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Synthesislof a class of resistive 3-port networks?}
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Sufficient conditions are obtained for the synthesis of a class of 3-port resistive networks.
The Cclass is characterized by the property that all networks belonging to this class
have a port configuration which is in the form of a sub-graph of a linear tree. Pro-
cedures for the synthesis of such networks are given. A significant feature of these
realization procedures is that for any realization a large number of equivalent
realizations can be obtained. '

1. Introduction

. The problem of synthesis of resistive n-port networks is considered an
outstanding one in network theory (Newcomb 1966). Whereas synthesis
of n-port networks with n+1 nodes is completely known, the problem of
synthesis with more than n + 1 nodes is yet to be solved. Recently an approach
to this problem was presented (Thulasiraman 1967). This approach was
later used to obtain certain sufficient conditions and & procedure for the
synthesis of a class of 3-port resistive networks (Easwaran 1968). In this
paper we explain and illustrate the results obtained by Easwaran (1968).

Some of the theorems and definitions which are used in subsequent dis-
cussions are stated below. Unless otherwise stated the notation used in this
paper is the same as that used by Cederbaum (1965) and Thulasiraman and
Murti.

Definstion 1: Potential factor
The potential factor K; in an n-port network is defined as the potential

of the positive reference terminal of port j with respect to the negative reference
terminal of port ¢ when port ¢ is excited with a source of unit voltage and all

-the other ports short-circuited.

It follows from definition that K, is unity.

Theorem 1

The element c; of the matrix C is equal to the voltage appearing across
the edge corresponding to column j when port 4 is excited with a source of unit
voltage and all the other ports short-circuited.

Theorem 2

If @ be the edge conductance matrix of a given resistive n-port network
and (' its modified cut-set matrix, then (i) CGC,’ =0 and (ii) CGC,’ =Y.
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Theorem 3 :

Let C be the modified cut-set matrix of a given resistive n-port network
N,. If any real diagonal matrix G, satisfies the equation CG,C,’ =0, then
the modified cut-set matrix of an n-port network N, with G, as its edge
conductance matrix and having identical port and edge configuration and
orientation as N is also equal to C.

Theorem 4

A sufficient condition for the proper parallel connection of two resistive
n-port networks is that their modified cut-set matrices be equal when their
corresponding edges and ports are similarly oriented. This condition is also
necessary if positive resistances only are permitted.

Proofs of the above theorems were found by Thulasiraman and Murti.

2. Philosophy of the approach

The procedure to be followed in deriving the sufficient conditions for the
synthesis of 3-port resistive networks having the port structure shown in
fig. 1 is briefly explained in this section.

Let Y be the given third-order real symmetric matrix which has to be
realized as the short-circuit conductance matrix of a network having the port
structure shown in fig. 1:

Fig. 1
1 2 3 ' 4 5
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PORT |——j«— PORT 2 , PORT 3
Yu Y12 Y3 :
Y=y Yoo Y23 | - @)
Y1 Yz Yss

Following Guillemin (1961) the above matrix is aﬁgmented to one of order 4
by inserting a null row and column as shown below :

Yu Y2 0 ¥y

Y. 0
[Y]exp= 021 ygz 0 yga . _ (2)

Ysi Ys2 O Ygs

[Y]exp is then realized as the short-circuit conductance matrix of a 4-port
network N, having the port configuration shown in fig. 2.

2 3 ' 4

1
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PORT |——>te——PORT 2-—#<— PORT 3——»14— PORT 4 ——
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- If g;; refers to the conductance of the edge joining the vertices ¢ and j, then
the column matrix {g,} of the conductances of the edges in N, can be obtained
as follows using the procedure given by Guillemin (1961):

[ Y11~ %12 |

Y12
—Y1s

Y13

Yoo~ Y12 :
= . 3
03} Y13~ Yos (®)

Yoz — Y13
Yos '
—Yes
L Yss

It may be observed that N, considered as a 3-port network having the
port configuration specified in fig. 1 has a short-circuit conductance matrix
equal to ¥ and its modified cut-set matrix does not exist. Also some of the
conductances of N; will be negative. Consider next a 3-port network N,
having the specified port configuration and the zero matrix as its short-circuit
conductance matrix. Let {g,} represent the column matrix of the edge con-
ductances of N,. Then the parallel combination of N, and N,, denoted as
N, will have an edge conductance matrix {g,} {g1}+{gz} and its short-circuit
conductance matrix will be equal to Y. Hence, if a network N, can be found
so that N contains only non-negative conductances, then the synthes1s of
Y will be complete.

