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DCC Linear Congruential Graphs:
A New Class of Interconnection Networks

’ J. Opatrny, D. Sotteau, N. Srinivasan, and K. Thulasiraman, Fellow, IEEE

Abstract—Let n be an integer and F = {f; : 1 <1 <t for some integer #} be a finite set of linear functions. We define a linear

congruential graph G(F, n) as a graph on the vertex set V=1{0,1, ...

,n—1}, in which any x e V is adjacent to fi(x) mod n, 1 <i<t.

For a linear function g, and a subset V, of V we define a linear congruential graph G(F, n, g, V;) as a graph on vertex set V, in which
any x € Vis adjacent to fi(x) mod n, 1 £i<t, and any x € V; is also adjacent to g(x) mod n.

These graphs generalize several well known families of graphs, e.g., the de Bruijn graphs. We give a family of linear functions,
called DCC linear functions, that generate regufar, highly connected graphs which are of substantially larger order than de Bruijn
graphs of the same degree and diameter. Some theoretical and empirical properties of these graphs are given and their structural

propert[es are studied.

Index Terms—Graph theory, interconnectons networks, network design, parallel processing, computer networks. -

1 INTRODUCTION

N the design of massively parallel computers, one of the

most important problems is the design of the intercon-
nection network connecting the processors of the parallel
computer. As stated in Hillis [18], the topology of the inter-
connection network imposes many performance restric-
tions. Any interconnection network can be represented as a
graph in which the vertices correspond to the processors
and the edges to the communication links. Thus, some of
the properties of interconnection networks have been inves-
tigated in a graph-theoretical setting. For graph theoretical
notation .and terminology we follow [10]. The number of
vertices of a graph will be called the order of the graph.

A family of graphs T that is suitable for interconnection
networks should contain infinitely many graphs of different
orders and degrees. Furthermore, graphs in F should be
regular and of small degree, of relatively small diameter,
high connectivity, and extensible, i.e., it is possible to con-
struct a large graph in J from smaller graphs in the family.
See, for example, [8], [18], [26] for more detailed discussions
of these issues.

The problem of constructing large regular graphs of
given degree d and diameter D, called (4, D) graph prob-
lem, and the related problem of constructing a network of
given order n and degree d with smallest possible diameter,
proposed first in [16], has attracted the attention of many
researchers, see [3], [12] for surveys. The upper bound on
the order #n of a graph of degree d > 2 and diameter D,
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called the Moore bound, is as follows:
n<@dd-1)"-2)/d-2).

For D > 2, and d > 2, the Moore bound cannot be attained
[12]. Hence the main interest has been in constructing net-
works of degree d > 2 and diameter D > 2 whose order ap-
proaches Moore bound. See the tables in [12], [13] for the
largest known graph orders for small values of d and D.
These largest known graphs are constructed by different
methods for different degrees and diameters, and they do
not necessarily have many of the properties required for
interconnection networks. The best families of graphs that
contain large graphs of low diameter and have good net-
work properties are de Bruijn graphs [11], and some of their
variations, such as Kautz graphs [21], generalized de Bruijn
graphs [14], [15] and Imase-Itoh graphs [19]. De Bruijn"
graphs were investigated for their suitability for communi-
cation networks, initially by Pradhan and Samanthan in
[27], [28], Bermond and Peyrat in [8], and in many other
papers by now. It is shown in [27], [28] that a binary de
Bruijn network can solve a wide variety of classes of prob-
lems. Graphs having more vertices than de Bruijn graphs of
the same degree and diameter can be obtained by a sub-
graph substitution into de Bruijn graphs [20].

Akers and Krishnamurthy [1] developed a formal group-
theoretic model, called the Cayley graph model, for de-
signing symmetric interconnection networks. Given a set of
generators for a finite group G, the Cayley graph of G is the
graph in which the vertices correspond to the elements of
the group, and the edges correspond to the action of the
generators. It is shown in [1] that two classes of these net-
works, called the star graphs and the pancake graphs sat-
isfy many of the desirable network properties given above,
and they can accommodate many more vertices than a hy—
percube of the same diameter and degree.

The order of graphs, as a function of the degree and the
diameter, in the families of graphs mentioned above is poor
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compared to the Moore bound and to the bound obtained
from the studies of random graphs [9]. Hence further im-
provements are needed.

Taking an approach which, in spirit, follows the same
thrust as Akers and Krishnamurthy in [1], Opatrny and
Sotteau proposed in [25] Linear congruential graphs. In a lin-
ear congruential graph of order n, the vertices are integers
between 0 and n — 1 and the adjacencies are defined by a set
of linear functions. These graphs generalize de Bruijn
graphs and some other families of graphs.

In this paper we define a new subfamily of linear con-
gruential graphs, called DCC linear congruential graphs
(DCC for Disjoint Consecutive Cycles), and investigate in
detail several properties of graphs in this class. DCC linear
congruential graphs are highly connected, regular graphs
which can be constructed for any fixed degree d and any
order n such that n contains a multiple factor. These graphs
are much larger than de Bruijn graphs of the same degree
and diameter.

