> -
e v een

N

PROCEERINGS-OF THE IEEE, VOL. 71, NO. 6, JUNE 1983

Graph-Theoretic Proof of a Network Theorem and
Some Consequences

K. THULASIRAMAN, R. JAYAKUMAR, ANp M.N.S. SWAMY

" Abstract—A graph-theoretic proof of a network theorem is given.
 Some consequences of this theorem in relation to the analysis of“an

algorithm are discussed.

Manuscript received January 6, 1983; revised February 28, 1983,
The authors are with the Faculty of Engineering, Concordia Univer-
sity, Montreal, P.Q. H3G 1 M8, Canada.

77t

In this letter, we give a graph-theoretic proof of a network theorem
(Theorem 1, which follows), which was recently brought to our atten-
tion [1] and discuss some of its consequences. For graph theory terms
not defined here, [2] may be referred to.

Consider an RLC network N without mutual inductances. Let N have
n nodes and m clements ey, e;, - - -, e,,, With each element being a
resistance or a capacitance or an inductance. The impedance and ad-
mittance of each ¢; will be denoted by z; and y;, respectively. Also, the
two nodes of each e; will be denoted by iy andi;. If Z(i;, i3) denotes
the driving point impedance of ¥ across the pair of nodes iy and i,,
then we have the following theorem:

Theorem 1
m
2 yiZGy, i) =n- 1. (1)
i=1

Proof: Let T denote the set of all spanning trees of N and, for each i,

" let T; denote the set of all spanning 2-trees of N separating the nodes i,

and i;. Note that adding ¢; to a spanning 2-tree separating i; and i,

will generate a spanning tree. Further, let w(t) denote the admittance
product of spanning tree ¢ and w(t;) denote the admittance product of
spanning 2-tree t; separating /; and i5. It is easy to see thatif t =t; U ¢;,
then

w(t) =y;wit).
If

W=D wi)
teET

and

WTH= D wtp

1ET;
then it is known [2] that
. W(T)
Z(iy, ip) = ——.
W(T)

Thus to prove the theorem, we need to show that

N _
> yiWT) = (-) W)

(@3]
i=1
or
h m
” 2y wed=(m-1) 3. w).
i=1 tieT; teT

Consider any tree admittance product w(r). We may assume, without

“loss of generality, that the spanning tree f contains the elements ey,

€3, *-,en_y. Then forevery i=1,2,---, n-1, t - ¢; is a spanning
2-tree t; separating the nodes i; and i5. So foreveryi=1,2,---,
n-1

w(n) =y;w(t))

for some spanning 2-tree f;. Thus the admittance product w(¢) appears
exactly once in each y;W(T),i=1,2,---,n - 1. In other words, each
w(f) appears (n ~ 1) times in the sum on the left-hand side of (2). The.
theorem follows since all the terms on the left-hand side of (2) are ad-
mittance products of spanning trees. o

Suppose all the elements of the network N are 1-Q resistances. Then
(1) reduces to

m
> ZGy, i) =n- 1. 3)

0018-9219/83/0600-0771301.00 © 1983 IEEE

172
This means that R .

-1
min {ZGy, i)} < =—
i m

or
m
max {Y(@y,i5)} » — “
i n-1
where
Y@y, ip) = ———,
Z(y,13)

Let Y nax = max; {Y @y, i3)}. In the study of the computational com-
plexity of a spanning tree enumeration algorithm {3], the following
two questions, relating to a resistance network N in which all the ele-
ments are 1-§2 resistances, arise:

1) Determine Y .
2) Determine the elements e;of N such that Y(iy,i2) = Y ay.

As a first step towards answering the above questions, we now show
that the lower bound for Y, as given in (4) cannot be improved. In
other words, we show that for some network N, Ymax =ml(n - 1).

We shall call a network complete if there is an element connccting
every pair of nodes of the network. In fact, the graph of a complete
network is a complete graph. Consider a complete resistive network N
in which all resistances are of 1-Q value. Clearly for such a network

Ziy,iz) = Z(j1,72)

foralli,j=1,2, -+, m. LetZ be the common value of Z(iy, i3).
Then it follows from (3) that

Z=n—l=z_
m n

since for a complete network m =n(n - 1)/2. So

Y: =

n
2 .

N -

Thus we have the following theorem:

Theorem 2
For an n-node resistance network of m elements each of 1-§2 value

m
Ymax = ——..
n-1

For a complete network containing only 1-§2 resistances, the lower
bound in the above inequality is achieved. o

REFERENCES

[1] L. Roytman, private communication.