We next proceed to explain a method for finding a network whose short-
circuit conductance matrix is the zero matrix. From theorems 2 and 3 any
diagonal matrix @, satisfying the equations:

0ay0y =0, (4)
06,0y =0, (5)

represents the edge conductance matrix of a 3-port network N, having (i)
its modified cut-set matrix equal to ¢ and (11) its short-circuit conductance
matrix equal to zero.

From theorem 1 it is clear that the modified cut-set matrix of any network
can be written in terms of the potential factors. For a 3-port network having
the port configuration shown,in fig. 1, the potential factors K, =1, K, =0
and Kg, =K, Let K3 =P, Ky, =Q and K4, =K,, =R. Itis to be noted that
P, @ and R are greater than zero but less tha,n unity. The modified cut-set
matrix C can then be written as:

12 13 14 15 23 24 25 34 35 45
1 1 P P. 0 P-1 P-1 P-1 P-1 0)
c=i0 1 Q@ @ 1 @ Q@ Q-1 Q-1 of. (8
[0 0 -BR —-R+1 0 —-R -R+1 —-R —-R+1 1
In the above matrix the colum.n headed by ¢ refers to the edge joining vertices
i and j. -
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The fundamental cut-set matrix C, of the 3-port network with respect
to the tree consisting of the edges e,,, €53, €34 and e, can be written as ¢y =[C,/C,].
The sub-matrix C, corresponds to the edges ey, €,; and ¢,5 and the sub-matrix
C, corresponds to the edge ej,.

12 13 14 15 23

1

01 = 0
0
02= [ 0

1
1
0

0

1

1
0
1

C, and C, are obtained as:

24 25 34
1 0 0 0 O
1 1 1 1 O
1 0 0 1 0
1 0 1 1 1

35
0

0
1
1

45
0
01,
1

0]).

)

Denoting the column matrix of edge conductance of network N, as {g,}
and taking into account the symmetry of eqn. (5), eqns. (4) and (5) can be

written as:
0 0 P
0 0 @
(0 0 —-R -
(1 1 P
01 P
0 0 O
01 @
00 0
|0 0 0

0 P-1 P-1 P-1
0 @ Q Q-1
0 —R —-R+1 ~R
0 0 0 0
0 P-1 P-1 0
0 0 P-1 0
1 Q Q 0
0 0 Q 0
0 0 —R+1 0

The solution of the above sets of equations is obtained as:

{9} =

[ —E(1-P)P-@Q)]
R(1—F)
~K(1-P)Q
R(I—R)
E(1-P)
R
E(1-P)
1-R
~KQ(P—-Q)
E1-R)
E(P-Q)
E
KP-Q)
1-R
KQ
R
KQ.
1-R

—-K

P-1 0]
@-1 0] {g;} =0,
—-R+1 0
(8)
0 0
0 0
POI g {g2} =0.
Q-1 0
—R+1 1]
9
(10)
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If it is possible to choose suitable values for P, @, R and K so that a {g,}
leading to a {g5} ={g,}+{gs} containing only non-negative elements can be
obtained, then the synthesis of the given ¥ matrix will be complete.

3. Saufficient conditions and synthesis procedure

Sufficient conditions for the realization of a third-order real symmetric
matrix as the short-circuit conductance matrix of a 3-port network having
the port structure shown in fig. 1 can be derived using the approach described
in the previous section. These sufficient conditions are given below in the
form of theorems.

Theorem 5 o :

A real symmetric third-order matrix ¥ =[y,;] with positive values of ¥y,
Y13> Y3 and (y33—ys3) can be realized as the short-circuit conductance matrix
of a 3-port network having the port structure shown in fig. 1 if the following
conditions are satisfied :

Y11 > Y13+ Y12~ Yoz»
Y33 = Y11,

Y12> Yos-

Theorem 6

A real symmetric third-order matrix Y =[y;] with positive values of y,,
and y,; and with negative value of y,, ean be realized as the short-circuit
conductance matrix of a 3-port network having the port structure shown
in fig. 1 if the following conditions are satisfied :

Y122 [Yasls
Y (Y22 — Y1) — Y10Y 23 = Y19Y13 = YooY1s + Y210 — Y'Y12s

where y! is the smaller of y,, and y,;.

Proofs of the above theorems were found by Easwaran (1968).

It can be observed that a third-order matrix with a sign pattern other
than the two considered above can be changed to one having one of them either
by interchanging the ports or by changing the polarity of some of the ports.
Hence the sufficient conditions given above can be applied to other sign patterns
also after the latter are transformed to any one of the two above-mentioned
sign patterns.

Next we give the steps involved in the realization of a real symmetric third-
order matrix ¥ satisfying the sufficient’conditions mentioned in either of the
above two thoerems.