In Section 2 of this paper we give a definition of linear
congruential graphs, and some sufficient conditions for
linear congruential graphs to be regular. Furthermore, the
class of DCC linear congruential graphs is introduced.

In Section 3 we discuss DCC linear congruential graphs
of order 2” for some integer p. It is shown that DCC linear
congruential graphs of even degree are maximally con-
nected. Some structural properties of these graphs are dis-
cussed. An upper bound on the diameter of DCC linear
congruential graphs of degree 4 in terms of their order is
given. However, this bound is not close to the actual value
of the diameters of generated graphs. We give tables of di-
ameters of DCC graphs of various orders and degrees and
give some conjectures concerning the diameter of DCC lin-
ear congruential graphs.

Since DCC graphs satisfy many of the requirements of
interconnection networks stated above, they could be con-
sidered as an alternative for very large interconnection
networks.

2 LINEAR CONGRUENTIAL GRAPHS

We use N to denote the set of nonnegative integers.

DEFINITION 2.1. Let n be a positive integer and F be a finite set of
t linear functions for some integer t, F = {f{x) = (@ax +¢):1<
i< t, where a, c; e N}. We define a linear congruential graph
G(F, n) as the graph on the vertex set V.= {0, 1, ..., n — 1},
in which any x € V is adjacent to f(x) mod n, for every i, 1< i
< t. For a subset V, of V and a linear function g, we define a
linear congruential graph G(F, n, g, V) as the graph on vertex
set V, in which any x € V is adjacent to f(x) mod n, for every

i, 1<i<t,and any x € V, is also adjacent to g(x) mod n.

We call the functions in F and F U (g}, the generators of G(F, n)
and G(F, n, g, V,), respectively. For any linear function f we
call the graph G({f }, n) the graph generated by fon {0, 1, ..., n ~
1}. See Fig. 1 for an example of a linear congruential graph.
We will show that, for a suitable chosen set of generators
F, the graph G(F, n) is a regular graph of even degree. If n is
even then for a suitable chosen set of generators F U {g}, the
graph G(F, n, g, V,) will be shown to be a regular graph of
odd degree. ‘ ‘

i

I
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G({f, 1,3, 16)

f,()=5x+3
L=9+6

Fig. 1. A linear congruential graph.

Clearly, G(F, n), (or G(F, n, g, V,)), could be also consid-
ered as a directed graph in which there is an arc from any
xe Vio f(xymod n, 1 <i<t (or from any x € V to f{x)
mod n, 1 <i<t, and from any vertex x of V, to g(x)). In this
paper we restrict our attention to undirected graphs.

Graphs with edge sets defined by linear functions
modulo the order of the graph were investigated in [22] as
possible expanders but no other of their properties was
considered there.

The class of linear congruential graphs is a very broad
family of graphs. By imposing some restrictions on the val-
ues of the constants of the generators, we can obtain sub-
families of linear congruential graphs. For example, if in a
graph G(F, n) all multiplicative constants of the generators
in F are equal to 1, and if one of the generators is the func-
tion x + 1, then we obtain a distributed loop graph [4]. The
de Bruijn graph G(d, D) of degree d and diameter D is
isomorphic to a linear congruential graph G(F, dD) where
F={dx +i:0<i<d~1}. Similarly Kautz graphs and gener-
alized de Bruijn graphs (see [2], [3], [21], [15]) can all be
obtained as subfamilies of linear congruential graphs.

Our goal is to define a new subfamily of linear congruen-
tial graphs that would have very good network properties.
We first study the structure of linear congruential graphs
generated by single generators. The results of this study
will be used to obtain sufficient conditions for a set of gen-
erators to generate regular graphs.

Let n be a positive integer, f (x) = ax + c be a linear func-
tion, where 4, c € N, and let x, € {0, 1, ..., n — 1}. The se-
quence of integers x,, x,, ..., X;, ... , defined by x; = f (x, ;)
mod n for i > 0, called a linear congruential sequence [23], is
a periodic sequence with period length less than or equal to
n. By the definition of the edge set of the linear congruential
graphs, the elements of the sequence corresponding to a
period of the linear congruential sequence form a cycle in
the graph generated by fon {0, 1, ..., n — 1}. We now state
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two lemmas that will be needed in our paper. The first
lemma gives the necessary and sufficient conditions on a
linear function f and an integer 7 to define a linear congru-
ential sequence of period length equal to n. Its proof is
given in detail in [23].

LEMMA 2.2. [23] Let f (x) = ax + ¢ be a linear function, n be a
positive integer, and x € {0, 1, 2, ..., (n — 1)}. For a given x,,
the linear congruential sequence Xy, Xy, Xy, ..., X ..., defined
foriz1by x; = (ax_, + ¢) mod n, has a period of length n if
and only if

1) ged(c,n) =1,
2)'b = (a ~ 1) is a multiple of every prime factor of n; b is also
a multiple of 4, if n is a multiple of 4.

If a linear function f satisfies the conditions of Lemma 2.2
with respect to n then the graph G({f }, ) consists of a
Hamiltonian cycle on {0, 1, ..., n — 1}. This is the case, for
example, when 1 is a power of 2 and f is a function from the
set (bx+1,5x+3,...,9¢+1,9%+3,...,17x+ 1, ..}.

