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Abstract—Motivated by their application in network topol-
ogy design, two new measures of network performance, namely,
the incremental distance sequence and the incremental diame-
ter sequence, are introduced. These sequences can be defined
for both vertex deletions and edge deletions. A complete char-
acterization of the vertex-deleted incremental distance sequence
is presented. Proof of this characterization is constructive in
nature. A condition for the feasibility of an edge-deleted in-
cremental distance sequence and a procedure for realizing such
a sequence are given. Interrelationships between the elements
of incremental distance sequences and incremental diameter se-
quences are studied. Using these results it is shown that a graph
having a specified diameter and specified maximum increase in
diameters for deletions of vertex sets of given cardinalities can
be designed.

Index Terms— Connectivity, diameter, distance, fault-tolerant
design, graph theory, interconnection network, network topol-
ogy, reliability, shortest paths.

1. INTRODUCTION

ECENT advances in technology have made possible in-

erconnection of a large number of computing elements
to form an integrated multiprocessor system with processing,
control, and information being distributed among these ele-
ments. Vulnerability, which is a measure of the ability of the
system to withstand node or edge faults, and maximum rout-
ing delay are among the key considerations in the design of the
topology of a multiprocessor system. Several measures of vul-
nerability have been defined and designs based on these mea-
sures have been presented in the literature. A commonly used
measure of vulnerability is the maximum number of proces-
sors that can fail simultaneously without disabling any fault-
free processor from communicating messages to every other
fault-free processor. So connectivity of the graph underlying
a multiprocessor system can be used as a measure of vul-
nerability of the system. The maximum delay suffered by a
message is measured by the maximum length of the shortest
paths between all pairs of elements and thus diameter can be
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used as a measure to evaluate the maximum delay in routing.
Several important results relating to designs involving diame-
ter and connectivity have been reported in the literature. For
example see [1]-[4].

Whereas the maximum delay in routing is an important con-
sideration in the design of the topology of a multiprocessor
system, an equally important concern is the maximum increase
that may occur in routing delay when processors or links fail.
Chung and Garey [S] and Peyrat [6] have presented bounds on
the maximum possible increase in diameter when some nodes
or edges are deleted from a graph. Boesch et al. [7] have de-
fined and studied a new measure of performance based on the
minimum number of nodes or edges to be deleted to increase
the diameter of a graph. Reddy ef a/. [8] have constructed
a class of dense digraphs with minimum diameter and maxi-
mum connectivity. These graphs have the interesting property
that the increase in their diameters is minimal when a cer-
tain number of edges and/or vertices is deleted. This work is
based on the notion of ¢-deleted diameter introduced in [9].
Most recently, Sengupta et al. [10] have presented an interest-
ing topology for which the maximum increase in diameter is
again minimal unless the number of faulty processors is equal
to the fault tolerance of the graph. This topology is based on
the one proposed earlier by Pradhan [11]. In related works,
Dolev et al. [12] and Broder et al. [13] have studied the issue
of finding good fault-tolerant routings, that is, routings that
keep the diameter of the surviving route graph small for any
set of faults of a given cardinality.

Note that the maximum increase in the diameter, when some
nodes or edges fail, is a global information. Suppose that
the diameter is large, and that the network is neither dense
nor sparse. In this case, it may so happen that the failure of
some nodes or edges may not increase the diameter; but, that
the routings between the vertices in the vicinity of the failed
nodes or edges may be affected in such a way that the result-
ing reroutings introduce considerable delay when compared
to the original routings. This is the case of a local disturbance
having no effect on a global parameter. For example, in the
graph of Fig. 1, when w is deleted the diameter does not
change, but the distance between v and x changes from 2 to
3. In general, in many networks, the amount of communica-
tion between the nearer nodes will be higher than that between
the farther nodes. Hence, measuring the effect of local distur-
bance becomes important, although it cannot be measured by
a global parameter such as increase in diameter. In the case of
distances, the maximum of the increases between every pair
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u v
Fig. 1. Example illustrating the effect of local disturbance.
of nodes, when a fixed number of nodes or edges fails, gives
a measure of the effect of the disturbance. The vulnerability
of a network can be regarded to be smaller if these maximums
for different sizes of node or edge failures are small. As such,
these maximums can be regarded as vulnerability measures.
Motivated by the above considerations, in this paper we for-
mally define and initiate the study of two new measures of
network performance, namely, the incremental distance and
the diameter sequences of a graph. These sequences can be
defined for both vertex deletions and edge deletions. Several
results and constructions relating to these sequences are pre-
sented. The paper is organized as follows.

