ON THE NUMBER OF CONDUCTANCES REQUIRED FOR REALIZING Y AND K MATRICES

M. G. G. NAIDU, P. S. REDDY AND K. THULASIRAMAN*

Indian Institute of Technology, Madras, India

SUMMARY

Upper bounds are established on the number of conductances required for realizing a real symmetric matrix Y as the short-circuit conductance matrix of a resistive n-port network containing no negative conductances, and for the realization of a real matrix K as the potential factor matrix of a similar network without negative conductances. These results are the consequence of the properties of the modified cut-set matrix of an n-port and a theorem in the theory of linear programming.

1. INTRODUCTION

Biorci^{1,2} conjectured that, at most n(n+1)/2 conductances are required for realizing a real symmetric matrix as the short-circuit conductance matrix of a resistive n-port network containing no negative conductances. Even after several years of research, this conjecture has been neither proved nor disproved. However, a lower bound is known for the realization of Y matrices when the port configuration of the required network is specified. In this paper, we establish upper bounds on the number of conductances required for realizing Y and X matrices. These results are the consequence of the properties of the modified cut-set matrix of an n-port and a theorem in the theory of linear programming.

2. AN UPPER BOUND ON THE NUMBER OF CONDUCTANCES REQUIRED FOR REALIZING A Y MATRIX

In this Section, we first summarize some results relating to the modified cut-set matrix of a resistive n-port network⁴ and also state a theorem in the theory of linear programming. These results are then used to establish an upper bound on the number of conductances required for realizing an $(n \times n)$ Y matrix by an (n+p)-node n-port network.

Consider a resistive *n*-port network N. Let the port configuration T of N be in p connected parts T_1, T_2, \ldots, T_p . Permitting edges with zero conductances, the graph of N can be considered to be complete. Let T_0 be a tree of N such that $T \subseteq T_0$. The branches of T will be called the port branches, and the remaining branches of T_0 will be referred to as the non-port branches.

Let C_0 , the fundamental cut-set matrix of N with respect to the tree T_0 be partitioned as follows:

$$\mathbf{C}_0 = \begin{bmatrix} \mathbf{C}_1 \\ \mathbf{C}_2 \end{bmatrix} \tag{1}$$

Received 10 August 1975 Revised 16 February 1976

^{*} K. Thulasiraman is currently with Concordia University, Montreal, Canada, on leave of absence from the Indian Institute of Technology, Madras, India.

where the rows of C_1 correspond to the port branches and those of C_2 correspond to the non-port branches. The cut-set admittance matrix Y_0 of N with respect to the tree T_0 is defined as

$$\mathbf{Y}_0 = \mathbf{C}_0 \mathbf{G} \mathbf{C}_0^t$$

$$= \begin{bmatrix} \mathbf{C}_1 & \mathbf{G} & \mathbf{C}_1' & \mathbf{C}_1 & \mathbf{G} & \mathbf{C}_2' \\ \mathbf{C}_2 & \mathbf{G} & \mathbf{C}_1' & \mathbf{C}_2 & \mathbf{G} & \mathbf{C}_2' \end{bmatrix} \qquad \begin{bmatrix} \mathbf{Y}_{11} & \mathbf{Y}_{12} \\ \mathbf{Y}_{21} & \mathbf{Y}_{22} \end{bmatrix}$$
(2)

where G is the diagonal matrix of edge conductances of N. The short-circuit conductance matrix Y of N is given by

$$\mathbf{Y} = \mathbf{Y}_{11} - \mathbf{Y}_{12} \mathbf{Y}_{22}^{-1} \mathbf{Y}_{21} \tag{3}$$

The modified cut-set matrix⁵ of N is defined as

$$\mathbf{C} = \mathbf{C}_1 - \mathbf{Y}_{12} \mathbf{Y}_{22}^{-1} \mathbf{C}_2 \tag{4}$$

The following results have been proved in Reference 4:

Theorem 1

Let \mathbb{C} be the modified cut-set matrix of a connected resistive *n*-port network N having a port configuration T. Let \mathbb{C}_0 be the fundamental cut-set matrix of N with respect to a tree T_0 of which T is a subgraph. Further let \mathbb{C}_1 and \mathbb{C}_2 , the submatrices of \mathbb{C}_0 , correspond respectively to the port branches and the non-port branches of T_0 . Let Y be the short-circuit conductance matrix of N with respect to the port configuration T.