For a graph G(F, n), an interesting case arises when each
linear function in F satisfies the conditions of Lemma 2.2
with respect to n, and G(F, n) thus consists of |F] Hamilto-
nian cycles (not necessarily edge disjoint without additional
conditions on the constants in the functions). Linear con-
gruential sequences with maximum period lengths are used
in pseudorandom number generators. Since random graphs
are almost always of low diameter [9], it was expected that
G(F, n) graphs consisting of edge disjoint Hamiltonian cy-
cles corresponding to linear congruential sequences of pe-
riod length n could be graphs of low diameter. Such graphs
were considered in [25], where many graphs whose orders
are much larger than the orders of de Bruijn graphs of the
same degree and diameter were constructed. One difficulty
encountered in that case is the choice of the constants of the
linear functions in F so that any two functions in F define
edge-disjoint Hamiltonian cycles, which would produce a
regular graph. Our subsequent investigations indicated that
graphs with smaller diameter can be obtained when only
one of the functions in F generates a Hamiltonian cycle, and
all other functions generate several cycleson {0, 1, ..., n — 1},
This is the case considered in this paper.

Lemma 2.3 gives sufficient conditions on a linear func-
tion to generate several cycles of equal length on the vertex
set{0,1,...,,n—1}.

LEMMA. 2.3. Let n be a positive integer that contains at least one
multiple factor, i.e., n = K'm for some integersk>1,p 22, and
m. Let ¢ be an integer such that gcd(c, n) = 1. Let b be a multi-
ple of every prime factor of n; b is also a multiple of 4, if nis a
multiple-of 4. For any i, 1 Si<yp + 1, let fix) = (kl_1 b+1)

i~1
x+k e

Then, the function f, generates k' vertex-disjoint cycles of
length - on the set {0, 1, ..., n — 1}. The vertex sets of these
cycles are the sets

={0, ¥, 2k, ., n—KT,
=L K +1, ., =K, L,
A, =TT =1, 2670 -1, L, n-1),
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Furthermore, there is an edge between two vertices x and y in
the graph generated by f; only if |y — x| is divisible by K but
not by k'
PROOF. Let i be an integer, 1 <i < p + 1, and 7 be an integer,
0 <7<k~ 1. Consider any integer ki'lq +7 of the set
(M)l Then
FE g+ Hmodn = (K + DK g+ r) + k) mod Km
= (MK + g + KN br + o)) mod KPm+ ¢
= K™K + 1)g + (br + ¢)) mod K] + .

Thus f(ki_lq + 7) mod n also belongs to the same set
A

(r+1)i *

Now, let us consider the linear function h(x) =K+ 1)x
+ (br + ¢). Since b is divisible by any prime factor of 1, and
gcd(c, n) = 1, then ged(br +¢, K" 'm) =1 and so Kb +1
satisfies condition 1) of Lemma 2.2 with respect to k”~**'.
Also h(x) satisfies condition 2) of Lemma 2.2 with respect
o kp—i+1
h(x) mod k" *'m generates a linear congruential sequence
of period k" *'m on the set {0, 1, ..., k" "*'m —1}.

m. Hence, by Lemma 2.2, the linear congruence

This implies that, for every 7, 0 < r <K ~ 1, the function

f; generates a cycle of length &’ "'m on the set
,n—k r}.

A ={0+7, Klvr,

(r+1)i

If (¥, y) is an edge in the graﬁh generated by f, then we
have « :
[y—xl = |]§(x)modn—x|

= | (ki'lb +Dx + Kl —sm—x ‘

= ' K %x + ki_lc - sn

|k‘ bx + ¢ — skP~ Hlm)l
for some integer s. Since b is d1v151ble by k and ¢ is'not
divisible by k, |y — | is divisible by k! butnotby k'. O

A linear function defined as in Lemma 2.3, which gener-
ates k/ disjoint cycles, will be called of cycle type &/ on the
set {0, 1, ..., n — 1}. Similarly a function satisfying Lemma
2.2 which generates a Hamiltonian cycle will be called of
cycle type 1 on the set {0, 1, ..., n — 1}.

For example, function 9x +2is of cycle type 2 and 17x + 4
is of cycle type 4 on the set {0, 1, . }forp>2

In the lemma above, if m is equal to'1 or 2 and i is equal
top + 1, orif kis equal to 2, m is equal to 1, and i is equal to
p, then the generator f, generates loops, or multiple edges in
the graph. Since we are interested in simple graphs without
loops and multiple edges, in our constructions we only use
generators that give cycles of lengths larger than 2. We can
achieve it by stipulating that any generator generates at
most k/ cycles with k/ < 2.

THEOREM. 2.4. Let 1 be a positive integer that contains at least
one multiple factor, i.e., n = K'm for some integersk>1,p 22,
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and m. For an integer t in {0, 1, ---
linear functions such that:

p + 1}, let F be a set of ¢

1) each function in F is of cycle type k! on {0, 1, ..
some j,0<j<p,suchthat k! < %.
2) there is exactly one function in F of cycle type 1 on the set

., n—1}for

{0,1,..,n-1},
3) any two functions in F are of different cycle types on
01,..,n-1}

Then the graph G(F, n) is a regular, connected graph of degree
2t.