In Section II, we present certain preliminary results which
form the basis of the results in subsequent sections. A com-
plete characterization of the incremental distance sequence
for vertex deletion is presented in Section III. The proof of
this characterization is constructive in nature. The incremen-
tal distance sequence for edge deletion is studied in Section
IV. Fairly general sufficient conditions for such a sequence
to be realizable by a graph are also presented. Relationships
between the elements of these two incremental distance se-
quences are given in Section V. Finally, in Section VI, rela-
tions between the incremental distance and the diameter se-
quences are studied. It is also shown that a graph having a
specified diameter and specified maximum increases in di-
ameter for deletion of vertex sets of given cardinalities can
be designed. Section VII concludes the paper. To conserve
space, we state certain results without proof. Proofs may be
found in [14]. In the rest of this section, we present the basic
terminology used in this paper.

We consider only simple graphs. For general notations we
follow [15].

Let G = (V, E).

Let d(u, v) = d(u, v; G) = distance between u and v,

d(G) = diameter of G = Max {d(u, v)|u, v € V}

NW) = {ueV — W|u,w) €E for some w € W},

where W CV,

N'(F) = {u|(u, v) € F for some v € V}, where F C E,

a; =a;(G) = Max|V,.|:,~{d(u, v; G-V —du, vu,v e

V- Vi }’

b; = bi(G) + maxg,—i{d(u, v; G — E;) —d(u, v)},

d; = Maxy,1-{d(G - V))},

t; = Maxg,-i{d(G - E)},

6 = minimum degree in G,
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k = connectivity of G = Min {i|a; = oo} and
k' = edge connectivity of G = Min {i|b; = oo}.

A = (ay, az,---,a,_1) is called the vertex-deleted incre-
mental distance sequence,

B = (by, by, - ,by:_1) is called the edge-deleted incre-
mental distance sequence,

D =(dy, dy, --,dy_,) is called the vertex-deleted diam-
eter sequence, and

T = (21, t2, -t —y) is called the edge-deleted diameter
sequence.

Note that a; and b; denote increments, whereas d; and ¢;
represent the actual diameters. In the graph given in Fig. 1,
wehave k =k’ =3,d =3,A={1,2},B={3,3},D =
{3,4},and T = {4, 4}. To geta; = 1, note that d(v, x; G —
w) = 3. To get a, and d, use d(a, u; G — b —v) = 4. The
distance d(u, v; G — (u, v)) = 4 fixes b; and ¢,.

Let H = Ky and V(H) = {vy, v2,--,vr}, where Ky is
the complete graph on k vertices, and J = K.

By CHAIN; we mean the graph constructed as follows. Let
each G;,1 < j < i, be a distinct copy of K. Introduce
all possible edges between the vertices of G; and G, for
Jj=1,2,---,i — 1. The resulting chain of K’s is the graph
CHAIN;. G, and G; are called the endblocks of this CHAIN
and i is the length of the CHAIN. If i is odd, then Gy,
is called the middle block of the CHAIN. If i is even then
both G, /, and G )4 are middle blocks. ECHAIN; is defined
similarly starting with K.

In drawing the figures, we follow the convention given be-
low to simplify the diagrams. A rectangle always represents
a K; when we consider vertex deletions, and a K, when we
consider edge deletions. A curly line between two rectangles,
or between a vertex and a rectangle, represents all possible
edges between the two. An arrow with a label i, from a vertex
v, implies that v is adjacent to all the vertices in the CHAIN
that contains the vertex u;.

II. PRELIMINARY RESULTS

In this section, we show that in order to calculate the in-
crease in distances in a subgraph, it is enough to consider the
pairs of vertices belonging to the neighborhood of the deleted
vertices or edges, instead of all the pairs of vertices.

Note 1: Since we consider only simple graphs, a; > 0 and
b; > 1, for all i.

Note 2: If G is complete then A is a sequence of zeros and
B is a sequence of ones. But the converse is not true, since for
any K, —x, n >4, A and B have the same property. (Note:
K, —x is the graph obtained from K, after deleting any one
edge.)

