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Relationships among graph invariants such as the number of vertices, diameter, connectivity,
maximum and minimum degrees, and regularity are being studied recently, motivated by their
usefulness in the design of fault-tolerant and low-cost communication and interconnection net-
works. A graph is called a (d,c,r) graph if it has diameter d, connectivity c, and regularity r.
The minimum number of vertices in (d,1,3), (d,2,3), (d,3,3), and (d,c,c) graphs have been
reported in the literature. In this paper, the minimum number of vertices in a (d,c,r) graph with
r > c is determined, thereby exhausting all the possible choices of values for d, ¢, and r. Our
proof is constructive and hence we get a collection of optimal (d, ¢,r) graphs.

1. INTRODUCTION

The ever-increasing complexity of communication and interconnection networks has
provided the motivation for several studies on fault-tolerant and low-cost network
design problems. Graph invariants such as the number of vertices, number of edges,
diameter, connectivity, regularity, maximum and minimum degrees directly contribute
to the cost or fault-tolerance of a network, and the interrelations between these pa-
rameters can be profitably used in algorithms determining these parameters for a given
graph or in the algorithms for designing optimal networks with prescribed topological
properties. Some of the recent studies in this area are [1-7, 9-17]. :

Klee and Quaife [12] considered the problem of maximizing the distance over which
communication could be achieved in a network. The network should be capable of
tolerating at least ¢ — 1 failures of the communication stations and the resource used
should be minimum, the resource being the number of stations. Also each station
should be able to communicate directly with at least r stations. If the maximum distance
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between any two stations which communicate directly can be taken as one unit, then
the following graph-theoretic problems arise: »

1. Given d, ¢, and r, construct networks with minimum number of vertices, having
diameter = d, connectivity = ¢, and degree of every vertex = r.

2. Given n, ¢, and r, construct networks with maximum diameter, having the number
of vertices < n, connectivity = ¢, and degree of every vertex = r.

In [12], the first problem was solved. The problems become difficult when the
inequalities are replaced by equalities. In {11,13] the minimum number of vertices for
an r-regular graph with diameter d and connectivity = ¢ are determined for the com-
binations (d,1,3), (d,2,3), and (d,3,3) (for odd d in the last case) of (d,c,r), and such
graphs are classified and enumerated. It is also mentioned in [11-13] that they have
determined the minimum number of vertices for all the combinations of (d,c,r) such
that d is the diameter, connectivity = ¢, and r is the regularity.

Alternative approaches for the cases (d,1,3), (d,3,3), and (d,1,r) have been given
by Myers [14-16). Recently, Bhattacharya [1] has considered the case (d,c,c).

While Klee and Quaife consider graphs with connectivity (the minimum number of
vertices required to disconnect the graph or make it trivial) = c, the others consider
 the case where connectivity is equal to ¢. Our results show that the difference between
these two approaches surface only when d = 2. _

In this paper, wu(d,c,r), defined as the minimum number of vertices in a graph of
diameter d, connectivity ¢, and regularity r is determined ford = 2,c = 1,andr > ¢,
thus exhausting all the cases. The proof is constructive in nature and many cases are
to be considered. Though the methods of construction differ slightly in different cases,
it is interesting to note that the formulas for . coincide in many cases. Also the same
formulas hold good for the case 7 = ¢ considered in [1]. : ‘

In (7,10}, the lower bounds for the connectivity of a graph or a digraph have
been given in terms of the number of vertices, diameter, and maximum degree,
and, it is mentioned in [7] that these are found to be useful in the construction of
large graphs with given diameter and maximum degree. This construction of the
(A,D) graphs is receiving considerable attention in the current literature because of
its usefulness in the design of communication networks. Our result on p directly
provides an upper bound to the connectivity of an r-regular graph of diameter d on
n vertices; it also provides an upper bound for the diameter, given the other param-
eters n, ¢, and r. '

Boesch and Wang considered an important class of graphs called circulants and
determined an upper bound for their diameters in [6]. They also mention. that the
connectivity of a circulant can be easily determined. Since the circulants are regular
graphs, an upper bound for the diameter of a circulant can be readily determined now
in terms of the other parameters. :

Throughout this paper only undirected simple graphs without loops or multiple edges
are considered. Unless stated otherwise, we follow [ 18] for terminology and definitions.

- By a (d,c,r) graph, we mean an r-regular graph of diameter d and connectivity c.

By a dangler at w, we mean that part of an edge hanging from w, waiting to be
connected to some other vertex to form an edge. In other words, an edge (w,z) can
be created by fusing a dangler at w and a dangler at z, or, an edge (w,z) can be split
into two danglers, one at w and the other at z.
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1 for x odd,

Let ODD(X) = {0 for x even

N(w) = {(uv) € EG)}
and ) _
wde,r) = min{V(G) || G is a (d,c.r) graph}.

The functions p(3,c,7) and p(2,c¢,r) will be determined in Section 2, and p(d = 4,
¢,r) will be determined in Section 3. In Section 4, the results are consolidated and
modified to get upper bounds for ¢ and 4.

We assume r > ¢ = 1 throughout our discussion. Even though we have excluded
the case r = c, it can be seen that our method can be easily adapted to this case with
slight modifications. '

2. GRAPHS WITH DIAMETER AT MOST THREE

First, we determine w(3,c,7) and then consider the case d = 2.
Theorem 1. p(3,c,7) = 2r + 2.

Proof. letd = 3.

Suppose ¢ = 1. Let w be a cutvertex on an endblock of G. Since d = 3, there
exists at least one endblock of G (containing w) such that w is adjacent to all the other
vertices of this block. This endblock has less than r vertices and hence degree of any
noncutvertex of this block is <r, a contradiction. Hence let ¢ = 2.