If k = 2, and for some linear function g the set F U {g} satisfies
the three conditions above, and g is of cycle type 2 on 0,1,...,
n—1} for some 1,121, then the graph G(F, n, g, V,), where V
-0,1,...,2 -1,2" 2" 41, 2",
connected gmph of degree 2t + 1.

.}, is a regular,

PROOF. Since F includes a function that generates a Hamil-
tonian cycle, the graphs G(F, n) and G(F, n, g, V) are
connected. Since any two functions in F or F U {g} are of
different cycle types with respect to 7, the cycles gener-
ated by these two functions are edge disjoint by Lemma
2.3. Thus each function in F contributes 2 to the degree of
each vertex and the graph G(F, n) is of degree 2t.

We have chosen V, so that the graph G(F, n, g, V) con-
tains every second edge of the cycles generated by g on
the set{0, 1, ..., n — 1}. Since k = 2, each cycle is of
even length by Lemma 2.3 and thus ¢ restricted to V;
generates a perfect matching in the graph. Therefore,
G(F, n, g, V,) is a regular graph of degree 2t + 1. a
In our experiments the best results, with respect to the

diameter of linear congruential graphs of order n = k"m
and degree 2t or 2t + 1, have been obtained when the gen-
erators satisfy the conditions of Theorem 2.4 and, further-
more, when the set F or F U {g} contains a function of cycle
typek’ foreachj, 0<j<t—1orj, 0<j<t.With thisin view
we introduce the notion of a Disjoint Consecutive Cycles set of
generators.

DEFINITION 2.5. Let n be a positive integer that contains at least
one multiple factor, ie., n = K'm for some integersk>1,p22,
and m. For any given t € {1, -, p + 1}, such that k' < %,
we say that a set F of t linear functions is a Disjoint Consecu-
tive Cycles set (DCC set for short) with respect to the integer n
if for each j, 0 < j < t — 1, there is exactly one function in F of
cycle type K on the set {0,1,...,n~-1}.

For example, {5x + 1, 9x + 2, 17x + 4} and {5x + 3, 9x + 10,

17x + 12} are DCC sets of generators, each of cycle type 1, 2,

and 4 with respect to 2" for p 2 4, while {4x + 1, 10x + 3,
28x + 9} is a DCC set of generators of cycle types 1, 3, and 9

with respect to 3’ for p23.

DEFINITION 2.6. Let n be a positive integer that contains at least
one multiple factor, i.e., n = K'm for some integers k> 1, p 2 2,
and m. For any given t € (1,---, p + 1} such that k'™ < L, we

define a DCC linear congruential graph G,/(F, n) as a linear
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congruential graph G(F, n) generated by a DCC set F of t linear
functions with respect ton. If k=2, t <p, and g is a linear func-
tion of cycle type 2', we define a DCC linear congruential
graph G,, (F, n, §) as a linear congruential graph G(F, n, g,
V) where
w={01 ..,
Notice that the graph in Fig. 1 is a DCC linear congruential
graph. Theorem 2.4 gives immediately the following result.
COROLLARY 2.7. Let 1 be a positive integer that contains at least
one multiple factor, i.e., n = K'm for some integersk>1,p 22,
and m. For any given t € {1, -+, p + 1}, such that k" < 2, let
F be a DCC set of t linear functions. Then the graph G,(F, n)
is a regular, connected graph of degree 2t. If k=2 and t<p

then the graph G,,,(F, n, §) is a regular, connected graph of
degree 2t + 1.

201,21, 2" pq, L, 2 o, L)

A question could be asked whether our choice of set V, in

defining a DCC linear congruential graph of odd degree was

good. Clearly, if the function g of cycle type 2' generates a

perfect matching on the set {0, 1, ..., 7 — 1} when the function

is applied to the set V,, the function ¢ would also generate a

perfect matching when applied to the set

V,={0,1,..,n-1}-V,,

which could possibly produce better results. The following

theorem disproves this possibility.

THEOREM. 2.8. Let F and F U {g} be DCC sets of linear functions
with respect to n = 2'm for some integer p > 1, and |F| = t. Let
V,={0,1,..,2-12",2"+1, 2" -1, ..}, and

V,=10,1, ..., n — 1} — V. There exists a linear function h
such that the graph G, = G(F, n, g, V,) is identical to the
graph G, = G(F,n, h, V).