Note 3: If G is complete then D is a sequence of ones
followed by a single zero; T is a sequence of twos.

(a) we shall consider only graphs which
are not complete,
(b) when we consider a; or d;, 1 <i <

Henceforth,

k —1, and
(c) when we consider b; or t;,1 < i <
k' —1.

We now have the following result.
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Theorem 1: The sequences A, B, D, and T are all mono-
tonically nondecreasing.

Theorem 2: Suppose |V;| =i and d(u, v;G — V;) —
d(u, v) + a;. Then there exist vertices b and ¢ in N(V;)
such that d(b, c; G — V;) =d(b, c) +a;.

Proof: If a; = 0, there is nothing to prove. Let a; > 0.
Let P be a shortest path from u to v in G. P passes through
at least one vertex of V;, since otherwise d(u, v) is not
altered in G — V;. Let b and ¢ be the first and last vertices
in P which are in N(V;). Clearly, b # c.
Suppose d(b, ¢; G — V;) <d(b, c) +a;.
Then

du,v; G -V;)
<du,b,G-V)+db,c;G-V)+d(c,v, G-V}
<d(u,b)+d®,c)+a; +d(c,v)
<d(u, v)+a;.

This contradiction completes the proof.

Theorem 3: Suppose |E;| =i and d(u,v; G — E;) =
d(u, v) + b;. Then there exist vertices b and ¢ in N'(E;)
such that d(b, c; G — E;) =d(b, c) + b;.

Corollary 1: The above two theorems indicate that the
definitions of a; and b; can be simplified as follows.

a; =Max,=i{du, v; G — V) —d(u, v)|u,v e N(V)}
and

b; = Maxg, _i{du, v; G — E;) —d(u, v)lu, v € N'(E)}.

This definition reduces to a large extent the amount of
computation needed to determine a; and b;.

III. CHARACTERIZATION OF VERTEX-DELETED
INCREMENTAL DISTANCE SEQUENCES

A monotonically nondecreasing sequence X, X2, -+, Xk_1,
with x; > 0, is said to be a feasible A-sequence, if there
exists a simple graph G whose A-sequence is the given se-
quence. Similar definitions hold for B, D, and T-sequences.
The feasible A-sequence is characterized in this section.

Theorem 4: Any monotonically nondecreasing sequence
X1, X2, ,X,_1 with x; > 0 is a feasible A-sequence.

Proof: The proof is by construction. If x; = 0 for all i,
then G = K, is the required graph.

Suppose some x; > 0.

Let R = {r;} be the distinct nonzero elements in A, in the
ascending order. Let |[R| =r.

Let F = {fi} where f; = Min{jlx; = rj} =
the first position in A where the ith distinct nonzero element
occurs.

For an easier understanding of the proof, we consider two
cases.

Case I: Letr =1.

Consider the graphs H (= K) and CHAIN, where x =
2ry + 1, as defined in Section L. Join vy, va, -+, vy, to every
vertex in the CHAIN. Join vy, 4y, vy, 42, - +,0; to the ver-
tices of the endblocks of CHAIN. Finally, add a vertex v and
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Fig. 2. Example for construction described in Theorem 4 (case 1).

connect it to every vertex in H. The resulting graph is the
required graph G. Note that the diameter of G is 2, since v;
is adjacent to every other vertex. Let #; be any one vertex in
G/, +1, the middle block in the CHAIN.

We illustrate the construction by an example. For the se-
quence {0,0,2,2,2}, we have k = 6, R = {2}, F = {3},
and x = 5. The graph G is given in Fig. 2.

‘We now show that the graph G realizes the sequence
{x1, X2, +,xx_1} as its A-sequence.

First, note that deleting u, or any subset of vertices of
the CHAIN, does not affect the distances between the re-
maining vertices. Consider next the following sets of vertices
{U], v2,~--,vf,}, {vf1+ls Uf1+2,"',Uk}, V(Gl)s 1 Sl <x.
If two vertices x and y belong to the same set, they are not
only similar in G, but also have the same adjacencies except
that x is adjacent to y, and y is adjacent to x. (Note: Two
vertices are similar in G, if there is an automorphism of G
taking one to the other [15].) Hence, any path passing through
x and not through y can be transformed into a path passing
through y and not through x, just by replacing x by y. Hence,
deleting any proper subset of any of the sets considered is not
going to affect the distance between any two of the remain-
ing vertices. Since each G; has k vertices, none of the G;’s
will be deleted completely from G, and this implies that it is
enough to consider the effects of the deletion of vertices in
H.

