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. ON THE NUMBER OF CONDUCTANCES REQUIRED FOR
| REALIZING Y ‘AND K MATRICES o
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SUMMARY

~Upper bounds are established on the number of conductances required for realizing a real symmetric matrix Y as the
short-circuit conductance matrix of a resistive n-port network containing no negative conductances, and for the
realization of a real matrix K as the potential factor matrix of a similar network without negative conductances. These
results are the consequence of the properties of the modified cut-set matrix of an n-port and a theorem in the theory of
linear programming. .

1. INTRODUCTION

Biorci'” conjectured that, at most n(n +1)/2 conductances are required for realizing a real symmetric
matrix as the short-circuit conductance matrix of a resistive n-port network containing no negative
conductances. Even after several years of research, this conjecture has been neither proved nor disproved.
However, a lower bound is known for the realization of Y matrices when the port configuration of the
required network is specified.? In this paper, we establish upper bounds on the number of conductances
required for realizing Y and K matrices. These results are the consequence of the properties of the modified
cut-set matrix of an n-port and a theorem in the theory of linear programming,.

2. AN UPPER BOUND ON THE NUMBER OF CONDUCTANCES REQUIRED FOR
REALIZING A Y MATRIX

In this Section, we first summarize some results relating to the modified cut-set matrix of a resistive n-port
network? and also state a theorem in the theory of linear programming. These results are then used to
establish an upper bound on the number of conductances required for realizing an (n X n) Y matrix by an
(n -+ p)-node n-port network.

Consider a resistive n-port network N. Let the port configuration T of N be in p connected parts
T, To, . . ., T, Permitting edges with zero conductances, the graph of N can be considered to be complete.
Let Ty be a tree of N'such that T'< T,. The branches of T will be called the port branches, and the remaining
branches of T, will be referred to as the non-port branches. ' _

Let Cy, the fundamental cut-set matrix of N with respect to the tree T, be partitioned as follows:

o[ (1)
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where the rows of C; correspond to the port branches and those of C; correspond to the non-port branches.
The cut-set admittance matrix Y, of N with respect to the tree T, is defined as '

Yo=C,GC,
=-.[_C_1__9_._9_i '-_‘_3'1__53__‘}3_] [XLIJ_Y_HL] @
G, G C‘1!(:2 G C‘z Y21:Y22

where G is the diagonal matrix of edge conductances of N. The short-circuit conductance matrix Y of N is
given by

Y= Yu—leY‘Zzl Y2 3
The modified cut-set matrix® of N is defined as
C=C,— Y12Y;21 G _ “@

The following results have been proved in Reference 4:

Theorem 1

Let C be the modified cut-set matrix of a connected resistive n-port network N having a port
configuration T. Let C, be the fundamental cut-set matrix of N with respect to a tree Ty of which T is a
subgraph. Further let C, and C,, the submatrices of C,, correspond respectively to the port branches and the
non-port branches of To. Let Y be the short-circuit conductance matrix of N with respect to the port
configuration T, ‘

(a) If G* is the diagonal matrix of edge conductances of a connected n -port network N* having the same
portconfiguration as that of N and CG* C}, = 0, then the modified cut-set matrix of N¥ is alsoequalto C.-

(b) Let

CG*C =y
and

CG*C=0
where G* is the diagonal matrix of edge conductances of an n-port network N* having the same port
configuration as that of N. Then the modified cut-set matrix and the short-circuit conductance matrix of N*
are equal to C and Y, respectively.
Theorem 2

Two n-port networks have the same modified cut-set matrix if they have the same K matrix.

Consider next the following set of m simultaneous equations in n variables x;, x5, ..., x,:
AX=b )
where A is an (m X n) real matrix, X is the column vector of the variables X3,X3,...,X%, and b is a column

vector of real elements. o ‘

. Any nonnegative solution of (5) is called a feasible solution. If any (m X m) nonsingular matrix is chosen
from A, and if all the (n — m) columns of this matrix are set equal to zero, the solution to the resulting system

of equations is called a basic solution. If a basic solution is feasible, then it is called a basic feasible solution.

Thus the number of nonzero variables in a basic feasible solution will be less than or equal to m, the number

of equations. The following result is proved in Reference 6. '

Theorem 3
Consider a set of m simultaneous equations in n variables (n=m)

Ax=b

&
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If there exists a feasible solution x=0 to these equations, then there exists a basic feasible solution.
We now prove the following theorem:

Theorem 4

If a matrix Y is realizable as the short-circuit conductance matrix of an (n + p)-node resistive n-port, then
it can be realized by an n-port network containing at most m ={n(n +1)/2+n(p — 1)} conductances.

Proof

Let the matrix Y be the short-circuit conductance matrix of an (n + p)-node n-port network contains m
or less number of conductances, the theorem is proved. Otherwise, we proceed as follows to obtain an
equivalent network containing, at most, 71 conductances.