[2] M.N.S. Swamy and K. Thulasiraman, Graphs, Networks, and Algo-
rithms. New York: Wiley-Interscience, 1981,

[3] R. Jayakumar, K. Thulasiraman, and M.N.S. Swamy, “Complexity
of computation of a spanning tree enumeration algorithm,” sub-
mitted to JEEE Trans. Circuits Syst.

PROCEEDINGS OF THE IEEE, VOL. 71, NO. 6, JUNE 1983

GRAPH-THEORETIC CONSIDERATIONS ON THE OPTINAL SYNCHRONIZER
FOR ASYNCHRONOUS DISTRIBUTED NETWORKS

Y. KAJITANT H MIYANO*

S. UENO* ° K THULASTRAMAN**

* DEPT. OF ELECTRICAL AND ELECTRONIC ENGRG., TOKYO INST. OF THCH., MEGURO-KU TOKYO
**DEPT. OF ELEC. ENGRG., CONCORDIA UNIV., MONTREAL CANADA

ABSTRACT

An acyclic k-spanner (k-AS) of a graph is a spanning
tree such that every fundamental circuit is of length k+l
or less. The concept of the k-AS is not only graph
thecretically interesting but closely related to the
optimal synchronizer for better operation of asynchronous
distributed networks. Tais paper contains two results.
First, a compact characterization of the graph that has a
2-A8 together with an 0(n2?) time algorithm to find one is
given. Second, for any integer k and an outerplanar graph,
an 0(n®) time algorithm to find a k-spanner of the graph
if one exists is given.

1. INTRODUCTION

The asynchronous network is a communication network

without a global clock. %e model it by an undirected
simple graph N=(V,E) where the set V of vertices
represents the processors of the network and the set E of
edges represents bidirectional communication channels
between processors. Each vertex has a distinct identity.

An asynchronous network is easier to build. On the
other hand, a synchronous petwork is easier to develop its
softwares. A synchronizer of an asynchronous network is a
distributed algorithm that enables any synchronous
distributed algorithm to run in the network by generating
sequences of trigger pulses at each vertex Therefore, if
we have a synchronizer v, we can implement an algorithm S
designed for synchronous networks on an asynchronous
network. Thus, we can take both advantages unless
additional complexity by » is large. _

The communication and time complexities are used to
evaluate performances of distributed algorithms. The
complexities of an algorithm A resulting from combining a
synchronous algorithm S with a synchronizer v are

C@) =€) + T(S)-C(x), and

T() = T(S)-T(»),
where C(X) and T(X) are the communication and time
complexities of the alzorithm X, respectively.

Because 0(:V!) and 0(1) are trivial lower bounds of

C(v) and T(»), respectively, a synchronizer o is said
to be optimal if C(v)=0(iV:) and T(»)=0(1).
Unfortunately, it is known that there exists a trade-off
between the communication complexity and time complexity
of synchronizers on a network, and no optimal synchronizer
can be constructed in general. More precisely, it is
proved in 1] that for any positive integer i there exists
a network N such that if

T{v)<i-1 then C(x)>+nt+1i
for any synchronizer ». This fact leads us to a
fundamental problem of characterizing the networks for
which we can construet optimal synchronizers. [2] shows a
sufficient condition for such a network on which the idea
of this paper is based

A subgraph ¥'=(V,E") of N is called a spanner of N if
E’ contains a spanning tree of N A spanner N is called a
k-spanner of N bf for-every (u,v)<E, the shortest path
length between u and v in ¥’ is at most k It is proved in
(2] that if a network N has a k-spanner with 0(:V!) edges,
then N has an optimal synchronizer. [2] also shows that
the hypercube has a 3-spanner with 0('V:) edges and thus
has an optimal synchronizer.

In this paper, we consider the networks with acyelic
(i.e. cycle free) k-spanners (k-AS’s for short) as a step
to characterize the networks with optimal synchronizers.
Note that a k-AS is a spanning tree of N and thus has
0(iVi) edges. Our results include polynomial time
algorithns to solve the following two problens,

1 For any graph, find a 2-AS if one exists.
2. For any outer planar graph, find a k-AS for any k if
one exists.

2. ACYCLIC 2-SPANNERS

It is easy to see that a graph has a 2-AS if and only
if each 2-connected component of the graph has a 2-AS.
Thus we assume without loss of generality that the graph
is 2-connected.

We define a separator of a connected graph G. For a
set of vertices S (ScV), G-$ denotes the subgraph induced

by V-S. S is a separator of G if and only if G-S is not
connected and for any S'¢S, G-8° is connected. Especially,
a separator S is called a t-vertex-separator if :Si=t.