Since {v; } UN(v;) contains N(v;), for i < j, deletion of v;
will have no effect on the distances if some v;, i < j, is not
deleted. Hence, only sets of the form {v, va,- -+, v; } are to be
considered for deletion. Now, the discussion in the previous
paragraph indicates that only the set V'’ = {vy, v3,---, Vs, } is
to be considered.

Now, d(u, u; G — V') =ry +2 = ry +d(u;, u). From
the construction it is obvious that this increase is maximum

and hence
0
a; =
r

This completes the proof for Case 1.

Case 2: Letr >2.

The construction here is a generalization of the one given
above. For each i, 1 <i < r, a distinct CHAIN is to be con-
structed, whose length is determined as follows; the increase
in length in the previous stages has to be taken into account

fori < fi

for fi <i <k.
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while determining the length of the CHAIN for the current
stage. Determine the functions needed, length, and available
recursively as follows.

{needed; =the amount of distance to be increased at the
ith stage, taking into account the usable distance
increase from the previous stages.

length; =length of the CHAIN for the ith stage.

available; =the increase in distance available at the end of the

ith stage, which can be used in the next stage. }
availabley =0,
Fori =1tordo

needed; =r; — available; _;

length; =2 (needed;)+1;

available; =Max{available; _,, needed; };
end-of-for.

By finite induction it can be shown that for 1 </ < k —
1, 0 < available; < r; and 0 < needed; < r;.

Consider the graphs H and CHAIN; = CHAINengrn;, 1 <
i <r.Poreachi, 1 <i <r, join vy, vg,---,vy, to every
vertex of CHAINi, and join vy, 1, vy, 42, - -,V to all the ver-
tices of the endblocks of CHAINI. Let u; by any one vertex
in the middle block of CHAINI, and let w; be any one vertex
in one endblock of CHAINi. The resulting graph of diameter
2is G.

To illustrate the ideas, let {0,0,1,4,4,5} be the given
sequence. Here k = 7,R = {1,4,5},r = 3, and F =
{3, 4, 6}. The graph is shown in Fig. 3.

Proceeding as in Case 1, we get

a)a; =0for1 <i < f, ~1,

b)a; =a; if fx <i <j < fxi1 for some x, where f,; is
taken as £, and

¢) only the sets {vi, v, --,vp}, {vi,v2, 0,05}
<o, {vi,v2,---,v5,} are to be considered to get
as,ays,, --,ay. We will be done once we show that as, =
xy,, for all i.

It is easy to verify thata s, = ry, since d(u,, u; G—V)) =
2 +ry; where V; = {vi, v2,---,vs,}, and this represents a
maximum increase in the distances.

Suppose we have proved a; = x; for j < f;, for some
i > 2. We shall now prove ay, =r;.

From the definition we have

available,
available; _,

=ry =du,, w;; G —V))
=Max {d(uy, ws; G — V;_1)}
=Max {d(uy, Wx; G — (V; —vy)}.

Suppose the above maximum occurs for x = p. Cleary p <.
Now d(up, u;; G-V =dup, wy; G-V)+dwp, w;; G—
V) +dw;, u;; G —V;) = available; _+2+needed;=2-+r;.

It is clear that for any q < i, d(ug, u;; G —V;) <2 +r;,
by the maximality attached to p.

If g > i, then d(uy, u;; G —V;) =2+needed; <2 +r;.

Ifx, y <i,thend(uy, uy; G-V;) <2+4r;_y <2+r;. The
method of construction indicates that the maximum increase
in distance occurs between the u;’s, and hence a;, = r;. This
completes the proof for Case 2 and the theorem.
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Fig. 3. Example for construction described in Theorem 4 (case 2).

IV. EpGe-DELETED INCREMENTAL DISTANCE
SEQUENCES: CONDITIONS FOR FEASIBILITY

If by = 1, let p be the greatest integer such that b, = 1. If
by >1,letp =0.

If (x, y) € E, then there exist at least p edge disjoint paths
of length 2 between x and y, since b, = 1.