Take V(G) = {u,v,N,,No}, where Ny = {1,2, . . ., and N, = {I',2, . . . ,r'}.
Make {u} U N; and {v} U N, as complete graphs. Introduce the edges {(i,i )|1 i<c}
If ¢ is even, delete the -edges (1,2),(3,4),...,(c — l,¢),

(1’,2,(3',49, . . . ,{(c — 1)',¢"), and, if ¢ is odd, introduce the edge (1,2") and
delete the edges (1,2),(1,3),(4,5),(6,7), . .. ,(c — 1,¢),(1",2"),(2",3"),
@.,5", ..., ((c — 1),c"). This gives a (3,c,r) graph and the minimality of the
number of vertices is obvious since [N(u| = [N(v)| = r. _ n

Let d = 2 for the rest of this section. . )

In this case, first it is shown that the connectivity ¢ is 2 3. Next, it is proved that
whenc = 3, the regularity r cannot be > 6, and the minimum order of (2,3,4),(2,3,5),
and (2,3,6) graphs are determined. In the case where ¢ = 4, a necessary condition in
the form of an inequality having a quadranc expression is obtained. Three different
subcases arise depending on the roots of the corresponding quadratic equation and the
required graphs will be constructed in each of these cases.

The following notation is used in this section. Let V(G) = C U X U Y where C
is a cutset of G with ¢ vertices, X is the union of some of the components of G — C,
Y is the union of the remaining components of G — C, and both X and Y are nonempty.

- Let |X| = |Y] for the sake of definiteness. Note that there cannot be any edge between

a vertex of X and a vertex of Y. Since d = 2, every vertex in X or Y is adjacent to
at least one vertex of C. Hence [X| = r — ¢ + 1. Let.CX (CY) denote the number
of edges between C and X (Y). Hence CX + CY =< cr; CX = [X]; CY = |Y).



28 KRISHNAMOORTHY, THULASIRAMAN, AND SWAMY

Lemma 1. There does not exist a (2,c,7) graph forc <2 and r > ¢.

Proof. It is easy to verify that a (2,1,r) graph does not exist. Suppose G is a
(2,2,r) graph. Since (the vertices of) C can be adjacent to at most cr = 2r vertices
of XU Y, wehave[XUY|<2r Since [Y] = |X|=r —c+ 1 =r — 1, we have
Xl=r—-1orr

If |X| = r — 1, then X is complete and every vertex of X is adjacent to both the
vertices of Cand hence r — 1 < Y] < CY < 2r — 2(r — 1) = 2. This implies r = 3
(since we consider only the case r > c) and [¥] = 2. Hence Y is complete and every
vertex of Y is adjacent to both the vertices of C. This gives CY = 4, a contradiction.

. If|X| = rthen|Y] = r and since CX + CY < 2r, any vertex in X U Y is adjacent
to exactly one vertex of C. This 1mp11es that there exist x € X and y € Y such that
d(x,y) > 2, a contradiction.

Hence G cannot be a (2,2,r) graph. |

Lemma 2. If Gisa(2,3,7) graph then r < 6.

Proof. 1t can be easily verified that when r = 4,5, or 6, p is 7,12, and 13
respectively. The corresponding graphs can be constructed having 2 + 2,3 + 6, and -
4 + 6 vertices in X U Y. See Figure 1 for examples. In the figures, a rectangle
represents a complete graph on the vertices inside it and a dotted line represents an
edge which is deleted to get the required graph.

Letr=7. Wehave[X|=r —c+ 1 =r — 2.

Casel. Let|X] =r — 2. .
This implies that every vertex of X is adjacent to every other vertex of X and hence

r—-2=r—-c+1s IYI CY<cr-r+c-1=

This gives r < 8.

Suppose r = 7. This means [Y| = 5. If [Y] = 5 then every vertex of Y is adjacent
to every vertex of C and hence CY = 15, a contradiction to CY < 6. Similarly if
[¥] = 6, we have CY = 12, a contradiction.

Suppose 7 = 8. This implies [Y} = CY = 6. But |¥Y| = 6 implies CY = 18

(=|¥](r ~ |¥] + 1)), a contradiction, and case 1 is impossible.

Case2. Let|X|=r — 1. _

Here CX=2(r— 1) and CY<3r —-2(r — 1) =r + 2. Hence r — 1 <
Yl<r+2

If|jYl =r — | then CY = 2(r — 1) and thxs implies 2(r — 1) =< r + 2. Hence
r < 4, a contradiction.

If r < |¥] < r + 2, then at least r — 2 (that is, = 6) vertices of Y are adjacent to
exactly one vertex of C (since CY < r + 2). If a vertex y € Y is adjacent to exactly
one vertex of C, say, c¢;, then ¢, should be adjacent to all the r — 2 vertices of X,
because d = 2, and hence c, is adjacent to no other vertex of Y. Since ¢ = 3, C can
accommodate at most 3 such vertices from Y and this implies |¥] < 3, a contradiction.
Hence case 2 is impossible.
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Case 3. Let|X|=r.

Here |Y] = r. As we have just seen, if a vertex of X (Y) is adjacent to exactly one
vertex of C, say c|, then ¢, must be adjacent to all the vertices of ¥ (X) and this gives
deg ¢; > r, a contradiction. Hence every vertex in X U Y is adjacent to at least two
vertices of C and hence CX + CY = 4r, a contradiction to CX + CY < 3r. This
implies that case 3 is also not possible.

This completes the proof of the Lemma. ]
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In view of Lemmas 1 and 2, let ¢ = 4.
LetGbea(2,c,r)graph. Let[X| =r —c+ 1 + kand|Y} =r —c + 1 + m,
where k,m = 0. Our aim is to minimize k + m. We have

CXz(r—c+1+k(r—(r—c+k)
CY=(r~c+1+mr—(r—c+m).

Letx =r —2c+ 2andy =k + m.
Now cr 2 CX + CY gives on simplification

Y+yx—-1D—ex—2km=0 1))

Note that it is necessary for k and m to satisfy (1), but just this alone is not sufficient
to construct a graph with these values of k and m.

Itisobviousthaty = k = m = Osatisfy (1) whenx < 0, thatis whenr < 2¢ — 2.
We shall construct a (2,c,r) graph on 2r — ¢ + 2 vertices (that is y = 0) when
c=4, r<2c — 2, and cr is even, and on 2r — ¢ + 3 vertices when ¢ = 4,
r=<2c — 2, and cr is odd. An extra vertex has to be added when ¢ and r are odd,
since there cannot exist a regular graph of odd degree on an odd number (2r — ¢ + 2)
of vertices. - :

Let cr be even.