(a) If G^k is the diagonal matrix of edge conductances of a connected *n*-port network N^* having the same port configuration as that of N and CG^k $C_2^t = 0$, then the modified cut-set matrix of N^k is also equal to C.

(b) Let

$$\mathbf{C}\mathbf{G}^{k}\mathbf{C}_{1}^{t}=\mathbf{y}$$

and

$$\mathbf{C}\mathbf{G}^{k}\,\mathbf{C}_{2}^{\prime}=\mathbf{0}$$

where G^k is the diagonal matrix of edge conductances of an *n*-port network N^* having the same port configuration as that of N. Then the modified cut-set matrix and the short-circuit conductance matrix of N^* are equal to C and Y, respectively.

Theorem 2

Two *n*-port networks have the same modified cut-set matrix if they have the same **K** matrix. Consider next the following set of m simultaneous equations in n variables x_1, x_2, \ldots, x_n :

$$\mathbf{AX} = \mathbf{b} \tag{5}$$

where **A** is an $(m \times n)$ real matrix, **X** is the column vector of the variables x_1, x_2, \ldots, x_n and **b** is a column vector of real elements.

Any nonnegative solution of (5) is called a *feasible solution*. If any $(m \times m)$ nonsingular matrix is chosen from A, and if all the (n-m) columns of this matrix are set equal to zero, the solution to the resulting system of equations is called a *basic solution*. If a basic solution is feasible, then it is called a *basic feasible solution*. Thus the number of nonzero variables in a basic feasible solution will be less than or equal to m, the number of equations. The following result is proved in Reference 6.

Theorem 3

Consider a set of m simultaneous equations in n variables $(n \ge m)$

If there exists a feasible solution $x \ge 0$ to these equations, then there exists a basic feasible solution. We now prove the following theorem:

Theorem 4

If a matrix Y is realizable as the short-circuit conductance matrix of an (n+p)-node resistive n-port, then it can be realized by an n-port network containing at most $m = \{n(n+1)/2 + n(p-1)\}$ conductances.

Proof

Let the matrix Y be the short-circuit conductance matrix of an (n+p)-node n-port network contains m or less number of conductances, the theorem is proved. Otherwise, we proceed as follows to obtain an equivalent network containing, at most, m conductances.

Let C be the modified cut-set matrix of N_1 . Let C_1 and C_2 be defined as in Theorem 1. Let G_1 be the diagonal matrix of edge conductances of N_1 .

Consider the following sets of equations:

$$\mathbf{CGC}_2^t = \mathbf{0} \tag{6a}$$

$$\mathbf{CGC}_1^t = \mathbf{Y} \tag{6b}$$

Note that each one of the matrices C and C₁ has n rows and the matrix C₂ has (p-1) rows. Also the number of variables in G is equal to l where l = (n+p)(n+p-1)/2.

Hence, equation (6a) represents a set of n(p-1) equations in l variables. Further, because of the symmetry of Y, equation (6b) represents a set of n(n+1)/2 equations in l variables. Thus equations (6) represent a set of m equations in l variables.

The edge-conductance matrix G_1 of the network N_1 is a feasible solution of (6). Hence, there exists a basic feasible solution G. The number of nonzero variables in G_2 is less than or equal to m. Since, by Theorem 1(b), G_2 is the matrix of conductances of an n-port network N_2 whose short-circuit conductance matrix is equal to Y, we conclude that, for the given matrix Y, there exists an (n+p)-node realization containing, at most, m conductances.

Example 1

The matrix Y given below is the short-circuit conductance matrix of a 3-port network N_1 having the port configuration T shown in Figure 1.

