the edge set E is partitioned into controlled edges E
and free edges E, induced by specifying a final feasible
submarking M,(E.) for G. Thus the problem partitions as
described in Section IV.

As before, we will consider live marked graphs first and
note that the arguments expressed in Section III are also
valid in the context of the capacitated submarking-reacha-
bility problem. Using (6) and (7) and the feasibility re-
quirement, the capacitated submarking-reachability prob-
lem is equivalent to the linear program

minimize =
subject to
AecZc=M(Ec)— My(E()
L(Ep)=My(Ep) < AcpZc+ AppZp
<SU(Ep) - My(Er)
Z>0 (27)

where L(Ep) and U(E[) denote the lower and upper
bound vectors associated with M(Ey).

7.1. Structure, Decomposition, and Reduction of the Problem

The topological partitioning of the marked graph is
exactly as described in Section IV. The incidence matrix 4
of G has the form shown in (9). The decomposition into
subproblems is exactly as described in Section IV. In order
to solve the capacitated submarking-reachability problem,
we must first solve a number of capacitated reachability
subproblems.

Once the solution to the capacitated reachability sub-
problems has been obtained, reduction of the capacitated-
submarking-reachability problem follows exactly as de-
scribed in Section V, where we need only clarify how to
handle parallel edges which may form when the controlled
components of G are contracted.

In the notation of Section IV, let 3 denote the minimum
feasible solution, when it exists, to the capacitated reach-
ability subproblems and let M 2 M, + A'S be the corre-
sponding intermediate state. If L <M <U then 3 is the
unique solution to (27). Otherwise, we simply have a state
M reachable from M, which violates the feasibility condi-
tion. Let G = (¥, E) denote the contracted graph which
results after contracting the controlled components of G
and removing the self-loops which form in this contrac-
tion. Note that if any free self-loop is not feasibly marked,
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then (27) is infeasible. Let E,; denote the set of all edges
directed from vertex i € V to vertex Jj € V. The feasibility
condition is

L(e)~M(e) <v,—v,<U(e) - M(e),
which is clearly covered by the single constraint

max {L(e) = M(e)} <v,—v;< min {U(e)~ M(e)}.
(28)

At this point, a significant difference arises between the
capacitated and uncapacitated problems. Although the
constraint (28) reduces to the constraint (19) when L(e) =
0 and U(e) =00, YVe€ E and it is always consistent as
defined, the covering constraint (28) may not be consistent
in general. Specifically, when some edges are finitely up-
perbounded, there is no guarantee that

gg{ud—M@H<gg{Wd—M@H(w)

Ve E,;

since the maximization and the minimization in (27) will,
in general, occur on distinct edges. Clearly, if condition
(29) is not satisfied for any set of parallel edges E,; C E,
then M,(E.) is not reachable from M, on G and hence,
when reducing the capacitated submarking-reachability
problem, we must further test the consistency condition
(29) for all parallel edge sets E;; which form when the
controlled components of G are contracted.

Assuming (29) is satisfied for all parallel edge sets
E, c C E, we must resolve an ambiguity which may arise in
removing parallel edges. Clearly, if both the minimization
and the maximization in (28) occur on the same edge
e € E;; then edge e represents a most constraining edge of
E,; since its associated inequality is equivalent to condition
(28) and thus all edges of E;; but edge e may be removed
from G. The ambiguity anses when the maximization
occurs on, say, edge e; € E,; and the minimization occurs
on some other edge, say, e, € E; ;. Clearly, all edges of E;;
but e, and e, may be removed from G. The problem is
that neither edge e, nor edge ¢, alone suffices to repre-
sent inequality (28). The obvious next step is to replace the
pair of edges {e;, e, } with a single arrificial edge, say, e,
which does represent (28). If M(eL)—M(eU) then we
may simply define L(e,)2 Ley), Ule,)2 U(e,) and
M(eA) M(eL) M(eU) and replace E; with the artifi-
cial edge e,. The apparent difficulty w1th this approach
arises when M(e,) #M(eu), which is the general case.
We simply need an artificial edge e, which will represent
inequality (28) and this can be achieved by defining the
parameters and intermediate state of edge e, as