Let|X] = [¥] = r — ¢ + 1and|C] = c. Make X and Y complete separately. Add
all possible edges between X and C, and between Y and C. On the vertices of C
construct a regular graph of degree 2c — 2 — r. Since atleastone of cand2c — 2 — r
is even such a graph can be easily constructed as in Harary [8] and the resulting graph .
is the required (2,c,r) graph.

Since the construction of an s-regular graph on ¢ vertices will be used later with
some modifications, we describe it here. The additions in the following are to be taken
as modulo ¢. )

Let the z vertices be {0,1,2, . . . ,t — 1}. If siseven, joinitoi + jwhere 1 < j < 512
and O0<i=<t— L If s is odd, (then ¢ will be even), join i to i + j, where
1<j<|s2] or j=#2 and O0<i<t— 1. In these graphs the edges
0,1),(2,3),(4,5), . . . , give a set of independent edges and (0,|s/2] + 1), (1,[s/2]
+ 2), . . ., give a set of independent edges which are not present in the constructed
graph. , :

Let ¢r be odd. This gives r < 2¢ — 3 instead of r < 2¢ — 2.

Let [X| =r —c+ 1and }Y] =r — ¢ + 2. Make X and Y complete. Add all
possible edges between X and C. Let V(Y) = {y} and V(C) = {c;}. Join y; to every
vertex of C except ¢;. Since r < 2¢ — 3, we have ¢ 2 r — ¢ + 3 and hence at this
stage of construction, say H,

de _J2r = 2c + 2 forisr—c+2
8uCi = Yor — 20 + 3 fori>r—c+2

Consider a regular graph of degree 2c — 3 — ron ¢ vertices. Introduce (r — ¢ + 2)/2
independent new edges. This gives a graph on c¢ vertices, with r — ¢ + 2 vertices of
degree 2c — 2 — r and the remaining vertices of degree 2c — 3 ~ r. Imposing this
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graph on H such that every vertex of C is of degree r, we get the required (2,c,r)
graph. We have proved

Lemma3. pR2,c=4,r<2c—2) =2r+ 2 — ¢ + ODD(cr).
Let c = 4 and r > 2¢ — 2 (that is x = 1) henceforth.

Letfy) =y +yx— 1 — ex.
(1) implies f{iy) = 0 2
Let s be the least nonnegative integer satisfying f(s) = 0. Hence
[(—(x = 1) + V(x = 1)* + 4cx 2] (since x = 1 implies that one root of f{y)
is negative and the other positive).

Note that s = 0 if we consider ¢ < r <2¢c — 2, thatis whenx < 0, and s
when r > ¢(c — 1), because in this case flc — 1) <0 andj(c) > 0.

[

I
o

Lemma 4. Suppose there exists a (2,c,r) graph G with k = Oand m = 5. Then G
has the minimum number of vertices; that is wn(2,c,r) = |V(G)|.

Proof. Suppose w(2,c,r) < |V(G)| = 2r + 2 — ¢ + s. Then there exist some
kymi=0such that t = k; + my <sand 2 + t(x — 1) — cx = 2kym; = 0. By
the definition of 5, we have s < ¢, a contradiction. . u

Lemma 5. Letr(c + s) be odd. Suppose there exists a (2,¢,r) graph G with k = 0
and m = s + 1. Then |V(G)| = wn(2,c,r).

Proof. The extra vertex is added to make |V(G)] (= 2r — ¢ + s + 3) an even -
number, since r is odd. The proof of this lemma is similar to that of the previous
one. |

Lemma 6. A graph G as described in either of the previous two lemmas exists iff
r<c(c — 1.

Proof. Suppose there exists a (2,c,r) graph with k = Qand m = sors + 1.
Sincek = 0, wehave CX = (r — ¢ + Dcandhencer —c+ 1 + m=|Y| < CY

= c(c - D).
That is,
m<c-r-1. 3)
We know
(- D+ V-1 +dx)2<s<m. | @

Combining (3) and (4) and simplifying, we get r < c(c — 1).
To prove the sufficiency, let 2¢ — 2 <r =< ¢(c — 1). The required graph is con-
structed as follows.
Let|Cl=c, X =7 —c+ 1and

v = r—c+2+s for r(c + s) odd
- + 1+ s forr(c + s) even.

21
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- Starting from r < ¢(c — 1) and working backward in the simplification carried out
proceeding from (3) and (4), we get :

(—x-D+ V-1 +dx)2<sE—r— 1.

Since the RHS is an integer, the above implies s < ¢ — r — 1. Hence

r—ct+l+s=clc-1D. (5)
If (c + ) is odd then the LHS of (5) is odd, and since the RHS of (5) is even, we
have r — ¢+ 2 + s<c¢(c — 1) in this case. This along with (5) _implies
I < c(c — 1). , ,

It is easy to check that f{—cx) > 0, 0) < 0, fc) > 0, and f{z) > 0 for z not in
the interval given by the roots of Ay) = 0. Whenr < ¢(¢ — 1), we havelc -~ D=0
and hences < ¢ — 1. Thisgives|¥] < r + 1, equality holding only whens = ¢ — 1
and r is odd. ) .

Suppose |¥] = r + 1 is an even number. Complete X U C and Y. Delete a perfect
matching from Y (that is, from edges with both the endpoints in Y). Delete (r + 1)/2
edges from C, deleting at least one edge from each vertex (such a deletion is possible
since c(c — 1)/2 edges are available within C; ¢(¢ — 1)/2 = r/2; since r is odd and
LHS is an integer we have c(c — 1)/2 = (r + 1)/2; and since r = 2¢ — 2,
(r + 1)/2 = ¢). Join gach vertex of Y to exactly one vertex of C, so that the degree
of every vertex of C becomes r. The resulting graph is the required graph.