Case 1: Short-circuit conductance matriz Y with positive values of Y19, Y13, Yo and
(Y13 —Y2s)-

Step 1: Choice of the constant k:
Let % be the higher of the two values:

Y12(Y13— Y2s) and Y3
(Y11~ Y19) Y22~ Y12) + (Y13 — Yea)¥12 Yaa

Choose any positive k satisfying :
b <k <y1s[yss (11)
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Step 2: Calculation of the value of the constant K :

For any value of the constant % chosen in step 1, the constant K is given
by: ‘ :
K =kys5y1/912- (12)

Step 3: Calculation of potential factors:
Choose any value of the potential factor B satisfying the following :

141y <R< kyoo(y11/y1a— 1) — (13— Y23) ) (13)
Vk—yilyn ~— Y11~ kY22 — (Y13~ Y23)

It may be noted that for each value of k in the interval given in step 1, a
large number of values of R in turn can be chosen.
- For a particular choice of R the potential factors @ and P are given by :

Q="2a_R) 9
Y11 )
and
R=1- Yl (15)

Yask

Step 4: Edge conductances {g;}:

Choosing K, P, @ and R as described above {g,} can be calculated using
eqn. (10). From the given matrix Y, {g,} can be obtained, from eqn. (3).
Then the column matrix {g;} of the conductances of the edges in network N,
realizing the matrix Y is given by {g,} ={g,} + {¢.}-

Case 2: Short-circuit conductance matrix with positive values of yy, and y,5 and
negative value of Yyg.

Step 1: Choice of the constant £ :

Let h be the higher of the two values:

[Yast13+ ?/122(y12 —Y13) (Y22 — Y12) and 1.
Y12 (l?/ 23] +¥13)

Choose any positive value k satisfying:

h<k< Y33(Y22— Y12) ) (16)
Yo [gos| + ¥12)

Step 2: Calculation of the value of the constant K :
For any value of k£ chosen in step 1, the constant K is given by:

l?/zal + Y13 |
K =ky, 2220 <= 17
Yiz Yoo~ Y12 " ()

Step 3: Calculation of potential factors:
Choose any value of the potential factor R satisfying the following :

|y2s| + 910 Y22 —Y1o
K Yo
<Rx< - (18)
|923|+?/13+1_1ﬂ_2 Yo~ Y12y Yi2

K K ' Yia K
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The valués of the potential factors P and @ are given by :.
P=R, 1

TN
Q=J12

(19)
|

Step 4: Edge conductances {gz} :

Choosing K, P, @ and R as described above, {g,} can be calculated using
eqn. (10). From the given matrix ¥ and using eqn. (3), {g;} can be obtained.
Then the column matrix {g;} of the conductances of the edges in network N,
realizing the matrix Y is given by {g;} ={g:} +{g2}-

Example ‘
Consider the following matrix Y':
8 —6 3
Y=|—-6 10 -—4
3 —4 20

Changing the polarities of port 2 and interchanging ports 1 and 2leads to:
10 6 41

Y= I 6 8 3

| ¢ 3 20

It may be observed that the matrix Y satisfies the conditions mentioned in
theorem 5.. Hence, realization of ¥ can be accomplished using the procedure
given under case 1, as shown below. '
Step 1: According to eqn. (11) any positive k satisfying 0-428 < k<075 1s
to be chosen. Let k=0-6.
~ Step 2: Using eqn. (12) the constant K is calculated for the above chosen
value of k as 8:0.
Step 3: According to eqn. (13) the value of the potential factor R is to be
chosen such that it satisfies:
' 0-374 < R <0-523.

Let R =0'5. _
The potential factors @ and P are calculated respectively using eqns. (14)
and (15) as @=0-3 and P=0-375. . :
Step 4: The column matrix of the edge conductances of the network
realizing Y is obtained as:
' [ 25 1
0
6
14
1-28
{93} = 2.2
0-2
7-8
1-8
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The network which realizes the given matrix Y is shown in fig. 3. The edge
conductance values in mhos are indicated on the figure.

Fig. 3

14

0.2
22

2-5 1.28 ) 7-8 12
2 3 5
-PORT 2—» PORTI [e—FPORT 3———-——:
+ i

4. Conclusions

Sufficient conditions are developed for the synthesis of a class of 3-port
resistive networks. An important feature of the realization procedure given
in this paper is that for a given matrix satisfying the relevant sufficient conditions
after suitable changes in the signs and positions of rows and columns, a large
number of equivalent networks can be obtained by choosing different values
of E. This has advantages when the conductance values of certain edges are
preassigned. The method can be readily used for the synthesis of 3-port

2-element-kind networks if the residue matrices satisfy the sufficient conditions _

stated.
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