If d(x, y) = 2, then there exist at least p + 1 edge disjoint
paths of length < 3 between x and y, since by Theorem B [16]
the maximum number of such paths is equal to the minimum
number of edges to be deleted to make the distance between
x and y as > 3, and this minimum is > p + 1.

Let X = {x\, X2, -, X4, _; } be any monotonically nonde-
creasing sequence. Let R = {r;} be the increasing sequence
of distinct elements of X, which are > 1. Let F = {f;},
where f; = min {j|x; = r;}. Note that the definitions of R
and F are the same as before, except that here in R we con-
sider only elements > 1, instead of > 0. Let |R| = r. Now
p=fi—1

Theorem 5: Any monotonically nondecreasing sequence
X = {x1,x2, -, X1}, with x; > 1 and x, > 2, is a
feasible B-sequence.

Proof: Here p =0 or 1.

Consider a J = Ky, to start with. For each i, 1 <i <r,
do the following. Form an ECHAIN of length r; + 1. Identify
one middle block of this ECHAIN with J. Introduce a new
vertex u;, and join it to all the vertices of an endblock in
the ECHAIN and to any f; number of vertices of the other
endblock.

Finally, introduce a new vertex « and join it to every vertex
in J. The resulting graph G has X as its B-sequence. The proof
is straightforward and hence omitted.

For X = {1, 3, 3,4}, we have R = {3,4}, F = {2,4},
and the graph G is as given in Fig. 4. In this example, the
deletion of the two edges drawn individually at u; increases
the distance between u; and v, from 1 to 4. Similarly, the
deletion of the four edges drawn individually at u, increases
the distance between u, and v, from 1 to 5. These deletions
account for r; and r;.

Note that the above construction will work for any sequence
with all x; < 3, but will not work if x» = 1 and some x; > 4,
since in this case, the increase in distance is 2 in G —(u;, w) —
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Fig. 4. Example illustrating Theorem 5.

(4;, z) where w and z belong to different endblocks of the
ECHAIN of length x; + 1.

Now, we derive some relations between the elements of the
B-sequence, based on the value of p.

Lemma 1: Let b, = 1. Let E' =

{e1, e2,--+,e4} be any
set of edges in any graph G which forms a star. Let ¢ < k’.
Then d(x, y; G — E") <d(x, y)+3 forall x, y.

Proof: Lete; = (u, v;) for 1 <i < gq. Here p > 2, since
b, = 1. In view of Theorem 3, it is enough to consider x and
yin {v;} U{u}.

Let x = v; and y = v;,i # j. If (x,y) € E then
dix,y;G ~E") = 1. If (x,y) € E, then d(x, y) = 2.
Since E’ is a star with the center u different from x and
y, at most two edge disjoint paths of length < 3 between
x and y are destroyed in G — E’. Since there are at least
p +1 > 3 such paths of length < 3 between x and y, we get
dix,y;G—EY<3=d(x,y)+1.

Let x = u and y = v;. Let u, wy, wa,---,ws = v; be a
shortest path between x and y in G —E’. If (w1, v;) € E, then
dx,y;G—E"=2.1f (w,,v;) € E, thend(w,, v;) =2 and
as before not all the (> 3) paths of length < 3 between w; and
v; are destroyed in G — E’. Hence, d(w, v;; G — E’) < 3.
This gives d(x, y; G —E') <4 =d(x, y) +3.

Lemma 2: Let {b;} be the B-sequence of G. If by =1,
then by =11 < 3.

Proof: Let E' = {e; = (uj,v)]l <i < p +1} be
such that d(u, v; G — E'Y =d(u, v) + by, for some u, v €
N'(E").

Suppose every pair of edges of E’ has a common end ver-
tex. Then E’ forms a star or a K3. If E’ forms a K3, then
between any two vertices of this K3, there exists a path of
length 2 which does not pass through the third vertex, since
p >2. This gives b1 = 1 by Theorem 3, a contradiction.
Hence, E’ forms a star and the result follows from Lemma 1.

Suppose there exist two edges, say e, and e;, in E’, which
do not share a common vertex. Let E” = E’ — e,. Since
|[E"| =p,d(x,y; G—E") <d(x,y)+1forall x, y. Also,
since e, does not share a vertex with e;, not all the (> p)
paths of length 2 between u; and v; (ends of e;) are destroyed
in G — E”. Hence, for all x, y,d(x,y;G —E" —e)) <
dx,y; G —E")+1 <d(x, y)+2. This implies b =2
and the proof is complete.