Suppose [¥] < r. Complete X and Y. Introduce all the edges between X and C. This
implies that it is necessary. to have CY < ¢(¢ — 1), and this is assured as follows.
Since we have takenk = Oandm = sors + 1, we havey = k + m = s and hence
JAy) = 0. This is the same as cr = CX + CY and this implies CY < c(c — 1).

Join every vertex of Yto p =r + 1 — |¥] (= c — 5 — ODD r(c + 5) <.c)
vertices of C in a cyclic fashion. That is, taking V(C) = {0,1,2, . . . ,c — 1},
V(Y) =l joiny t0{0,1,2,. .. p— 1}, ;o fpp + 1, . .. 2p — 1}, y3 to
{2p.2p + 1, ... ,3p — 1}, etc., where the vertices of C are-taken modulo c. In this
way, g degrees for the vertices {0,1,2, . . . ,a} for some a<c — 1, and ¢ — 1
degrees for the remaining vertices{a + 1,a + 2, . .. ,c — 1} of C are used for some
q < r(q < r is assured by CY < ¢(c — 1)). Hence, now we have to increase the
degrees of the vertices {0,1,2, . . . ,a} by {= r — ¢ = 0) and the degrees of the
vertices {a + 1,a + 2,...,c — 1} by t + 1, to get an r regular graph. This is
done by imposing graph H on C as follows.

~ The graph H should have a + 1 vertices of degree ¢ and ¢ — a — 1 vertices of
degree # + 1. Consider Z,ey degy v=(a + I)t + (c — a — 1)t + 1) =
c(c — 1) = |¥](r + 1 — [¥]). If|Y] is odd then necessarily r is even by the definition
of |¥], and hence 2,¢, degy v is even. This assures that in the degree requirements
for H, the number of odd degree vertices is even. Consider a regular graph of degree
mon c vertices, where misevenand mistort + 1. If m = ¢, introduce (c—a—-—DR2
new independent edges; if m = ¢t + 1, delete (¢ + 1)/2 independent edges already
present. The resulting graph is H. H is imposed on the vertices of C in the obvious
way to get the required r regular graph., n
Combining Lemmas 4, 5, and 6, we have,
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Lemma7. w2, c=4,2c—2<r<clc—-1)=2r+2—-c+ s+ ODD
r(c + s).
Lemma 8. p(2,c=4 r>(c(c—-1))—-2r+2

Proof When r > c(c — 1), we have flc — 1) <0 and flc) > 0. Hence
s = k + m = c and this implies p = 2r + 2. Graphs achieving this bound will be
constructed which will prove the lemma. See Figure 2 for examples of this construction. -

Case 1. Letr — |c/2] + 1 be even.
Let[X] = |Y] = r — [¢/2] + 1. LetX = X, U X,, where each X; has exactly half
6

the vertices of X. Let Y = Y, U Y, be defined similarly. Let C = U C;, where C/’s
i=1
are mutually disjoint and

lcr4] forl<i<4
0 for 5 < i < 6 and |c/2| even
1 for 5 < i =< 6 and |c/2| odd.

ICiI =

Hence

for ¢ even
ICI {c -1 for ¢ odd.

Complete X,Y,CA = C, U C, U Csand CB = (3 U C4 U Cg. Introduce all pos-
sible edges between X, and CA, and between X, and CB. The edges between C and
Y are to be introduced in such a way that the distance between the vertices of X and
Y or between the vertices of C is < 2. Since r — [c/2|+ 1 = [¥] > 9, we have
|Y| > 4, fori = 1,2. Let uy,u2,u3 € ¥, and v,,v,,v3 € Y,. Join
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u withC,UC UG, .
v with C, U C; U Cg,
u;  withC, U C, U Cs,
and
V2 with C, U C5 U Cs.
In case Cs and Cq are nonempty, for some w € C,, join
U with C, U Cs U Cg U (C, — w)
and
V3 with {w} U C5 U C,.

These connections ensure the distance requirements for the vertices within C. Now,
the edges at the remaining vertices of ¥, are defined similar to those of u,; and for the
remaining vertices of Y, they are as those of v,. This ensures the distance requirements
between the vertices of X and Y.

The resulting graph is a (2, 2|c/2|, r) graph on 2r +.2 vertices. If C is even, this
is the required graph. If C is odd, this graph is modified as follows.

Letx € X5,y € Y, — {v,2,v3}, w2 € C;, and w; € C,. Introduce the edges (x,y)
and (w;,w;), and delete the edges (x,ws) and (y,w,). Now, instead of C, the set

Ul on Culy) u a minmimom
Cu.bi .E'SAH/E- C ~uanoben. o4 yanb ey
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c=7; n=45

FIG. 3.

In Figure 2, the edges at many of the vertices are not shown, and for these vertices
the pattern of connection will be similar to that of a vertex whose connections are
shown.

Case2. Letr — |c/2] + 1 be odd.

Construct a (2,c,r — 1) graph on 2r vertices as in case 1. Note that the assumptlon
r > c(c — 1) was used in that construction only to get |Y;] > 4. Since this inequality
holds good for r — 1 also, such a construction is possible and gives a (2,c,r — 1)
graph.

Introduce two pew vertices u and v. Join u with every vertex in X U CA and join
v with every vertex in Y U CB. Now the degree requirements are satisfied for all the
vertices, but not the distance requirements. Let w, € C,, w,; € C5, and ws € Cs.
Introduce the edges (v,w,) and (w,,ws). Delete the edges (w,,w,) and (v,ws). It is
easy to verify that the modified graph is a (2,c,r) graph. ]

Figure 3 shows only the modification to be carried out, starting from the graph of
Figure 2b. '

It is interesting to note that the formulas obtained in all the cases con51dered here
for d = 2 and the one n(2,c = 2,c) = ¢ + 2 + ODD c given in [1] can be put in
a single formula. Let s be defined as follows for all values of ¢ and r. Let s be the
least nonnegative integer satisfying {y) = 0, where {y) = y* + y(x — 1) — cxand
x =r— 2 + 2.Notingthats = Oifc <r<2c — 2ands = cifr > c(c — 1),
we have

Theorem 2. Supposer = 2whenc = 2,andr < 6 whenc = 3. Then, p(2,c = 2
r=zc¢)=2r+2—-—c+ s+ ODDr(c + 9).
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3. GRAPHS WITH DIAMETER AT LEAST FOUR

letd=4,c=1,and r > c.
In this section, we distinguish two special vertices u and v in the graph G, such
that d(u,v) = d. Then, let

N, ={wdwu) =i} for0<sisd-2
Nooy = (Wldowu) =d — Landw # v}
and
N; = {}

The definitions of ¥;_ | and N, are altered from the usual definition of the neighborhoods
in order to make our discussions easier.