L(e,)# max {L(e) = M(e)}

Ule,) £ min {U(e) - M(e))

2

M(eA)éO (30)

Clearly, if all edges in E,; are replaced with an _artificial
edge e, whose parameters and state under M are as
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defined in (30), then the inequality associated with edge e,
is exactly the constraint (28). Hence, parallel edges present
no real difficulty in extending our solution to the capaci-
tated problem. The important point is that the existence of
a solution to the capacitated submarking-reachability
problem is also contingent upon the satisfaction of condi-
tion (29), whereas, the corresponding condition is always
satisfied for the uncapacitated submarking-reachability
problem.

Following the notation of Section V, the reduced prob-
lem is then expressed as the linear program

minimize T
subject to L(E)— M(E) T<U(E)- M(E)
r=o (31)
where A4 is the incidence matrix of G = (V, E) which may

contain artificial edges as described above.

7.2. A Solution to the Capacitated
Submarking-Reachability Problem

We now proceed to solve (31) using our solution to (20).
If L(E)< M(E)<U(E), then it is easy to see that the
solution to (31) is simply I" = 0. Therefore, we consider the
case when M(E) is not a feasible marking of G. Again, let
p;; denote a directed path from vertex i€ G to vertex
JE€G and p; denote a directed circuit through vertex
i € G. Summing the inequalities in (31) along a directed
circuit py; = {(, uy), (uy, uy),e (w1, 4,), (u,,0)} in G
through the vertices {7, uy, u,,- -+, u,} gives

Y (L(e)—M(e) Y=Yy + Vo= Yo, F - +7u_,
Y, Y, ~v< L (U(e)- M(e))
or simply,
Y Lie)s ¥ M(e)< ¥ Ule) (32)

€€ p; €€ pii €€ p;

as a necessary condition for the existence of a solution to
(31) and, as expected, a sufficient condition is

Y Lle)< X M(e)< X Ule)
eeC eeC eeC
for every directed circuit C in G.

We establish the solution to (31) by first transforming
this into an equivalent uncapacitated auxiliary problem
and then invoking Theorem 6. The solution follows easily
once (31) is written in the canonical form as

minimize I’
subject to AT » L(E)~ M(E)
- AT > M(E)-U(E)
T=o0. (33)

Now, if A4 is the incidence matrix of a directed graph G,
then — A is the incidence matrix of the graph G’ obtained
by reversing the directions of all edges of G. Hence, — 4
is the incidence matrix of the graph G’ obtained by revers-
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ing the directions of all edges of G. Let E’'2 {(i, j)[ Jsi)
€ E} denote the edge set of the reversed graph G’ 2
(V, E"). Construct the matrix 42 [A4|— A] by horizontally
concatenating_ A and — A. Define a column vector N of
dimension 2|E| as

N(E) 2 M(E)- L(E)

N(E)2U(E)- M(E). (34)
Then, (33) is equivalent to the auxiliary program
minimize T
subject to AT > — N
r=0 (35)

where the matrix A is the incidence matrix of the auxiliary
graph GAGuUG = (V,EUE") obtained by superimpos-
ing G’ on G. For each edge e €G, the marking N(e) is
defined as in (34). Clearly, in structure, (35) is equivalent
to (20). Thus at least from this point on, the capacitated
submarking-reachability problem reduces to an equivalent
uncapacitated problem on a larger graph. So, we state the
solution to (31), assuming it exists, in the following theo-
rem. Proof of correctness follows from that of Theorem 6.
Theorem 7: Let G have no directed circuit of negative
token count under the marking N. If d denotes the
shortest distance from vertex i to vertex j 1n the auxiliary
graph G= (V,EYA(V,EUE ") under N, then the unique
solution to (35) and, hence, (31) is given by
yiémax{O,—min{d:j}}, vieV. m (36)
j
Corollary 7.1: The solution to (31), as given in (36),
exists if and only if ¥,.-N(e)>0 for every directed
circuit C in G. [ ]
As in the uncapacitated case, we can combine the solu-
tions for the controlled components with the solution for
(35) and obtain the firing numbers realizing the specified
final marking from the given initial marking.