Figure 1. Port configuration for Example 1

The diagonal matrix G_1 of edge conductances (all in siemens) of N_1 is given by

$$G_1 = \operatorname{diag} \{ g_{12} \quad g_{13} \quad g_{14} \quad g_{15} \quad g_{16} \quad g_{23} \quad g_{24} \quad g_{25}$$

$$g_{26} \quad g_{34} \quad g_{35} \quad g_{36} \quad g_{45} \quad g_{46} \quad g_{56} \}$$

$$= \operatorname{diag} \{ 0.49 \quad 0.06 \quad 0.14 \quad 0.45 \quad 0.05 \quad 0.54 \quad 1.26 \quad 0.45$$

$$0.05 \quad 1.08 \quad 0.70 \quad 0.70 \quad 0.30 \quad 0.30 \quad 2.33 \}$$

The modified cut-set matrix \mathbb{C} of N_1 is obtained as follows:

$$\mathbf{C} = \begin{bmatrix} 1 & 0.8 & 0.8 & 0.7 & 0.7 & -0.2 & -0.2 & -0.2 & -0.2 & 1 & 0.4 & 0.4 & -0.6 & -0.6 & 0.6 \\ 0 & -0.6 & 0.4 & -0.2 & -0.2 & -0.6 & 0.4 & -0.2 & -0.2 & 1 & 0.4 & 0.6 & -0.4 & 0.6 & 1 \end{bmatrix}$$

Choosing the edges e_{23} and e_{45} as the nonport branches, we obtain the matrices C_1 and C_2 as follows:

g12 g13 g14 g15 g16 g23 g24 g25 g26 g34 g35 g36 g45 g46 g56

A basic feasible solution G_2 for the set of equations

$$CGC_1^t = Y$$

and

$$\mathbf{CGC}_2^t = \mathbf{0}$$

is then obtained using the MPS package available with the IBM 370/155 computer system. The nonzero entries of G_2 are as follows:

$$g_{12} = 0.64800$$
 $g_{15} = 0.32000$ $g_{25} = 0.42286$ $g_{35} = 0.17143$
 $g_{13} = 0.08000$ $g_{23} = 0.14857$ $g_{26} = 0.17143$ $g_{36} = 0.28571$
 $g_{14} = 0.08000$ $g_{24} = 0.72000$ $g_{34} = 1.68000$ $g_{56} = 2.70857$

For the case under consideration, n = 3 and p = 3, and so m = 12. Note that the number of nonzero entries in G_2 is equal to 12. Thus the 3-port network N_2 of which G_2 is the matrix of edge conductances is a realization of the given matrix Y containing, at most, m conductances.

3. AN UPPER BOUND ON THE NUMBER OF CONDUCTANCES REQUIRED FOR REALIZING A K MATRIX

In this Section, we establish an upper bound on the number of conductances required for the realization of a real matrix K as the potential factor matrix of an (n+p)-node n-port resistive network containing no negative conductances.

Theorem 5

If a real matrix **K** is realizable as the potential factor matrix of an (n+p)-node n-port network then it can be realized by an n-port network containing, at most, $\{n(p-1)+(p-1)\}$ conductances.

Proof

Let the given matrix **K** be the potential factor matrix of an (n+p)-node n-port network N_1 . If N_1 contains $\{n(p-1)+(p-1)\}$ or less conductances, the theorem is proved. Otherwise, we proceed as follows to obtain an equivalent n-port network N_2 containing, at most, $\{n(p-1)+(p-1)\}$ conductances.

Let \mathbb{C} be the modified cut-set matrix of the *n*-port network N_1 realizing the given \mathbb{K} matrix. Let \mathbb{G}_1 be the diagonal matrix of edge conductances of N_1 . Let the matrix \mathbb{C}_2 be defined as in Theorem 1.

Consider any diagonal matrix G_2 of real nonnegative entries satisfying the equation

$$\mathbf{CG_2G_2'} = \mathbf{0} \tag{7}$$

Let G_2 be the matrix of edge conductances of a connected (n+p)-node n-port network N_2 . Then, by Theorem 1a, the modified cut-set matrix of N_2 is equal to C. Also, by Theorem 2, the potential factor matrix of N_2 is equal to the matrix K. To ensure that a solution G_2 of (7) corresponds to a connected n-port network, we proceed as follows:

Let the p connected parts of the port configuration of N_1 be denoted by T_1, T_2, \ldots, T_p . Let $(S_{ij})_1$ denote the sum of the conductances in the given network N_1 connecting vertices in T_i to those in T_j . $(S_{ij})_2$ will refer to the corresponding quantity in the required network N_2 . Note that the port configuration of N_2 will be the same as that of N_1 .