Let C be the modified cut-set matrix of N;. Let C, and C, be deﬁned as in Theorem 1. Let G, be the
diagonal matrix of edge conductances of N;.

Consider the following sets of equations:

CGG=0 (62)
CGC =Y. (6b)

Note that each one of the matrices C and C, has n rows and the matrix C, has (p — 1) rows. Also the number
of variables in G is equal to [ where I =(n+p)n+p—1)/2.

Hence, equation (6a) represents a set of n(p—1) equations in ! variables. Further, because of the
symmetry of Y, equation (6b) represents a set of n(n +1)/2 equations in / variables. Thus equations (6)
represent a set of m equations in / variables.

The edge-conductance matrix G, of the network N, is a feasible solution of (6). Hence, there exists a
basic feasible solution G. The number of nonzero variables in G, is less than or equal to m. Since, by
Theorem 1(b), G, is the matrix of conductances of an n-port network N, whose short-circuit conductance
matrix is equal to Y, we conclude that, for the given matrix Y, therc exists an (n +p)-node realization
containing, at most, m conductances.

Example 1

The matrix Y given below is the short-circuit conductance matrix of a 3-port network Nj having the port
configuration T shown in Figure 1.
1-00 -0-08 -0-08
Y= [—0-08 2-00 0-08}

-0-08 008 3-00

1 2 3 4 5 6
el
- + - + - +

~-—Port { —— -—Port 2 —— <-—Port 3 —

Figure 1. Port configuration for Example 1

The diagonal matrix G, of edge conductances (all in siemens) of Nj is given by
G,=diag{gi> &3 814 85 816 823 824 8&2s
82 834 835 836 8Bas 8ac 8sel
=diag{0-49 0-06 0-14 0-45 0-05 0-54 1-26 0445
0-05 1-08 070 070 0-30 0:30 2-33}
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The modified cut-set matrix C of N; is obtained as follows:

812 813 8iua 815 816 823 824 825 826 &34 835 836 8as 846 8s6

1 08 08 07 07 -02 —02 -03 -03 0 —01 —-01 —01 —01 0 ,
C={0 -06 04 —-02 -02 —~06 04 —02 —02 1 04 04 —06 —06 0
0 0101 -03 07 01 01 —-03 07 0 —04 06 —04 06 1]

Choosing the edges e,; and e,s as the nonport branches, we obtain the matrices C, and C, as follows:

812 813 814 815 816 823 824 825 826 834 835 836 845 846 &56

1111100000000 0 0]
G=001110111111000]|
000 010001007101 1]

[0 1 1111111000000

C =
looo1 10011011110

A basic feasible solution G, for the set of equations

CGC =Y
and )
CGC,=0

is then obtained using the MPS package available with the IBM 370/155 computer system.
The nonzero entries of G, are as follows: - :

£12=0-64800  £;5=0-32000 g,s=0-42286  g,5=0-17143
g13=0-08000  g,;=0-14857  gps=0-17143  gss=0-28571
£14=0:08000  £,,=0-72000 g3 =1-68000 g5 =2-70857

For the case under consideration, n =3 and p = 3, and so m = 12. Note that the number of nonzero entries
in G, is equal to 12. Thus the 3-port network N, of which G, is the matrix of edge conductances is a
realization of the given matrix Y containing, at most, m conductances.

3. AN UPPER BOUND ON THE NUMBER OF CONDUCTANCES REQUIRED FOR
REALIZING A K MATRIX

In this Section, we establish an upper bound on the number of conductances required for the realization of a
real matrix K as the potential factor matrix of an (n+p)-node n-port resistive network containing no
negative conductances.

Theorem 5

If a real matrix K is realizable as the potential factor matrix of an (r +p)-node n -port network then it can
be realized by an n-port network containing, at most, {n(p — 1)+ (p — 1)} conductances.

Proof

Let the given matrix K be the potential factor matrix of an (n + p)-node n-port network N 1. If Ny contains
{ne—-1)+(@-1}orless conductances, the theorem is proved. Otherwise, we proceed as follows to obtain
an equivalent n-port network N, containing, at most, {n(p — 1)+ (p — 1)} conductances.
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Let C be the modified cut-set matrix of the n-port network N realizing the given K matrix. Let G, be the
diagonal matrix of edge conductances of N,. Let the matrix C, be defined as in Theorem 1.
Consider any diagonal matrix G, of real nonnegative entries satisfying the equation

CG:G;=0 ' 7

Let G, be the matrix of edge conductances of a connected (n +p)-node n-port network N,. Then, by
Theorem 1a, the modified cut-set matrix of N, is equal to C. Also, by Theorem 2, the potential factor matrix
of N, is equal to the matrix K. To ensure that a solution G, of (7) corresponds to a connected n-port
network, we proceed as follows:

Let the p connected parts of the port configuration of N; be denoted by T, T, . . . , T,. Let (S;;); denote
the sum of the conductances in the given network N, connecting vertices in T; to those in T (S, )2 will refer
to the corresponding quantity in the required network N,. Note that the port configuration of N2 will be the
same as that of Nj.