Lemma 3: Let {b;} be the B-sequence of G and let b3 = 1.
Then b, < bpi +1.

Proof- Here p > 3. Let E' = {e; = (u;, v)|l <i <
p +2} be such that d(u, v; G — E') = d(u, v) + bp for
some u, v € N'(E’).

Suppose every pair of edges in E' has a common end vertex.
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In this case, E’ forms a star and by Lemma 1, bp4n <3 <
bp1 +1, since by > 2.

Suppose there exist two edges, say e; and e, in E', which
do not share a common vertex.

Case 1: Not all the (> p) paths of length 2 between u; and
vy are destroyed in G — E”, where E” =E' —e).

Here d(x,y,G —E" —e)) <d(x,y;G —E")+ 1 and
this gives bp2 <bpi1 + 1.

Case 2: Not all the (> p) paths of length 2 between u, and
v, are destroyed in G — {E’ — e, }. This case is similar to the
previous one.

Case 3: All the (> p) paths of length 2 between #; and v,
and between u, and vs, are destroyed in G — E’.

In order to destroy all the above mentioned paths, each
one of the edges in {es, es,---,€p+2} should be present in
exactly one of the edge disjoint paths of length 2 between
u; and vy, and in exactly one such path between u; and v;.
Clearly all these edges must be adjacent to both e; and e;.
These requirements can be met only by two edges. In other
words, p < 2, a contradiction. Hence, this case is impossible
and the proof is complete.

Lemma 4:1fbs =1land1 <j < p,thenb,.; <bp i1+
1.

Proof: let E' = {e;|l < i < p+j} be such that
du,v; G — E'Y = d(u, v) + b, for some u, v € N'(E").
The proof is easy in the first two cases of Lemma 3.

Case 3: Edges e, and e, of E' do not share a common
vertex, and all the (> p) paths of length 2 between u; and vy,
and between u, and v, are destroyed in G — E’.

This is possible only if at least p edges from {es, es,

-+, ep;} are adjacent to e, and such that no two of them
have a common vertex other than u; or v;. A similar statement
holds true with respect to e; also. Since at most two edges
can satisfy these requirements and also be adjacent to both e;
and e;, we have p +j >2(p —2) +4. Thatis p <.

Since j < p by our assumption, we have p = j and two
edges, say e; = (41, u2) and e4 = (vy, v2) (without loss of
generality) are adjacent to both e; and e;. Also, p — 2 of the
edges of E' — {e, ez, e3, e4} are adjacent to e, and not to
e;, and each one of these p — 2 edges is on a distinct path
of length 2 between u; and v;. The remaining p — 2 edges
of E’ are adjacent to e, and not to e;, and each one is on a
distinct path of length 2 between u, and v;. Since every edge
in E' — {e, e} meets e; or e,, there exists no e; € E —
{e1, e2} such that {e}, e, e;} are independent. Also, since
ey and e; are on paths of length 2 between u; and v,, we
have (11, v2), (12, v) € E — E’. Note that these conclusions
have been arrived at starting with a pair of independent edges
e, and e, in E'. The same conclusions hold good for every
pair of independent edges in E’, and this implies that no three
edges in E’ form an independent set of edges.

Suppose es meets e; at ;. Then we cannot have an edge
e; € {es, €7, -, ez} such that e; is incident on u, and is not
adjacent to es, since otherwise {es, es, e;} will form a set of
three independent edges. On the other hand, if some e;, i > 6,
meets e, at U, and is adjacent to es also, then considering the
independent edges e; and e;, we see that both es and e; are
on a single path of length 2 between u; and u,, and hence not
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all the paths of length 2 between u; and u, are destroyed in
G —E’, a contradiction. Hence, any e;, i > 6, which meets e,
can meet e; only at vy. This in turn implies that any e;, i > 6,
meeting e;, meets it only at u;.

Suppose es = (u;, wg) and e, = (vo, wy) are in E’ —
{e1, e2, e3, e4}. If wy # w,, then considering the indepen-
dent edges e; and e;, we get that (4, w;) and (vy, wy) are
both in E’, and (ws, w;) € E — E’, since (u;, v;) € E — E’'.
Hence, the edges of £’ form a union of two stars, each with p
edges, having distinct central vertices, but the same set of end
vertices. Also, there is an edge in £ — E’ joining any two of
these end vertices. The presence of these edges and the edge
(u1, v2) in E — E' imply that the vertices u and v mentioned
in the beginning of the proof are such that one is the center of
a star described above and the other is an end vertex of that
star. Let u = u; and v = v; without loss of generality.