PROOF. For any element x € V,, g(x) mod 7 is an element
of the set V,. Since g is a one-to-one linear mapping of
{0,1,...,n—1}onto {0, 1, ..., n — 1}, there exists a linear
function i which is an inverse of g on the set {0, 1, ...,
n ~ 1}. Therefore, the matching defined by & on V| is
identical to the matching defined by g on V,, and # is of
the same cycle type as . O

3 PROPERTIES OF DCC LINEAR CONGRUENTIAL
GRAPHS

In this section we will study in detail the DCC linear con-
gruentlal graphs whose order n is a power of 2, ie,
n =2 for some integer p. Thus, the generators considered in
this section will be a DCC set of linear functions
F={f:1<i<t)
for some £ <p — 2, with
fielax+c ta, =20 +1, ¢, =27 2r +1) [V, r e N}

These functions satisfy the conditions of Lemma 2.3 for
i>1, and the conditions of Lemma 2.2 for i = 1 with respect
to the powers of 2. Recall that, forany i € {1, ---, p — 1}, the



on’rhe set {0, 1, p—l}
chs]omt cycles generated by f; partmon the

function f; 1s of cycle type 2
Thus the 2°
vertex set {0, 1, ...,
nality ZP_M,

2"~ 1} into 2° & disjoint subsets of cardi-

Ay=10,272, ., n=2",
- 7y 1}, .41}, ..,

1oq,20-1, ..., n—1}

Ay=1,27 41,2 +1,..,

Azm,- = {zi—

In particular, f, generates 2 cycles of length £, one on the

set of even numbered vertices, the other one on the set of
odd numbered vertices. Furthermore, the partition defined

by f;is a refinement of the partition defined by f,; for i > 2.
More precisely, we can state the following result, that
will be used in the proofs of the properties of the graphs

G,(F,2") and G,,,(F, 7', g).

PROPOSITION 3.1. Let G = G,,(F, 2) be a DCC linear congruential
21}, where F={f.:1<i<4,
with f, (x) = ax + c, verifying the conditions given above.
Then, the subgmphs G, and G,, induced by the vertex sets

={0,2- 2’ 2} and V,=1{2-
to the DCC lmeur congruential graphs GZt , (F, 2 ) and G,, ,
(F”, 2 ) where’

graph on the vertex set {0, 1, -+,

o2 1), are z'somorphz‘c

F={f:1<i<t-1
Fr={fii<i<t-1)
with
1
f(x)— X+ ’2+ and

+ Ciap 8 —1
X Y 5

flx)=a

respectively. Moreover, G is the edge-disjoint union of G,, G,,
and of the Hamiltonian cycle induced by f, which forms a bi-
partite graph of degree 2 on (V,, V,).
PROOF. For any i, 1 <i <t -1, the constant 4,,; of functions
f/ and f is equal to 21y 41 for some integer b”, and
1)/2 are divisible
by 27 but not by 2. Thus fi, f7 is of cycle type 2
for 1 <i<t-1, and the graphs G,, ,(F', ZP_I) and G,, ,
(F”, 2" are DCC linear congruential graphs.

the constants ¢,1/2 and (¢, + 4y -

We will show that the functions h,(x) = x/2 and h,(x)
= (x —1)/2 define an 1somorphlsm between G, and G,, ,
F, Vil ) Gy and G, ,(F”, 2" ) respectively. Consider first
* the graph G,. Let i be an integer, 2 <i <, and x be a ver-

tex in V. Since any vertex in V, is an even integer,
x = 2f for some j. Thus,

fix) = fi(2) =a2j+c; = 2a;j +c; / 2) = 2f1(j)-

then (ki (x), b (fi(x)))
G, fa() is an edge in Gy,(F, 27,

If (x, f(x)) is an edge in G,
=, f(2))/2)=

|EEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 2, FEBRUARY 1996

Similarly, for every y in {0, 1, ..., 2"}, if (y, f.,(¥)) is
. ;P - 3,5

an edge -in G, ,(F, »2p ) then (hll(y), hll )

=(2y, f(2y)) is an edge in G;. Thus, k, defines an iso-

morphism between G, and G,, ,(F’, 2p—1).

Consider now the graph G,. Let i be an integer, 2<i < ¢,

and x be a vertex in V,. Since any vertex in V, is an odd
integer, x = 2j + 1 for some J. Thus,

()= f2j+1)=a2j+a +¢
=2aj+(c;+a,-1)/2)+1
=2f()+1

If (x, f{x)) is an edge in G, then
(), BN = (G, ((2j+1)-1)/2
= (4G

is an edge in G, ,(F”, 2"). Similarly, for every y in

0,1, ..., 277, if(y, £,(y)) is an edge in G, ,(F", 27)
then ’
(5@ 1 (D) = Qy+ 1, 2f7() + 1)
= Q2y+1 2y +1)

is an edge in G,. Thus, h, is an isomorphism between G,
and G, (7, 2").
The fact that G is the edge-disjoint union of G,, G,, and of

the Hamiltonian cycle induced by f; which forms a bipar-

tite graph of degree 2 on (V,, V,) is obvious. o

We first consider the vertex-connectivity (connectivity
for short) of the DCC linear congruential graphs.

THEOREM 3.2. Let t <p be an integer,and F = {f,: 0<i<t -1}
be dqﬁned as above. Then the DCC linear. congruential gmph
G,{F, 2"} is 2t-connected.