Since any vertex in N; can be adjacent to vertices of N;_,, N;, and N;., only, we
get -

INioo| + [N + Nigl] =2r+1 forl<sisd-1 00}
and , o
Vi = 7, Naeo| = 1. ' 2)
Also
INj=c¢c for2sisd-2. €)]

The number of vertices in each N; will be first fixed to be the minimum, satisfying
the above inequalities. The conditions under which this number of vertices will give
the required graph will be studied. The problem arises when the connections between
the consecutive N;’s could not be fixed satisfying all the requirements and in these
cases the number of vertices is not enough. Some more vertices will be added in these
cases, making sure that the number of such vertices added is minimum. Usually, the
problem is in the connections between N, and N in one end, and possibly between
Nz, and N, in the other end. The connections between the other consecutive N;'s
are fixed easily. We show that, when there is a problem at both ends, an adjustment
in one end would result in a chain reaction of edge adjustments and possibly introduction
of some new vertices. This chain reaction stops only when it reaches the other end
and solves the problem of that end also. When the problem arises in exactly one end,
it is solved by the introduction of just one vertex, and no chain reaction occurs.

The constructions naturally split into two major cases. When » < 3¢, we can start
with N;’s, 2 < i < d — 2, each having exactly ¢ vertices, but this will not be the
case when r = 3c.

Case 1. Letr < 3c.

If ¢ = 1 then r = 2. Since a (d,1,2) graph does not exist let ¢ = 2.
Let [N)| = |[Noy| = rand [N] = ¢ for 2 < i < d — 2. The inequalities (1), (2),
and (3) are satisfied and the total number of vertices at this stage is 2r + 2 + (d — 3)c.



MINIMUM ORDER GRAPHS 37

Complete each N; and- add all the edges between u and &,, and between N, and v.
Now the interconnections between the consecutive N;’s are to be given.

By the statement “let (s,7) be the connection at N;,” we mean that every vertex of
N; is adjacent to s vertices of N._, and ¢ vertices of N;,,. The connection between N;
and N;,, is done in the circular way, as given below. Let the vertices of N;
2=i=sd - 2)belabeledas 0,1,2, . . . . We are using the same labels for vertices
of different sets, but this is being done deliberately to avoid cumbersome notation.
We specifically mention to which set a label belongs, whenever it is not clear from
the context. The vertex j of N; is adjacenttoj,j + 1, ...,j + t — 1 of N;,,; where
the numbers are taken modulo |V, .,|. By a “connection scheme” we mean the sequence
of connections at N,,¥s, . . . ,N,,. Note that if (s,#) and (p,q) are two consecutive
connections at N; and N, , in a connecting scheme then¢ = p, provided [N} = |N,,,|.

Lets +t=r—c+ l,where|s — 7 < 1. Sincec <r < 3c, wehaves + t =2

“and 1 =< s,t < c. Consider the connection scheme (s,2),(t,5),(s,1), . . . ending with

(s,2) if d is even and with (2,5) if d is odd. This gives all the inferconnections between
N;and N;;,, 2 <i=d — 3. Now only the connections between N; and N,, and
between N, , and N, are to be given. '

Since N; U {u} is made complete in the beginning, degree 'of every vertex in N, is
already r. So, to accommodate the edges from N,, some edges of N, (that is, edges
having both the endpoints in ;) have to be deleted. Since removal of k edges from
N, produces 2k danglers and accommodates 2k danglers from N,, this implies that the
number of edges between N, and N, (and similarly between N,_, and N, ;) must be
even.

For the connecting scheme (s,2),(2,5),(s,2), . . . ,there are cs danglers at N, to be
accommodated at N;. Two other conditions to be satisfied by any connection between
N, and N, are the following. Multiple edges should not be produced and at least ¢ -
number of vertices of N, should be connected to N, by edges.

The following step accommodates all or most of the danglers from N, satisfying
the above conditions.

Let {0,1,2, . . . ,r — 1} be the vertices of N,. Let |s/2} = p and |t/2] = q. Since
s<r—c+ 1l,wehaver —p=c + p.-

Step A. If p = 0, nothing is performed in Step A. Let p = 1. The edges of N,,
joining {0,1,2, ... ,p — 1}-and {p,p + 1, ... ,r — 1} can be represented by a
p X (r — p) array. Starting from the square (0,p + i) and moving in the direction
of the main diagonal until the square (p — 1, p + { + p — 1) is reached, we get p
squares which give an independent set of p edges, for-each i, 0 < i< ¢ — 1. (This
is possible since 2p + ¢ — 2 < r — 1 and the square (p — 1, 2p + ¢ — 2) exists
in the array.) By removing these p edges, accommodate 2p danglers from the vertex
iof N, for 0 <i=<c — 1. End of Step A.

Note that Step A can be carried out between N, and N, smularly

We consider three major subcases at this stage. They are:

Without the introduction of new vertices,

1.1) the number of danglers from N, to N, and the number of danglers from N,
to N4, both can be made even,

1.2) exactly one of the above two numbers can be made even, and
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1.3) none of the two numbers can be made even.

Inclusion in any of these three categories depends on the values of d, ¢ and r. The
following table shows the relation between the values of d,c,7 and the above classi-
fication.