Let u, xy, X2,---,v be a shortest path in G — E’. Since
b,.j > 1, we have d(u, v;G — E’) > 3 and this implies
(x1,v) € E and d(x;, v) = 2. Since E’ is the union of two
stars as described before, at most four edge disjoint paths
of length < 3 can be destroyed by deleting E’ (see Fig. 5).
As there are at least p + 1 > 5 such paths between x; and
v, d(x1, v; G —E’) < 3. This gives d(u, v; G —E') <4 and
hence b, ; <3.8ince by, ;| >2,wegeth, ; <b,. ; ;+1
and the proof is complete.

It can be shown that (for example, see Fig. 6) when p =2
or 3, by, is not bounded above by p + 2, as in the case for
p >4, and hence Lemma 4 cannot be extended to the cases
where p =2 or 3. Combining the three lemmas we have the
following.

Theorem 6: If p = 2 then b3 <3. If p = 3 then by <3
and bs <4.If p >4 thenb,,; <j+2for1 <j<p.

The above result shows that the number of ones in B has
some influence on the next few elements of B, and, if the num-
ber of ones is more, greater is the influence. Note that we have
seen that when p = 1, it has no effect on any b;, i > 2. The
natural question is whether this influence spreads throughout
B or does it stop somewhere? In case it stops at some stage,
can the area of influence be determined? We show that, under
certain circumstances, this influence does not spread after a
certain stage.

Theorem 7: Let X = {x|, X2,---,X¢_1} be a monotoni-
cally nondecreasing sequence such that x; =1 for 1 <i < p,
where p > 2, xp41 > 2, and xp2; < 3. Then X is a feasible
B-sequence

Proof: Consider J = K.

For each /, such that r; = 2 or 3, proceed as in the con-
struction given in the proof of Theorem 5.

For each /, such that r; > 3, form an ECHAIN of length
r; + 2. Identify one middle block of this ECHAIN with J.
Choose the smallest s such that

(s—Ds< fi <s?ors® < f; <s(s+1).

In the first case, choose s vertices each, from the endblocks
of the ECHAIN. In the second case, choose s vertices from
one endblock and s + 1 vertices from the other. Introduce f;
edges between these s +5 or 5 + (s + 1) vertices, in any way,
as in a bipartite graph.
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V2

Fig. 5. Example used in proof of Lemma 4.

B=(1.1,3,7)

Fig. 6. Example illustrating the nonapplicability of the bound in Lemma 4
for the case p =2 or p.=3.

As the final step, introduce a new vertex u and join it to
every vertex in J. The resulting graph G is the required graph.
An example is given in Fig. 6.

The B-sequence of G is determined as follows. From the
construction it is obvious that only the ¥f; edges introduced
joining the ends of the ECHAINS are to be considered for
deletion.

Where r; =2 or 3, the length of the ECHAIN being 3 or
4 ensures by, =1 and by, > r;.

Suppose some r; > 3. If (x, y) € E, and x and y are in
different endblocks of the corresponding ECHAIN, we shall
show that there are at least p edge disjoint paths of length
2 between x and y. This will ensure b, = 1. We assumed
Xxp2_1 <3 precisely to facilitate this, as shown below.

Since r; > 3 we have f; > p? and hence s > p. Sup-
pose s + s vertices have been chosen at the endblocks of the
corresponding ECHAIN (the case s 4 (s + 1) can be treated
similarly). Here (s — 1)s < f; < s°. Let H be the bipartite
graph introduced on these 2s vertices using f; edges. Clearly,
the number of edge disjoint paths of length 2 between x and y,
say g, is degyx +degy, ¥ —2 since (x, y) € E. When f; = P2,
we have s = p, H is a complete bipartite graph, and hence
g =2p —2 > p since p > 2. Hence, let f; > p>. In this
case, S > p, since we are having exactly s + s vertices in H.