If all the ports of N, are short-mrcmted the network (N,)s that results will have p vertices. (Sj),s w111
represent the different conductances of (N)s. If (N,)s is connected, N, will also be connected.

Choose a set of (p—1) positive conductances (S;;),s such that they constitute a tree of (N,)s. Let these
conductances be denoted by :

(Silkl)la (Sizkz)l’ ceey (Si,,_lk,,—l)l

If the corresponding conductances of (N>)s are also positive, then, as mentioned earlier, the n-port network
N, will be connected.
Consider then the following set of (p — 1) equations:

(SI k,) (lelq)l ]= 1’ 27 B ’p—l . (8) .

Note that each (S;4,) can be written as a sum of the entries of the matrix G.

Any solution of (7) and (8) will correspond to the diagonal matrix of edge conductances of a connected

n-port network.

Equations (7) and (8) together represent a set of {n(p=1)+(p—1)} equations in (n + p)n+p—-1)/2
variables. G, the diagonal matrix of edge conductances of Nj, is a feasible solution of these equations.
Hence a basic feasible solution G, exists. The number of nonzero conductances in this basic feasible
solution is less than or equal to {n(p—1)+(p—1)}. Thus there exists a network N, (of which G, is the
diagonal matrix of edge conductances) containing, at most, {n(p—1)+(p — 1)} conductances. As stated
earlier, the network N, will reilize the given matrix K. Hence the theorem.

Example 2

The matrix K given below is the potential factor matrix of a 4-port network N; having the port
configuration shown in Figure 2.

1113

K=|© 11 3

0013

P51
1 2 3 4 5 6
- +- +- + - +
-~ Port 1 Port 2 Port 3 ~ Pot 4 —=

Figure 2. Port configuration for Example 2
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The matrix G, of edge conductances (all in siemens) of N; is given by

G1=diag{g12 813 814 815 8ic 823 824 K25
82 &34 B35 836 Bas Bas 8se)

The modified cut-set matrix C of N; is obtained as follows:

812 B13 814 815 816 823 L1 L5

826 834 835 836 845 8ac Lse

1 11 535 0 0 -3-50 -%-3-%-%0
C_Oll%gllg%()—%—%—%—go
0 0 1 33 01 3 31 3 3-§-%o0
0 0 0 —f % 0 0 & $o0 -3 &3 &1

Choosing the edge e,5 connecting the vertices 4 and 5 as the nonport branch we obtain G, as follows:

812 813 814 815 816 823 824 825 826 834 835 836 845 846 856
C,=[0 0011001101111 0]

In (Ny)s, 12, the combination of the conductances g;s, g6, 825, 826, 835, 836, 845 and g4 forms a tree. A basic
feasible solution G, to the following sets of equations is required.

CG,G:=0
(S12)=(S12h ie.=9

After substituting for C and C,, the above simplifies to the following:

8127
813
8ua| -
815
816 |
823
824
825
" 826
834
835
836
8as
846
| 856/

0 -2 -2
0 5
3.
0 -5
0 1

0 -2 -2 =2 -2
0 —4 ~4 -4 —4
0 3 3
0 -5 4 -5 4
0 1

OSSO OO
S OO OO
S OO O O
= h W W~
el 7 BT TN |
C OO O O

(=]
= B W

|

[«,)

]

[,
OO0 OO

oo OoOo

Using the MPS package, the following basic feasible solution G, is obtained. The nonzero entries of G,
(all in siemens) are given by

816=2:0 825=2-0 836=2'0 845=2:0 gsc=1-0
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Note that, in this case, n =4 and p = 2. Hence {n(p—1)+(p— 1)} =5. It may be seen that G, contains five
nonzero entries. The network N; of which G, is the diagonal matrix of edge conductances is a realization of
the matrix K containing {n(p — 1) +(p — 1)} conductances.

4. CONCLUSIONS

In this paper, we have established upper bounds on the number of conductances required for realizing Y
and K matrices. According to Theorem 4, the maximum number of conductances required for realizing any
(nXn) Y matrix by an (n +2)-node n-port network is equal to {n(n+1)/2+n}. In a recent paper, it was
shown that any Y matrix realizable by an (n 4 1)-node n -port network containing no zero conductances can
be realized by an n-port network containing, at most, {n(n +1)/2+ 1} conductances, which is less than the
maximum number of conductances required according to Theorem 5. It may, therefore, be expected that
the approach of Reference 7 can be generalized to obtain (n+ p)-node realizations of Y matrices of
(n +1)-node n-port networks containing, at most, {n(n +1)/ 2(p —1)/2} conductances.
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