LEMMA 1:

Let G=(V,E) be a graph with a 2-AS. If a set of two
vertices {u,v} is a separator of G, then (u, v)<E and every
2~-AS contains (u,v).

PROOE :

Suppose that the graph G-{u, v} consists of connected
components Gi,..., and Gx. And let Hi be a subgraph of G
induced by V(G:)u{u, v}, where V{(G;) is the vertex set of
Gi.

We prove the lemma by showing that any acyclic
spanner without edge {(u,v) is not a 2-AS of G. Let T be
an acyclic spanner without edge {(u,v). The unique path
between u and v in T is contained in exactly one of H.'s,
say Hi, and the length of the path is at least 2. Then
there exists a cotree edge e in H> such that the length of
the fundamental circuit determined by e with respect to T’
is more than 3, for G is 2-connected. Thus G’ is not a

2-AS. |

A graph G is said to be propped if (u,v)€E for every
2-vertex-separator {u, v} of G. We call such an edge (u,v)
a prop of G.

Now Lemma 1 is restated as follows.

LEMMA 1°:
A graph with a 2-AS is propped. Moreover, every prop
is contained in any 2-AS. §

Next, we characterize the graphs without props which
have 2-AS’s. A star-tree, which appears in the following
lemma, is a spanning tree without a path of length 3. Note
that G has a star-tree if and only if G has a vertex
adjacent to every other vertex of G

LEMMA 2:
A graph G withiout props has a 2-AS if and only If G
has a star-tree.

PROCE :

If G is a Ks then the lemma is trivial. So we assume
that 1ViD3.

If G has a star-tree, it is trivially a 2-AS of G.

Conversely, let T be a spanning nonstar-tree of G.
Then T contains a path P of length 3. Suppose that the
vertices u, v, w, and X appear on P in this order. G is
3-connected since a 2-vertex-separator must have a prop.
Therefore, there exists in G a path between u and x, say
P’, which contains neither v nor w. Let e be any edge that
belongs to both P’ and the fundamental cutset defined by
edge (u,w) with respect to T. Then the length of the

fundamental circuit determined by e with respect to T is
more than 3. Thus T is not a 2-AS. |4

For propped graph G and a prop (u,v) of G, cutting G
with respect to {u,v) is to construct a graph G’ by the
following process. Obiain the connected components Gi, G,

., and Ge of G-{u,v}. And let Hi (i=1,...,k) be a
subgraph of G induced by V(Gi)uly, v}. Then the disjoint
union of these graphs Hi’s is G’.

Given a propped graph G, we obtain G by successively
cutting the current graph with respect to a prop until
every connected component has no props. Note that G is
unique independent of the order of cuttings.

From LEMMA 1 and 2, we have the following result.

THEOREM 1:

A 2-connected graph G has a 2-AS if and only if the
set of all props contairs no circuits and each comnnected
component C of & has a star-tree which contains all the
props of G contained in C. Moreover if there is such a
star-tree in each component, the union T of the edges of
these star-trees is a 2-AS of G.

PROOE:

The necessity is trivial by the above lemmas. So we
prove sufficiency.

An edge which is contained in more than one component
is a prop, which is contained in T. In each component, T
has no circuits. Therefore T has no circuits. It is
trivial that T is a spanning tree and every fundamental
circuit is of length 3. . :|

Based on Theorem 1, we propose the following
polynomial-time algorithm to find a 2-AS T if one exists.

ALGORITIM 2-AS:

INPUT: G: 2-connected graph
OUTPUT: anmswer: {'Yes’, 'No'} P: edge set
/* if answer='Yes® then P is a 2-AS #*/

1. P:= 4.
2. For every 2-vertex-separator {u, v},
if (u,v)&E then answer:="No' and halt.
3. If the set of the props contains a circuit
then answer:="No' and halt
else P:=Pufall props}.
4. Repeat the cutting operation until each connected
component has Ro prop.
5. For each connected component C do
if there exists such a vertex that
is adjacent to all vertices of V()
and incident to all props of G contained in C,
then P:=Pu{edges incident to such a vertex|
else answer:="No' and halt.

6. answer:="Yes' and halt.
/% End of Algorithm =/

TIME COMPLEXITY OF ALGORITHA 2-AS:

The time complexity of this algorithm depends on what
subroutines we use for each step. It will be as total
0(iVi-1Ei) if we use very familiar ways as follows. A
2-vertex-separator which includes a vertex v is found by
finding all 2-connected components of G-{v}. All the
2-connected components of a graph can be found in O(E!)
by constructing a depth-first-search tree. Hence all the
2-vertex separators can be found in O(}V:-!E!). Then, step
2 is executed in O(iVi-iE:). Step 3 and 4 follow with
additional O('E!) time. Trivially, step 5 is executed in
0(:Vi-iE!). Therefore, as total, the time complexity of
the algorithm can be O(iV:-E:).