VIII. SUBMARKING-REACHABILITY AND

NETWORK PROGRAMMING

The approach we have adopted in the previous sections
has resulted in a unified treatment of the submarking-
reachability problem for both the capacitated and un-
capacitated cases. As we will see soon, this approach also
enables us to see the link between the submarking-reach-
ability problem and the problem of testing feasibility of
the dual transshipment problem.

In this section, we first point out the equivalence be-
tween the submarking-reachability problem and the prob-
lem of testing feasibility of the dual transshipment prob-
lem. We then present in the next section an algorithm for
this problem, prove its correctness and termination
whenever a solution exists and finally, establish its com-
plexity.

Given a graph G = (V, E) on n vertices and m edges, let
A denote the incidence matrix of G. Then, the dual trans-
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shipment problem is as follows [12]:
maximize Q3
subject to A'2 > — M,
2>0 37)

where 2 is a column vector of dimension » and £, called
the weight vector, is a row vector, also of dimension n.
Note that @ and M, are specified.

The above problem can also be formulated as [9]

maximize WM
subject to B.M = Z7

M>0

(38)
where B, is a fundamental-circuit matrix of G, M is a
column vector of dimension m, and W is a row vector of
dimension m. Here, Z7 and W are specified.

First, we note that the constraint part of (37) is exactly
the same as that of the (20). So, if we look upon M, as an
initial marking of G and 2 as a firing-count vector, then
the problem of testing feasibility of (37) is exactly the same
as the problem of determining a set of firing numbers for
the vertices of G which transform M,,, which may be an
infeasible marking, to a feasible marking M. Here, we
consider all the edges of G as free edges.

On the other hand, suppose the dual transshipment
problem appears as in (38). Then, we can identify each
entry of Z7 as a marking on the corresponding chord of
the cospanning tree 7 which defines the fundamental-cir-
cuit matrix B,. Again, testing the feasiability of (38) re-
duces to the problem of determining firing numbers which
transform Zz to a feasible marking M. This follows from
the fact that vertex operations do not change the algebraic
sum of the tokens in any circuit.

The above discussion shows that testing the feasibility of
the dual-transshipment problem is the same as the sub-
marking-reachability problem, where we are required to
take G from an infeasible marking to a feasible one.

IX. ALGORITHM REACH

The equivalence shown in the previous section under-
lines the importance of designing an efficient algorithm to
solve (20). The solution to this problem is given in Theo-
rem 6. All that we need is to design an algorithm to
determine v,’s as given in this theorem. We propose the
following algorithm for this purpose.

Algorithm REACH: Let M be the given initial marking
of the graph G with no negative-length directed circuits
under M.

While there exists an edge e = (i, j) € E with M(e) <0
do Fire vertex i, — M(e) times, updating M.

The rest of this section is concerned with the proof of
correctness and termination of this algorithm and its com-
plexity analysis.

9.1. Proof of Correctness and Termination

In the following, the length /( p,;) of a directed path p,,
in G will refer to the sum of the markings under M of all
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the edges in p,;. v,’s are as defined in Theorem 6. By the
size of p,;, we refer to the number of edges in p,;. Also,
d;; is the length of a shortest path from i to ;.

Theorem 8: If v,> 0, Algorithm REACH fires vertex i
at least vy, times.

Proof: We prove the theorem by showing that if there
exists a directed negative-length path p,;, then Algorithm
REACH fires i at least |/( p,;)| times. Proof is by induction
on the size of p,;.