PROOF. The proof is by induction on . The result is obv1ously
true for ¢ = 1 since in this case the DCC linear congruential
graph is a cycle of length 2" and, therefore, is 2-conmected.
Assume that, for any appropriate DCC set F of ¢ — 1 linear
functions, the graph Gy, (F', Zp_l) is 2(t — 1)-connected.
Consider the partition of the set of vertices of a DCC linear
congruential graph G, (F, ZV) into the vertex sets V,, V, of
even, odd numbered vertices, on which f, generates cycles
of lengths Vi
graphs G, and G, induced by V; and V, are isomorphic

, say C, and C,. By Proposition 3.1, the sub-

to DCC lmear congruential graphs Gy ;\(F/, vl ) and

Gopa)(F7, vl ) respectively which, by the induction hy-
pothesis, are 2(f — 1)-connected. Consider any two vertices
xand y of G (F, 2).

Case 1. Vertices x and y are both in V, (see Fig. 2a).
Since by the induction hypothesis G, is 2(t — 1)-connected,
there exist 2t — 2 vertex-disjoint paths between x and y in
G;. It is easy to exhibit two more vertex disjoint paths in
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G,(F, 2 depending on the relative position of the vertices
£, fiw), £71(x), £7'(y) on the cycle C, as follows. If both
I !(x) and fi !(y) are on the same part of the cycle C, be-
tween f,(x) and f,(y), then the paths are:

Path1: x, f'(x), partof C, to £, (y), y
Path 2: x, part of C, not containing £(x) to JAON T
otherwise

Path 1: «x, f (x), part of C, containing fl'l (x) o fiy), y
Path 2: x, f,(x), part of C, containing ;" () to f,(y), y

Case 2. Vertex x is on C, and y is on C,. Assume first
that y ¢ {f,(x), f,'(x)} (see Fig. 2b). Let S, be a subset of
2t — 2 vertices of V,—{x, f>(x)} containing fity) and
£7'(y). Denote the vertices of S, different from f,(y) and
ffl(y) as a,, a,, *++, A,, ,. By the induction hypothesis, G, is
2(t — 1)-connected, and thus, by Menger’s theorem, there
exists in G;, a set P, of 2t — 2 vertex disjoint paths be-

tween x and the vertices of S,. By Proposition 3.1, f;
defines a matching of edges between these vertices and

2t — 4 vertices of V. Let S, be the subset of V, containing

fia), -+, for4(8,5,,) and the two vertices f;(x) and £(x)
which are necessarily different from the previous ones by

the choice of S;. Again, by induction hypothesis G, is
2(t - 1)-connected, and thus by Menger’s theorem, there
exists in G, a set P, of 2t — 2 vertex disjoint paths be-
tween the vertices of S, and y. We are now able to exhibit
2t vertex disjoint paths between x and y in G,(F, 2. For
every i, 1 £1 <2t — 4, take the following path:
x, path in P, between x and g, f,(a;), path in P, be-
tween f,(a) and y.
The last four paths are defined as follows.
Path 1: x, f,(x), path between f;(x) and y in G;
Path2: x, fl_l(x), path between f; 1(x) and ¥ in G,;
Path 3:
Path 4:

%, path in G, between x and f{l(y), v
x, path'in G, between x and f,(y), y.
The proof is very similar if y = f,(x) (ory = f{ 1(x), respec-

tively). In that case paths 1 and 3 (or paths 2 and 4, re-
spectively) above are reduced to the edge xy. It is possi-

ble to add one more vertex 4,, , in the set 5, so that it is
still of cardinality 2 — 2 and it avoids £'(y) (or f,(y), re-
spectively) which is equal to x. Thus, following the same
reasoning as above, where 2t — 4 is replaced by 2t — 3, we
still have 2t vertex disjoint paths between x and y. O

NOTE 3.3. The graph G,,,,(F, 2, g) is at least 2t-connected
since it contains G,,(F, F)asa subgraph. However, there
are cases when G,,,,(F, Z, g) is not 2f + 1 connected, e.g.,
G,({5x + 3}, 8, 9x + 2) is not 3-connected.

Fig. 2. (a) Case 1 in proof of Theorem 3.2.; (b) Case 2 in proof of
Theorem 3.2.

The problem of deriving the value of the diameter of

G(F, 2") seems to be difficult. This should not be surprising
since the problem of determining the precise value of the
diameter is difficult even for some simpler graphs, as for
example the multiple loops graphs [4]. Below we give an

upper bound on the diameter of G,(F, 2} in case when the

function f, is equal to x + 2. Notice that this function f, is of

cycle type 2 since (x + 2) mod F= ((2'J + 1)x + 2) mod 2

THEOREM 3.4. Let F = {ax + ¢, x + 2}, where a and c satisfy the
conditions of Lemma 2.2, and let p be an integer, p > 3. Then
the diameter of the DCC linear congruential graph G,(F, Py is
smaller than or equal to [tog, 2 1a + 1)/2.

PROOF. Let x be a vertex of the graph. Clearly, f,(x) = x + 2,
and f, l(x) = x ~ 2. Consider the value of
2= gL G AC 6 )
where 0 <j, < (a - 1)/2 and g, is either equal to f,, or tof, !
for every I, 1 < I < s. Notice that for any value of z above,
there is a path from x to z mod 2’ of length Jitja¥ g

+5—1in G(F, 2”). Since 4 and c are both odd, the parity
of f,(x) is different from the one of x.