5. ACYCLIC k-SPANNERS OF OUTER PLANAR GRAPHS

It seems hard to find a k-AS for an arbitary graph
and k. However, we can show that the problem is solvable
in polynomial time for outerplanar graphs.

First, we propose an algorithm (in 3.1) to find a
k-AS of a given outerplanar graph if one exists, and then,
show its validity and time complexity (in 3.2).

3.1 ALGORITHM

Without loss of generality, we assume that the graph
is a 2-connected outerplanar graph. An outerplanar graph
is called outerplanarly embedded, if it is drawn on a
plane such that no two edges cross each other and every
vertex is on the same face called the infinite region.
Edges on the boundary of the infinite region are called
outer edges and the others are called inner edges.

ALGORITHM OUTERPLANAR k-AS:

INPUT: k: integer G: outerplanar graph
OUTPUT: answer: {'Yes’, 'No'} P: edge set
/% if answer="Yes' then P is a k-AS #/

VARIABLE:
Q: set of edges
label{e:edge]: array of integer
/% An edge e whose labelle] is not
defined is called unlabeled %/

1: If G is a simple circuit then
if v kel
then answer:="No' and halt
else select an arbitary edge e,
P:=E-{e}, answer:='Yes' and halt.
2: Identify each edge if it is an outer edge or an

inner orne.
3:P -, Q- .
/% Q will be the complement of a k-AS P =/
4: For each outer edge e do labelle]:=1.
5: Find a face F which has exactly one unlabeled
edge.
/% Such a face must exist (See 5.2) =/
“6: Let e be any one of the edges whose labelfe] is
mininum in F, and f be the unlabeled edge.
/% f is an inner edge of the current graph #/
7: If label[e}+!Fi-2 > k then goto 12.
/% If f is added into P,
there causes a fundamental curcuit
of length label[e]+!Fi-1 or more,
which must be k+1 or less x/
8: Q := Quie}, P := PulF-{e, f}).
9: label[f] « label[el+!F:-2.
10: Remove F-{f} and all isolated vertices from G.
/% f becomes an outer edge in the resultant graph %/
11: Goto 13.
12: Q « Quif}, and remove f from the graph
13: If there exists an unlabeled edge then goto 5.
14: /*G is a simple circuit %/
Let F be the circuit,
If there is an edge e which satisfies
labelfel+ Fi-3 <k
then
let e be any one of such edges,
€ := Qufe}, P := Pu(F-{e}),
answer:="Yes’
else
answer:="No’.
15: Halt.

5.2 VALIDITY ANXD COMPLEXITY OF THE ALGORITHM

PROOF OF CORRECTNESS:

Suppose that step 5 of this algorithm is going to be
executed. An edge is labeled if and only if the edge is an
outer edge of the current graph. An outerplanar graph has
a face with exactly one inner edge if it is not a simple
circuit. If the current graph were a simple circuit, every
edge would be labeled and so step 5 were not executed.
(See step 1 and 13.) So there always exists a face
satisfying the condition in step 5.

First, we prove that if answer="Yes’ then P is a
k-AS. 1t is enough if we show that

1) P is a spanning tree of G,

and that
2) each fundamental circuit of the tree P is of length
at most k+l.
Proof of 1)

Before the first execution of step 5, two end
vertices of any labeled edge are not connected by P
because P is empty. %hen an edge f, say (u.v), is labeled

at step 9, u and v have not been connected by P yet. And
there is a path in P from any vertex which has already
been removed in step 10 to some vertex which has not been
tvemoved yet. This means that the union of any spanning
tree of the current graph and P becomes a spanning tree of
the original graph. And finally, step 14 is executed where
2 spanning tree of the current graph is added. Thus the
output P is a spanning tree of G
Proof of 2)