Clearly, the result is true if the size of p;; is 1. Assume
the result to be true for all negative-length directed paths
of size < k. Consider any negative-length directed path p,;
of size k +1. Let (', j) be the last edge in p,;.

Case 1: Marking M(j’, j) = 0.

In this case, I(p;;) =I(p;;)— M(j’, j)<0.But, p,,isa
path of size k. Hence, by the induction hypothesis, vertex i
will be fired at least

|l(pij’)| > V(Pi,‘)'
times.

Case 2: Marking M(j’, j) <0.

In this case, at some step during the execution of Al-
gorithm REACH, vertex ;' will have been fired at least
|M(j’, j)| times. Let M’ be the marking at that step. Then,
M'(j, j)=0.

Assume that the vertices i and j’ have been fired o, and
o, times in reaching M’ from M. We shall denote the
length of p,; under the marking M’ by I'( p;;). Clearly,
o, > |M(j’, j)|. There is nothing to prove if o, 2 I(p;;)l
So, assume that o; <|/(p;;)|. Then,

P(Pij') =l(pij’)+oi_oj’
Sl(l’i,")"“’i"‘|M(]'/7j)|
=l(p,.j)+oi<0.

So, under the marking M’, the length of p,;. is negative.
But, p, - is of size k. Hence, invoking the induction
hypothesis, we find that vertex i will be fired at least
l{(p;;)|—o; times after M’ has been reached. Thus the
algorithm will fire i at least |/( p;;)| times starting from M.

n

Recall (Corollary 6.2) that a vertex i is called a datum in
G if under the initial marking M there exists no negative-
length directed path originating at i. In other words, v, =0
if 7 is a datum.

Next, we note that, at each step, Algorithm REACH
examines an edge and performs an appropriate vertex
firing operation. So, this algorithm may be considered as
performing a sequence of vertex firing operations. Let M,
denote the marking of G at the end of the ith step or ith
firing operation. Thus Algorithm REACH, starting at M,
takes G through a sequence of markings M,, M,,---,
M,, . In the following, d{ will refer to the length of a
shortest path from i to j in G under M,. Thus

v = max {O, ~ min {d} }>
J

Similarly, /*( p, ) will refer to the length of p,; under M,.
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Consider any vertex i for which y,>0. Then, let /
denote a vertex such that y,=|d,,| As we have seen in
Section VI (see proof of Corollary 6.3), each such i’ is a
datum vertex. Finally, we note that firing a vertex i affects
only the value of v, in the new marking. So, if the vertices
vy,* * *, U, have been fired 6, 0,,- - -, 0, times to take G to
the marking M,, then under M,,

Yi(k) =Y~ 0; (39)

Furthermore, for each i, vertex i’ continues to be a

datum of i under all the markings generated by Algorithm
REACH. Thus if

vieV.

y® >0

then
70 =1dB)]. (40)

If y{¥ =0, then vertex i is a datum under marking M,.
These crucial properties of Algorithm REACH prove the
following.

Theorem 9: Algorithm REACH never fires a datum. &

Theorem 10: If G has no negative-length directed cir-
cuits under marking M, then Algorithm REACH termin-
ates in a finite number of steps after firing every vertex
exactly y, times.

Proof: By Theorem 8, Algorithm REACH fires each
vertex i at least y, times. By Theorem 9, a datum is never
fired in this algorithm. This means that each step results in
reducing the value of exactly one y,. Thus all the y,’s will
eventually be reduced to zero, or equivalently, every vertex
i will be fired exactly a total of y; times in no more than
T*_y, steps. When all the y,’s reduce to zero, then in the
resulting marking there will be no edges with negative
tokens and Algorithm REACH will terminate. [ |

9.2. Complexity Analysis of Algorithm REACH

To bound the number of computational steps required
by Algorithm REACH, we implement the algorithm as
follows.