Case c r d Type ODD cr(d-1)

a) : even —_ — 1.1 0
b) odd odd odd 1.1 0
c) odd odd even 1.2 1
d) odd even, : _— 1.1 0
r<ic-1 .
e) ' odd even, d=4 1.1 0
) r=3-1
) odd r=3-1 d=35 1.1 0
g) odd r=3-1 d=6 1.3 —

Subcase a. c is even. \ .

This implies cs is even. If 5 is even, Step A exhausts all the danglers at N,. So, let
s be odd. At the end of Step A, the vertex i of N, is not adjacent to 2p + i
(S2p+c—-1<r—ts<r-1)of Ny, and one dangler remains at each vertex
of N2.

Step B. Introduce the edges

{G,2p+o<is<c~-1}CN, x N,

and delete theedges (2p, 2p + 1),(2p + 2,2p + 3), . .. 2P +tec—2,2p+c-1
from N, and this gives the required connection. End of Step B.

Similar procedure at the other end (between N, , and N ;) gives the required graph.

Subcase b. d, ¢, and r are all odd.

Here s + t = r — ¢ + 1 is odd and hence in {s.1} one is even and the other is
- odd. Let s be even. Since d is odd, the connecting scheme is (s,2),(z,5), . . - S(1,5).
Since s is even, Step A gives the required graph.

Subcase d. ¢ is odd, r is even, and r < 3¢ — 1.

Here s + tis even, s = ¢ and both are even or both are odd. If both are even, the
solution is obvious. Let both be odd. Since 7 < 3¢ — 1, we have s + 7 < 2c; 81 <
cand s,t < ¢ — 2 (since cis odd). Splitr — ¢ + lass — landt + 1, instead of
s and t. Both these numbers are even and <c. Consider the new connection scheme
as(s— 1, t+ 1), (t+ 1,5 — 1), ... instead of (s,7), (2,5), . . . . This scheme
is feasible since s — 1, ¢ + 1 < ¢ and Step A at both ends gives the required graph.

Subcase e. cisodd, r = 3c — lisevenand d = 4.

Heres =t = cand N, = N,.

Step C. Perform Step A, and then as in Step B, accommodate the even number of
single danglers from the vertices {0,1, . .. ,c — 2} of N, at N,. Similarly accom-
modate such danglers from N, , (= N,) at N_,. End of Step C..

Now two danglers from ¢ — 1 of N, are left out.

Step D. Delete the edge (2¢ — 1, 2¢) from N4, and introduce the edges {(c -1,
2¢ = 1),(c — 1,2c)} €N, X Ns. End of Step D.
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Since 2p + ¢ — 1 < 2¢ — 1, the vertex ¢ — 1 of N, was not adjacent to the
vertices 2¢ — 1 and 2¢ of N,, while performing Step D. Since ¢ is odd and >1, we
havec = 3,5 = ¢t = ¢ = 3, p = 1 and hence during Step A, N, (N..,) is connected
to at least ¢ vertices of Ny (N,) directly by edges. This ensures that after Step D,
d = 4 and the connectivity is c.

Subcasef.cisodd,r = 3c — l,andd = 5.

After Step C, one dangler each at N, and N, are left out. Delete the edge (¢ — 1,
¢ — 1) € N; X Ns, to get one more dangler each at N, and N5. Now Step D performed
at both the ends gives the required graph.

In this case also, ¢ = 3 and this ensures that the diameter and connectivity do not
change, though we have deleted one edge between N, and Ns.

Subcase c. ¢ and r are odd, and d is even.

Heres + t = r — ¢ + 1 is odd and hence for any combination of s and ¢ one is
even and the other odd. Let s be even and ¢ be odd.

Since ¢ is odd and =2, we have ¢ = 3. The number of vertices considered till now
is2r + 2 + c(d — 3), an odd number. Since there cannot exist an odd regular graph

on odd number of vertices, at least one more vertex is to be added to construct the

graph.

At the end of Step A at both ends, the connection between N; and N, is completed,
and one dangler each from the vertices of N, , will be remaining. If + = 1, then
- q = |£/2_| = 0 and no connection would have been made between N, , and N, ,; in
this case, delete a hamiltonian cycle from N,.,. This increases the number of danglers
at each vertex of Ny, to 3 (<c). Now ¢t = 3 and ¢ = 1, at N.,. Using Step A,
accommodate two danglers from each vertex of N, ,, and N, will now be connected
to at least ¢ vertices of N, ; by edges, this being essential to preserve the connectivity
and diameter of the graph.

Step E. Introduce a new vertex w and the edges

{wddsis<c—-1}C{w X N,
and
{wlg<j<sqg+r—c—1}C{w} X Naooy.

Delete the edges S =1{(g. ¢+ 1), (9 +2, gq+3),...,(q+r—c—2,
q + r — ¢ — 1)} from N ,. End of Step E.

Since every edge in § has both endpoints with labels =q, they have not been deleted
in Step A. The resulting graph is the required one. Note that N, is still a minimum
cut and the diameter is unchanged.

Subcase g. cisodd, r = 3¢ — 1, and d = 6.

Since d — 3 = 3, there exists an i such that 3 < i < d — 3 and for every such i,
Wiyl = |IN] = [Niga| =s =1 = c. This implies that every vertex x of N;
(3 <i=d — 3)is adjacent to all the vertices of N._, U (NV; — x) U No,, and s and
t could not be adjusted as in Subcase d. Suppose anedgeatx EN,3 <is<d — 3,
is deleted. To compensate for the loss in the degree at x, it should be made adjacent
to a vertex of N, U N; U N;,; to which it was not adjacent previously. Since no
such vertex exists, none of the edges at any vertex of N;, 3 <i=<d — 3, can be
deleted without introducing any new vertex.

< Nyy
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After carrying out Step C at both ends, we are left with a'single dangler at ¢ — 1
of N, and a single dangler at ¢ — 1 of N,,. That the lonely dangler at N, (N.»)
cannot be adjusted within N; U N, (N, U N, ;) is obvious. We have just noted that
no modifications can be carried out using vertices of ¥, 3 <i=<d — 3, without
introducing new vertices. Hence the graph cannot be constructed without introducing
a new vertex.