If all the ports of N_2 are short-circuited, the network $(N_2)_S$ that results will have p vertices. $(S_{ij})_2$ s will represent the different conductances of $(N_2)_S$. If $(N_2)_S$ is connected, N_2 will also be connected.

Choose a set of (p-1) positive conductances $(S_{ij})_1$ s such that they constitute a tree of $(N_1)_S$. Let these conductances be denoted by

$$(S_{i_1k_1})_1, (S_{i_2k_2})_1, \ldots, (S_{i_{p-1}k_{p-1}})_1$$

If the corresponding conductances of $(N_2)_S$ are also positive, then, as mentioned earlier, the *n*-port network N_2 will be connected.

Consider then the following set of (p-1) equations:

$$(S_{i_jk_j}) = (S_{i_jk_j})_1$$
 $j = 1, 2, ..., p-1$ (8)

Note that each (S_{i,k_i}) can be written as a sum of the entries of the matrix G.

Any solution of (7) and (8) will correspond to the diagonal matrix of edge conductances of a connected n-port network.

Equations (7) and (8) together represent a set of $\{n(p-1)+(p-1)\}$ equations in (n+p)(n+p-1)/2 variables. G_1 , the diagonal matrix of edge conductances of N_1 , is a feasible solution of these equations. Hence a basic feasible solution G_2 exists. The number of nonzero conductances in this basic feasible solution is less than or equal to $\{n(p-1)+(p-1)\}$. Thus there exists a network N_2 (of which G_2 is the diagonal matrix of edge conductances) containing, at most, $\{n(p-1)+(p-1)\}$ conductances. As stated earlier, the network N_2 will realize the given matrix K. Hence the theorem.

Example 2

The matrix K given below is the potential factor matrix of a 4-port network N_1 having the port configuration shown in Figure 2.

$$\mathbf{K} = \begin{bmatrix} 1 & 1 & 1 & \frac{7}{9} \\ 0 & 1 & 1 & \frac{5}{9} \\ 0 & 0 & 1 & \frac{3}{9} \\ \frac{5}{9} & \frac{5}{9} & \frac{5}{9} & 1 \end{bmatrix}$$

Figure 2. Port configuration for Example 2

The matrix G_1 of edge conductances (all in siemens) of N_1 is given by

$$\mathbf{G}_{1} = \operatorname{diag} \{ g_{12} \quad g_{13} \quad g_{14} \quad g_{15} \quad g_{16} \quad g_{23} \quad g_{24} \quad g_{25}$$

$$= g_{26} \quad g_{34} \quad g_{35} \quad g_{36} \quad g_{45} \quad g_{46} \quad g_{56} \}$$

$$= \operatorname{diag} \{ \frac{5}{9} \quad \frac{4}{9} \quad \frac{2}{9} \quad \frac{8}{9} \quad \frac{10}{9} \quad \frac{6}{9} \quad \frac{3}{9} \quad \frac{8}{9}$$

$$= \frac{10}{9} \quad \frac{7}{9} \quad \frac{8}{9} \quad \frac{10}{9} \quad \frac{12}{9} \quad \frac{15}{9} \quad \frac{8}{9} \}$$