Assume that C is the longest fundamental circuit of P
of length £ >k*1 which is defined by ei. Then, e: is an
outer edge in the original graph, and hence labelle]=l.
Let V(C) be the vertices of C and G'=(V(C),E’) be a
subgraph induced by V(C). Also let T=PnE’(=C-{e:}) and
S=F’-T. It is clear that T is a spanning tree of G'. Then
let e1,e2,..,e: be the labeled edges of S, sorted such as
labelle,] > labelle,] if i¥j. Let C. be the fundamental
circuit defined by e, with respect to P and 2, be its
length. Note that C=C,. %hen e: is labeled in step 9 (i.e.
f=e:), e is some e; (i>j). Then label[e:l=labelle,]+!F:-2
and #:=0;+.F:-2, because F=C:eC; (e denotes exclusive-or
of two sets). Then it is clear that f#,=f+1-labelle:] by
induction. So f:+labelle.]-2 = £~1 > k Then there are two
cases that

a) Cv is a face which has exactly one unlabeled edge

{Step 5),

and that

b) the graph is a simple circuit Cu (Step 14).
a) C: satisfies the inequality of step 7, which
contradicts the fact that Ci-{e.}&sP. b) C: does not
satisfy the inequality of step 14, which contradicts
answer="Yes’. Therefore P is a k-AS.

Second, we prove the converse, that is the graph G
does not have a k-AS if answer="No’. Suppose that graph G
has a k-AS and answer="No’. In this algorithm, P and Q are
updated one after another. Let the pairs of (P,Q) of each
step be (P1,Qi), (P2,Q2),..., (P, Q). Note that Pi=Qi=¢,
and Pi¢P;,QicQ; (i<j). Then there may be an integer t
which satisfies the following conditions.

(CONDITIONS)

IT:k-AS such that P €T, QinT=¢

5T:k-AS such that P:«1ST. Qee1nT=6b
The updating from (Pr,Q) to (Pi-1,Q:-1) can occur at step
8 (case 1) or step 12 (case 2). If such a number t does
not exist then there is a k-AS T such that Pn<T and
Q.nT=¢p (case 3). We prove that thay are all impossible.
{Case 1) Assume that such an updating from (P, Q:) to
(Prs1,Qt+1) occurs at step 8. Then,

Qe+1=Quuie}, Prer=Pru(F-le, f}).
Suppose that T is a k-AS which satisfies that P:¢T and
Q:nT=¢. By the definition of t, e€T or F-{e, f}¢T. Also by
the fact that a labeled edge is an outer edge,
E-(P1+1uQi+:) does not span two end vertices of any edge
of F-{f}. So, (F-{f}) contains at most one cotree edge of
a spanning tree which contains all edges of P: and none of

0:. Now two cases remain: i)F-{f}cT and i1)3heF-{f), h=e,
hzT.
i) £eT holds, and so, clearly Tulf}-{e} is also a k-AS.
This contradicts the definition of t.
ii) Clearly Tuth}-{e} is a k-AS, which contradicts the
definition of t.
(Case 2) Assume that such an updating occurs at step 12.
Then,
Pier=Py, Qu.1=Qeuif}.
There exists a k-AS satisfying that P:&T, QunT=¢, and
feT, by the definition of t. But this causes T to contain
a fundamental circuit of length more than k+1. This is a
contradiction.
(Case 3) P does not connect two end vertices of a labeled
edge of current graph. Hence P==T because of the
assumption of answer="No'. So Pa¢T and Q-nT=¢. Anyway,
Step 14 must be executed. Then there is an edge f such
that {e€F, fae and T=Pau(F-{f}). But label(fi+:Fi-3 2 k
holds, and there is a fundamental circuit of length
label [f]+!Fi-1 which contradicts that T is a k-AS. 1

TIME _COMPLEXITY:

It is O(E!) to identify ecE if it is an outer edge
since it is equivalent to check if G/e is 2-connected
which needs O(!E:). Therefore identification of all edges
in step 2 needs 0(iEi2)=0(:Vi2), Note that an outerplanar
graph has 0(n) edges.

Clearly step 1, 3, 4 and 14 have complexities of
0(n). Now we consider the loop from step 5 to step 13.

Each time this loop is excuted, either step 10 or 12
must be executed and at least one edge is removed from the
graph as a result. So this loop is repeated at most !E:
times which is O(n).

¥e show that the time complexity of this loop is
0(n). A face in step 5 is found by tracing outer edges
within O(n) steps. Clearly, the complexities of the other
steps (from 6 to 13) are O{n).

Thus the total complexity is 0(n2).

ACRNOXLEDGEMENT
Ne are grateful to Dr. Makoto lmase of NTT for
suggesting this field of research

REFERENCES

{1] B. Awerbuch: Complexity of Network Synchronization, J.
of ACM, Vol.32 No.4 (1985) 804-823.

[22 D. Peleg and J. D. Ullman: An Optimal Synchronizer for
the Hypercube, Symp. on Principles of Distributed
Computing pp. 77-85 (Aug. 1987).