Since the introduction of any number of new vertices always gives rise to an even
number of danglers (since r is even), a lonely dangler can only be transferred from
one place to the other and it cannot be destroyed unless it is paired with the other
lonely dangler already present. To pair the lonely dangler at N, with the one at N ,,
it has to be shifted to the right, by introducing new vertices. Note that any new vertex
introduced should be adjacent to vertices in N;, N;,;, and N;,, only, for some i, in
order to maintain the diameter, and this new vertex acts as an element of N;,, con-
sidering its adjacencies. :

Suppose there is a lonely dangler at N; and exactly one new vertex w is introduced.
It can be shifted to w or to N; 2, N;13 or N;,, to the right. (That it cannot be shifted
any further to the right can be easily verified.) Figure 4 gives a schematic diagram
depicting these cases. The new vertex w is adjacent to {0,1, . . . ,¢ — 2} of N;, Ny,
and N;,,, where j = i in the first three cases and j = ¢ + 1 in the fourth case. The
edges {(0,1),(1,2), . . . ,(¢c — 3,c — 2)} are deleted from N;, N;,,, and N, .. The
adjustment with the remaining two danglers of w are shown in Figure 4. The thick
arrow from N, is the dangler being shifted and the thin arrow represents the new dangler
being created. Dotted line represents an edge being deleted and an ordinary line .
represents a new edge being introduced.

Suppose d = 6, 7, or 8. By introducing one new vertex w, the lonely dangler at
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N can be transferred to N, by using case 2, 3, or 4. This dangler along thh the
one already available at N, , can be easily accommodated at N ,.

Let d = 9. By introducing a single new vertex, the lonely dangler at N, can be
transferred at most to N, but this cannot be paired with the one at N, without further .
addition of new vertices. Note that case 4 can be used only once, at N; = N., since
two new edges are being introduced between N; and N, ; in this case. Only the other
cases can be used consecutively any number of times. This implies that a minimum
of [(d — 5)/3] new vertices are to be introduced to construct the graph. Figure 5 gives
the schematic diagram of such graphs for the cases d = 9, 10, and 11, and the other
cases follow similarly. s = ¢ = 3 implies that the connectivity and diameter do not
change by any of the above steps in the construction.

- This completes the construction in case 1.

Case 2. Letr = 3c.
Here ¢ = 1.
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Let Wll = I'Nd—ll = rand
IN-|={C for2<i<d— 2andimod3

Oor2
1.

I

r—2c+1 for2<i=<d-— 2andimod?3

Since equality holds in (2) and in (1) for 3 < i < d — 3, this number of vertices
is essential to construct the graph.

* Make each N; complete. Add all possible edges between N; and N,,., for all i,
2=<i=sd — 3.Joinu(v)toevery vertex of N, (N,). As before, only the connections
between N, and ,, and between N, , and N, are to be specified.

The number of danglersleftat Ny is o(r — 2¢ + 1)andatN,,itiscCor(r — 2c + 1)c
depending on whether d mod 3 is 1 or not. Let s(z) be the number of danglers at each
vertex of Ny (Noo).

Subcase h. Let ¢ be even. o

At each end perform Step A or Steps A and B depending on whether s or ¢ is even
or odd. It can be easily checked thatc(r — 2c + 1), <r(rs1)r —p=c+p y~\
andr — g=c + g, where p = |(r — 2c + 1)2| = |s/2| &ad q = [#2]. Hence
the above steps could be carried out and this gives the required graph.

Subcase i. Let ¢ and r be odd.

Here s = r — 2¢ + 1 is even and Step A is enough at N,.

Ifdmod3 = 0, then [N, = r — 2c + 1, ¢ = ¢, and hence use Steps A and B
at Nd_z. :

Ifdmod 3 = 2, then [Ny = ¢, t = r — 2¢ + 1, and hence Step A is enough
at N, d-2- .

Let d mod 3 = 1. Here [Ny,| = t = c. The number of vertices considered till
now is 2r + 2 + [(d — 3)3)(r + 1) + ¢, an odd number: Since r is odd, at least
one more vertex is needed to construct a graph. If ¢ > 1, then Steps A and E give
the required graph. When ¢ = 1, if we use Steps A and E, it will increase the diameter.
Hence we proceed as follows.

Letc = landd = 4.

If r = 3, then ¢ = 1 implies that G has a bridge, say, (x,y). Since d = 4, at least
one of x and y is adjacent to all the other vertices in the component containing it in
G — (x,y). This contradicts the regularity of G and hence r # 3. Since 7 is odd,
r = 5. Instead of (r — 1, 1), consider the connection (r — 3, 3) at N,. Since r = 5,
we have r — 3 = 2. It is easy to check that the application of Steps A and E now
gives the required graph.

Letc = 1and d = 7. Here [Nas| = r — 1, an even number. Introduce a vertex
w, join it to all the vertices of N, 3, and delete a perfect matching from N,.;. Now
one dangler from w and one dangler from the unique vertex of N,,_, are remaining and
they are accommodated at N,,. This preserves the diameter. Since N, is still a cut
vertex, the connectivity remains one.

Subcase j. Let ¢ be odd and r be even.

Note that when ¢ = 1, r has to be >2, Hence r = 4.

If d = 4, consider the connection (r — 2¢, ¢ + 1) at N,. Now Step A at both ends
gives the required graph. '

If d = 5 and ¢ > 1, construct as in Subcase f. If ¢ = 1, the method of Subcase f -
will not work, since there is exactly one edge between N, and N3. Also [No] = [N5| = 1
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implies that there should be an odd number of edges connecting N, and N, or N5 and
N,, which is impossible. Hence at least one more vertex is to be added to construct
the graph. Take [N, = 1 and |N;| = 2. Complete N; and consider the connections
(r — 2,2)atN,and (1, r — 2) at N;. Now Step A at both the ends give the required
graph. '
Letd = 6.
Redefine the number of vertices in N, 2 <i<d — 2 as
c forimod3 = 2
Nl =<d¢c+1 forimod3 = 0
r— 2c forimod 3 = 1.