Ifs=1thenz= g{" (x), and the possible values of z are a
integers of the same parity as x in the set R, = {x— (2 - 1),
x—@-1D+2, .., x+@-1} ansidgr now the possible
values of z for s = 2, i.e., z = gl (f.(g)' (x)). First, by ap-
plying the function f; to the elements of R,, we obtain the
set

X, = {f(x-@-1), filx=(@-D+2), ..., ilx+@-D)
= {0~ @ ~a), LX)~ @ ~a)+2a, ..., fi(x)+ (@ +a)}.
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All values in X, are of the same parity as f; (x) and the dif-
ference between any two consecutive values in the set is
equal to 2a. Now, by applying the function g to the val-
ues in the set X, for all values of j,, 0<j,<(a~-1)/2and g,

being either Sy OF fz'l, we obtain all values in the set
R, = ()= (@ ~a)-(a-1), f(x)— (& —a)
—(@-D+2, ., )+ (@ —a)+(a-1)
= () -d* +1, f(x)—a> +3, ..., fi(x)+a" -1}

This set contains 4 elements, all of them of the same
parity. Similarly, for any value of s, the possible values of
z are 4° integers in the set

Sy~ @ -1, £ -@ -T2, .,

having the same parity as "

Fx)+ @ - 1)
). Thus, if we choose s
to be the smallest integer such that 4’ > ZPJ, ie., s =

Mo 2p—1—|, then from x there is a path to any vertex of
84 P y

the same parity as 1571(x) whose length is bounded by

sa-1)/2+s-1=llog, 2" 1(a+1)/2~1 Since f, is a
one-to-one mapping of all the vertices of the same parity
of the graph onto the vertices of the opposite parity, by

extending all these paths by an edge defined by f; we can

reach the remaining vertices of the graph. We can con-
clude that there is a path from x to any other vertex of

the graph of length not more than [log, 21 (a+1)/2. O

In Table 1, we give the values of the diameters of some
of the graphs G,(F, 2V) and G,,,,(F, 2 g) which have a low
diameter, for 9 < p < 17 and degrees between 3 and 10.
These values are in fact much smaller than the upper bound
from the above theorem. Each entry in the table specifies
the value of the diameter, and below the diameter we give
the constants of the linear functions generating the graph.

For graphs of order up to 2" we have calculated the dis-
tances between all pairs of vertices of the graphs.

For graphs of larger order we have calculated the dis-
tances only for large segments of vertices.

In all the cases the DCC linear congruential graphs are
much larger than the de Bruijn graphs of the same degree
and diameter. For example, for degree 4 and diameter 10,
there is a DCC linear congruential graph of order 8,192
while the de Bruijn graph is of order 1,024. Similarly, there
is'a DCC linear congruential graph of degree 9, and diame-
ter 5 which has more vertices than the de Bruijn graph of
degree 10, and diameter 5.

_The diameter of DCC linear congruential graphs is sensi-
tive to the choice of the constants of the generators. For ex-
ample, the diameter of a DCC graph increases significantly
when its set of generators contains a pair of functions
5x + 1, 9x + 2 which are commutative. As seen from the
tables, we obtained the best results with respect to the di-
ameter of DCC graphs when:

1) the multiplicative constants of the generators are all
distinct,
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2) the multiplicative constants increase with the cycle
type of the generators, however the increases are as
small as possible, .

3) the generators are not commutative, i.e., the function
f; o f;is different from the function f; f; for i 7.

In general our experiments have indicated that all DCC
linear congruential graphs of same degree and order ob-
tained with the above restrictions on the generators have
almost the same diameter.

Table 2 gives additional DCC linear congruential graphs,

somie of them of orders that are not powers of 2.

The results in Tables 1 and 2 lead us' to propose the fol-

lowing conjecture:

CONJECTURE 3.5. For the functions f, = 5x + 3, f, = 9x + 2,

diameter (Gy({f,), 2, f,)) <[1.2p]

diameter (G,({f,, £,), 7)) <[0.8 pl.
Notice that the Moore bound implies that the diameter of
graphs of order n and degree 3 is greater than or equal to
log, n —~2/3, and the diameter of gfaphs of order n and de-
gree 4 is greater than or equal to 0.631 log, n — 1/2. The best /

general construction of graphs of order n and degree 3 or 4
was given by Jerrum and Skyum [20]. For degree 3, it gives

graphs of diameter 1.47 log, n + O(1), and for degree 4, the
diameter is 0.9083 log, 1 + O(1).

In Proposition 3.1, we showed that a DCC lmear congru-
ential graph G,(F, 2 ) of degree 2t and order 2" can be de-
composed into two vertex disjoint DCC linear congruential
graphs G,, ,(F, ZH) and G, ,(F”, ZH) of degree 2t — 2 and
order 2. Furthermore, there is a bipartite graph of degree 2
on the partition defined by the two disjoint sets of vertices.