First, order the edges as e, e,,---,e,, where m is the
number of edges in G. Then, execute the algorithm by first
examining e, then e, and so on, and firing the vertices the
appropriate number of times. After the first such sweep,
perform additional sweeps until an entire sweep results in
no firings.

Theorem 11: Assume that G has no negative-length di-
rected circuits under the initial marking M. Consider any
vertex i for which y; > 0. If the size of the path p;. is k,
then the vertex i will have been fired vy, times at the end of
the kth sweep. (Note: i’ is a datum vertex and |/( p;;))| = v;.)

Proof: Let p,,=1i,iy, 05, ", i,_y,i’. At the beginning
of the first sweep, the marking on the edge (i,_;, i) is
—v,; . Also, i’ is never fired. So, at the end of the first
swee‘kfa,1 vertex i,_, will have been fired y,  times. At the
beginning of the second sweep i,_; is a datum and the
marking on the edge (i;_,,i,_;) will be —v, . So, during
this sweep vertex i,_, will be fired y, _, times. Repeating
these arguments, we can see that at the end of the kth
sweep, vertex i will have been fired v, times. |
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Theorem 12: If G has no negative-length directed cir-
cuits under M, then Algorithm REACH will terminate in
no more than n sweeps, where n is the number of vertices
in G.

Proof: Each directed path p,;. in G is of size <n-—1.
So, by Theorem 11, each vertex i will be fired a total of v,
times in no more than n—1 sweeps and the theorem
follows. [ ]

During each sweep, m edges are examined. Examining
an edge requires computing the value of its current mark-
ing and firing a vertex. These operations take constant
time. Thus each sweep takes O(m) time and, hence, we
have the following theorem.

Theorem 13: The complexity of Algorithm REACH is
O(mn), if G has no negative-length directed circuits under
the initial marking M. n

As an example, it may be verified that Algorithm
REACH when applied to the graph G of Fig. 4 terminates
in the feasible marking shown in Fig. 5. The number of
times each vertex is fired by Algorithm REACH is shown
in Fig. 4.

We now show how to incorporate, in Algorithm
REACH, a mechanism to detect the presence of a nega-
tive-length directed circuit in the graph under a given
initial marking,.

We associate with each vertex i a label denoted by
LABEL(/). To begin with, the label of every vertex is set
equal to zero. Every time an edge (7, j) with a negative
marking is encountered and, as a result, vertex i is fired,
we update LABEL(?) setting it equal to j. If, during the
nth sweep, the label of any vertex, say i, changes, then it
indicates the presence of a negative-length directed circuit.
This directed circuit can be obtained by tracing the label
values starting at i.

X. SUMMARY AND CONCLUSION

Using a linear programming formulation, we have pre-
sented a unified treatment of the submarking-reachability
problem for both capacitated and uncapacitated marked
graphs. In both cases, the problem is shown to reduce to
that of taking a marked graph from an infeasible marking
to a feasible one. This is precisely the same as the problem
of determining feasibility of the dual transshipment prob-
lem which generalizes a wide range of network program-
ming problems. This relationship of the submarking-
reachability problem to network programming has motivated
the need for an algorithmic solution, resulting in the design
of Algorithm REACH presented in Section IX. Algorithm
REACH tests the feasibility of the dual transshipment
problem in O(mn) time. This is in contrast to the complex-
ity O(n®) of the well-known Malhotra, Kumar, and
Maheshwari’s algorithm [13], [14] for the maximum flow
problem which can be used to test the feasibility of the
transshipment problem.

It has been shown in [9] that starting from any feasible
marking a basic marking can be constructed in O(n?)
time. Combining this with the complexity of Algorithm
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REACH, we conclude that a basic feasible solution of the
dual transshipment can be constructed in O(mn) time.

(1
2]

131
(4]

(5]
(61
m
(8]
19
[10]
n1]

12]
[13]

(14]
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