Complete each N; and add all possible edges between N;and N, for2 < i=<d - 3.
The number of danglers left at N, is c(r — 2¢) and at N, it is ¢(c + 1) or
(¢ + I(r — 2¢) or (r — 2¢)c, an even number in any case. These danglers are
accommodated as usual. If d mod 3 is O or 1, this modification does not change the
total number of vertices. If d mod 3 = 2, then exactly one more vertex is added. We
show that this is essential.

So, let d mod 3 = 2. Suppose exactly [(d — 3)3|(r + 1) + 2c vertices are
allowed in U723 N;. It is easy to see that the only sequence of d — 3 integers = c,
with at least one of them equal to c, such that the sum of every three consecutive
elements is =r + 1 and the total sum as above is

cer —2 +l,cer —2c+ 1, ... ,c,er — 2¢ + 1,cc.

This is the allotment with which we started and in this case the number of danglers
left at N, or Ny, is ¢(r — 2¢ + 1), an odd number. Steps A and B will leave two
lonely danglers one at N, and the other at N, ,. These two cannot be brought together
without an increase in the number of vertices, as noted in Subcase g. Hence the
introduction of at least one more vertex is essential.

Note that we are able to construct the graph in this case with just one extra vertex,
whereas in Subcase g a number of new vertices are to be added depending on d. The
~ reason is that, in this case, the number of vertices in some N;’s could be reduced
whereas it was not possible in Subcase g. We have proved:

Theorem 3.

2r+ 2+ cd— 3) + [(d - 53],
ford=6,codd, r = 3¢ — 1,

2r + 2 + c(d - 3) + ODD cr(d — 1),
otherwise.

L(d + 33](r + 1) + c(d mod 3) + 1,
for(dmod3 =1,c¢c = 1, r odd), or
(d =35,c =1, reven), or :
(d=8,dmod 3 = 2, ¢ odd, r even),
L(d + 3y3](r + 1) + c(d mod 3),
otherwise.

pd=4,c=1l,c<r<3c) =

wd=4,c=1,r=3c) =

except for the combinations (4, 1,2) and (4,1,3) which are not feasible.
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4. SUMMARY

The following valﬁes for p are available in the published literature [1,11,13-16].
We give them below for ready reference.

W@k + j,1,3) = 2j + 4k, where 5 <j <7
wd2,3) =2d + 2 '
_j3d—1D+2 for d odd
wd.3.3) = {3((1 - D+3 for d even.
Let4 <j<6and k= 0. '

((k+2)(r+1)+1 forreven,j=

4
(k+2)(r+1)+2 for rodd, j = 4

Gk +jlr)={ (k+2(r+1)+3 forreven,j=5
k+2)(r+1D+2 for rodd,j =35

L k+3)(r+ 1D forj =6
_Jed—-1)+3 for ¢ odd, d even
mdc.c) = {c(d — 1D+ 2  otherwise.

It can be verified that all the above formulas for r > ¢ agree with our formulas,
though each one of the above is given in a different format. The formula for the case
¢ = r also fits in our formula obtained in the case ¢ < r < 3¢ and hence the same
formula can be given for ¢ < r < 3c.

Combining all the results we have:

Theorem 4. The combinations (1, ¢, r # ¢), 2, c <3, r > c(c — 1)), (4,1,3),
and (d,1,2) are infeasible and in the other cases w is defined as follows, where
r=c=1.

r(l,c,c) = ¢ + 1.

p2,ery=2r+2—-c+ s+ ODD r(c + s).

rB3,c,r) = 2r + 2.

(2r + 2 + o(d - 3) + [{d — 5)/3],
ford=6,codd, r =3¢ - 1. -
2r+ 2+ c(d-3)+ODDcr(d — 1),

rd=4,c, r<3c) =«
’ ‘otherwise.

\
(L(d + 3)3l(r + ) + c(d mod 3) + 1,
for(dmod 3 = 1, ¢ = 1, r odd), or

J . (d=35,c=1,reven), or
pd=4,¢c,r=3c) = (d=8,dmod 3 = 2, c odd, r even).

L(d + 3)3l(r + 1) + ¢(d mod 3),
\ otherwise.
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It is expected that when d and r are kept constant and c is increased, p will also
increase monotonically, and this is the case when d = 3. But when d = 2, it is
interesting to note that as ¢ is increased in multiples of 1, p decreases monotonically.
(This can be easily seen since, when ¢ is increased by 1 the increase in s is at most
1.)

Suppose we are interested in graphs having minimum number of vertices, with
diameter 2, connectivity =c, and regularity r, then we will get graphs with r + 2 or
r + 3 vertices which are r-connected. But this will not happen when d = 3. In this
case the resulting graph will have connectivity c. This shows that only whend = 2,
the approach by Klee and Quaife (connectivity =c) will give different results from
those obtained by the others’ approach (where connectivity = c). _

Theorem 4 can be used to find an upper bound for the connectivity, given the number
of vertices, diameter and regularity of a graph, or, to find an upper bound for the
diameter, given the other three parameters.

Corollary 1. Let G be a (d,c,r) graph on n vertices. Then
c=srf3 forn<2r+2+(d—-—3»3anddmod3 = 0,
¢ < min {3, (n — |(d + 3)3](r + 1))/(d mod 3)}

forn<2r+ 2 + (d — 3)r/3and d mod 3 # 0;
c<min{r,(n — 2r — 2)/(d — 3} forn>2r + 2 + (d — 3)r/3.

Starting from these approximate bounds and using the values of p. given by Theorem
4 in the inequality n = p., better bounds for ¢ can be obtained.

Corollary 2. For a (d,c,r) graph G on n vertices
Dd<3n(r+1), if ¢ < 13;
id=s(n—2r — 2)c + 3, if ¢ > ri3;
i) d < (n — 2r — 2)3/(2r) + 3, if G is a circulant.

Proof. (i) and (ii) follow directly from Theorem 11. (iii) follows from (ii) and
from the fact that in a circulant (2/3)r < ¢ < r [5]. ]
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