We now give a Comtructlon of a DCC linear. congruen-
tial graph of order vl from two copies of DCC linear con-
gruential graphs of order 2.

CONSTRUCTION 3.6. A DCC linear congruentml graph G,(F, 2’J+1

can be constructed from two copies of G,,(F, 2%y as follows:

1) Denote the two copies of G,(F, 2 ) as H, and H,. Renum-
ber the vertices of H, by adding 2" to each vertex.

2) For every vertex x of H,, if (x, y) is an edge in H, where
Y= fj(x) mod 2° and 2" < fj(x) mod 2" then remove the
edge (x, y) in H, and the edge (x-+ 2", y+ 2"y in H2 and
add instead edges (x, y + 2’yand (x + 2, y).

)

Notice that in the construction above, only a fraction of the
edges is replaced since when the edge (x, fAx) mod 2 ) is
changed then the edge (2x mod 7, f (2x) mod vi } is not
changed.

Although the construction above is stated only for a DCC
linear congruential graph of even degree, it is clear that the
same construction can be also carried out for a DCC linear
congruential graph of odd degree. See in Fig. 3 a construction
of Gy({f}, 32, g) from G,({f;}, 16, ) for f,(x) = 5x + 3, g(x) = 9x +
2. The edges that are to be replaced are drawn in thick lines.
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TABLE 1
DiAMETERS OF DCC LINEAR CONGRUENTIAL GRAPHS
Gy(F, 2%), AND G, 4(F, 2, 8)

n
dcg 29 2\0 21] 212 213 214 215 216 217
10 12 13 14 15 17 18 19 20
3 1515 5,3 53 | 511 | 5,11 5,3 5,3 5,3 5,3
9,14 1 92 92 1 96 | 96 | 92 [ 92 ] 92 [ 92
1 8 9 10 11 12 13
4 5,7 5,7 5,3 53 5,3 5,3 5,3
92 | 92 | 92 92 | 92 | 92 9,2
8 7 8 9 10 11
5 [ 53 55 5,10 | 53 55 | 5.3
| 92 9,6 96 | 9,2 96 | 9,2
174 174 17,20 | 174 174 | 174
5 6 7 8 9
6 5,3 5,5 5,15 5,15 5,15
9,10 9,6 9,2 9,2 9.2
174 | 174 1748 17,48 17,48
5 6 7 8
71 5,11 5,11 5,11 5,11
9,10 9,10 9,10 9,10
17,12 17,12 17,12 17,12
33,8 33,8 33,8 33,8
4 5 6 7 8
8 53 513 511 511 | 5,5
9,6 9,10 9,10 9,10 | 9,18
17,12 17,12 17,12 17,12 [ 17,12
33,8 33,8 33,8 338 | 33,8
5 6§ 7
9 5,7 5,1 5,13
9,6 9,10 9,10
174 17,12 17,12
338 33,8 33,8
65,16 65,16 65,16
4 5 ] 6 7
10 69,5 53 5.7 5.7
73,10 9,10 9,18 9,18
814 17,12 17,12 17,12
97,8 33,8 33,8 33,8
129,16 65,16 65,16 65,16
TABLE 2
MoRE EXaAMPLES OF DCC LINEAR CONGRUENTIAL GRAPHS
degree | size | diam | const | size | diam | const
4 58 9 6,2
26,5
13,7
5 328 4 25,10
49,4
5,13 10,6
[ 27 4 9,2 37 6 28,9
174 44
13,3
8 3% 3 25,2
49,20
1.8
5,13 13,5
9 27 3 9,10 [ 3x2 5 25,18
174 49,28
33,24 97,24
65,16 193,16

We would like to point out that other symmetric graphs
such as hypercubes, star graphs, and pancake graphs admit
a similar construction.

f ; (x)=5x+3

G, 16.8) g(X)=9x+2

18 29 223 22 17 2427 26 2% 28 31 30 25

6 19

Fig. 3. Construction of G5({f;}, 16, g) from G,({f;}, 32, g)-

4 CONCLUSIONS

The DCC linear congruential graphs presented in this paper
form a very interesting family of graphs. Unlike de Bruijn
graphs, they are defined for both odd and even degrees, are
regular and of maximum connectivity for even degrees.
They can be defined for any order which contains a multi-
ple factor. Graph G(F, n) is a proper subgraph of

Gu(F n, f.0) and Gy(F, 2") can be constructed from two
copies of G,(F, i ) Thus, DCC linear congruential graphs
satisfy the extensibility requirements in network design. As
seen from the tables, they have many more vertices than
graphs of the same diameter and degree produced by any
other general construction. Furthermore, a DCC linear con-
gruential graph is Hamiltonian and can be decomposed
into a very small number of edge-disjoint cycles, which re-
minds a useful property of hypercubes. Thus, the DCC lin-
ear congruential graphs should be considered as an alterna-
tive for interconnection network designs.

The problem of obtaining a better upper bound on the
diameter of DCC linear congruential graphs is a very inter-
esting open problem that requires further studies. It seems
to us that any good upper bound on the diameter will re-
quire a use of number theoretical properties of the con-
stants of the linear functions.
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