The modified cut-set matrix \mathbb{C} of N_1 is obtained as follows:

$$\mathbf{C} = \begin{bmatrix} 1 & 1 & 1 & \frac{7}{9} & \frac{7}{9} & 0 & 0 & -\frac{2}{9} & -\frac{2}{9} & -\frac{2}{9} & -\frac{2}{9} & -\frac{2}{9} & -\frac{2}{9} & 0 \\ 0 & 1 & 1 & \frac{5}{9} & \frac{5}{9} & 1 & 1 & \frac{5}{9} & \frac{5}{9} & 0 & -\frac{4}{9} & -\frac{4}{9} & -\frac{4}{9} & -\frac{4}{9} & -\frac{6}{9} & 0 \\ 0 & 0 & 1 & \frac{3}{9} & \frac{3}{9} & 0 & 1 & \frac{3}{9} & \frac{3}{9} & 1 & \frac{3}{9} & \frac{3}{9} & -\frac{6}{9} & -\frac{6}{9} & 0 \\ 0 & 0 & 0 & -\frac{5}{9} & \frac{4}{9} & 0 & 0 & -\frac{5}{9} & \frac{4}{9} & 0 & -\frac{5}{9} & \frac{4}{9} & -\frac{5}{9} & \frac{4}{9} & 1 \end{bmatrix}$$

Choosing the edge e_{45} connecting the vertices 4 and 5 as the nonport branch we obtain G_2 as follows:

812 813 814 815 816 823 824 825 826 834 835 836 845 846 856

In $(N_1)_S$, S_{12} , the combination of the conductances g_{15} , g_{16} , g_{25} , g_{26} , g_{35} , g_{36} , g_{45} and g_{46} forms a tree. A basic feasible solution G_2 to the following sets of equations is required.

$$\mathbf{CG_2G_2^t} = \mathbf{0}$$

 $(S_{12}) = (S_{12})_1$ i.e. = 9

After substituting for C and C2, the above simplifies to the following:

Using the MPS package, the following basic feasible solution G_2 is obtained. The nonzero entries of G_2 (all in siemens) are given by

$$g_{16} = 2.0$$
 $g_{25} = 2.0$ $g_{36} = 2.0$ $g_{45} = 2.0$ $g_{46} = 1.0$

Note that, in this case, n=4 and p=2. Hence $\{n(p-1)+(p-1)\}=5$. It may be seen that G_2 contains five nonzero entries. The network N_2 of which G_2 is the diagonal matrix of edge conductances is a realization of the matrix K containing $\{n(p-1)+(p-1)\}$ conductances.

4. CONCLUSIONS

In this paper, we have established upper bounds on the number of conductances required for realizing Y and K matrices. According to Theorem 4, the maximum number of conductances required for realizing any $(n \times n)$ Y matrix by an (n+2)-node n-port network is equal to $\{n(n+1)/2+n\}$. In a recent paper, it was shown that any Y matrix realizable by an (n+1)-node n-port network containing no zero conductances can be realized by an n-port network containing, at most, $\{n(n+1)/2+1\}$ conductances, which is less than the maximum number of conductances required according to Theorem 5. It may, therefore, be expected that the approach of Reference 7 can be generalized to obtain (n+p)-node realizations of Y matrices of (n+1)-node n-port networks containing, at most, $\{n(n+1)/2(p-1)/2\}$ conductances.

REFERENCES

- "The realization of n-port networks without ideal transformers—a panel discussion", IRE Trans. Circuit Theory, CT-9, 202-214 (1962).
- 2. G. Biorci, 'Existence of irreducible single-element kind n-port networks', IEEE Trans. Circuit Theory, CT-13, 106-108 (1966).
- 3. P. S. Reddy and K. Thulasiraman, 'Analysis and synthesis of the K and Y matrices of resistive n-port networks', Asilomar Conf. on Circuits and Systems, Monterey, Calif. U.S.A. (November 1971).
- 4. K. Thulasiraman and V. G. K. Murti, 'Modified cutset matrix of an n-port network', Proc. IEEE, 115, 1263-1268 (1968).
- 5. I. Cederbaum, 'On equivalence of resistive n-port networks', IEEE Trans. Circuit Theory, CT-12, 338-344 (1965).
- 6. G. Hadley, Linear Programming, Addison-Wesley, Reading, Mass. (1962).
- M. G. G. Naidu, P. S. Reddy and K. Thulasiraman, '(N+2)-node resistive n-port realizability of Y matrices', IEEE Int. Symp. on Circuits and Systems, Boston, U.S.A. (1975).