We have f; = deg,x +degy,y — 1 +h where h = number
of edges in H having no end in {x, y} < (s — 1)>. Hence,
Jfi=q+1+h. This gives s < g +1, since s(s — 1) < f; and
h < (s —1)’. Now p < s implies p < q, the required result.

Since deletion of any f; — 1 edges from H can increase the
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distance between any two vertices by at most two, it follows
that X is the B-sequence of G.

V. INTERRELATIONS BETWEEN INCREMENTAL
DISTANCE SEQUENCES

It is natural to expect that @; > b; for 1 <i < k’, since
the deletion of one vertex can delete more than an edge. But
this need not be so. In this section, a lower bound for «a; is
derived in terms of b;. This brings out the relation between
the A and B-sequences of a graph.

Theorem 8: Fori > 1, a; > b; — 2 and this bound can be
achieved.

Proof: Since a; > 0, there is nothing to prove if b; < 2.
Hence, let b; > 3. Let d(u, v; G — E;) = d(u, v) +b; where
|E,l :i, E,‘ C E, and u,v e N/(E,)

Case 1: Let (u, v) € E;.

Obviously (u, v) € E. Let (u, uy), (v, v)) € E;. Let V' be
a set of vertices formed by taking one end vertex of every
edge in E;, such that #;, vy € V' and u,v € V'. We have
|V'| <i and

d(u, v) +b,‘ =du,v; G —E))
<du,v; G-V <du,v)+a;.

Hence, a; > b; in this case.

Case 2: Let (u,v) € E;.

Since b; > 3, we have d(u,v; G —E;) =1+ b; > 3. Let
U, Uy, Uz, -,Uy, v be a shortest path fromutov in G — E;.

Suppose (¥, uy) ¢ E. Thend(u, uy) =2 and d(u, ux; G —
E;) = b;. Choose V' as having one end vertex of every edge
in E; such that v € V' and u, u, ¢ V’. Since |V'| < i, we
have d(u, uy; G —E;) <d(u, uy; G —V’) <2 +a;. Hence,
a; > b; — 2 in this subcase.

Suppose (u, uy) € E. Since d(u,v; G — E;) > 3, this
implies (u, u,) € E;. If, for every vertex ¢ with (v, ) € E —
E;, the edge (u, t) is in E, then (i, f) € E; and this will imply
|E;| > 6 > k', a contradiction. Hence, there exists a vertex ¢
such that (v, t) € E—FE;and (4, t) ¢ E,d(u,t; G-E;) > b;,
as otherwise d(u,v; G — E;) <1 + b;. Now choose V'
as having one end vertex from each edge of E; such that
u, t@V’ and uy,v € V'. Since |V'|<i, b; <du,t;G —
E)<du,t;G-V")<2+a; and hence a; > b; —2.

This proves a; > b; — 2 in all the cases and for all i.
Examples achieving this bound can be constructed.

Theorem 9: If a; =0 then b, = 2.

Proof: Let E' = {e;|l < i < p + 1} be such that
du,v; G —E'Y=d(u,v)+ by, for some u, v € N'(E).

If E' forms a K3 or has two independent edges then the
proof is the same as in Lemma 2. Hence, let E' form a star.
Lete; = (s, w;), 1 <i <p+1. Since p+1 < §, there exists
a vertex wp., such that (s, w,10) € E —E’. Now a; =0
implies that d(w;, w;; G —s) <2 for 1 <i < p +2 and
hence d(w;, w;; G — E’) < 2. Since u, v € {w;} U {s}, we
getbpy = 2.

VI. RELATIONS BETWEEN INCREMENTAL DISTANCE
AND DIAMETER SEQUENCES

The relationships between all the four sequences are con-
sidered in this section. These relations allow us to translate
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the result obtained for one sequence to that for the other. We
use the results d; < (n—i —2)/(k—i)+1and t; < (@ +1)d+i
proved by Chung and Garey [5].

Theorem 10: Any monotonically nondecreasing sequence
X1, X2, ,Xg_y With x; > x > 2 is a D-sequence of a graph
G of diameter x.

Proof: Let G’ be the graph constructed in Theorem 4,
for the sequence x —2, xy —2, x, —2,---,X¢_; —2. Then the
diameter of G’ — {vi,--,v;41} = x;, and the connectivity of
G’ isk +1. Let G =G’ —v;. G is the required graph.

Theorem 11: Let G be a given graph. Then

di—-d<a <di—2,and t; —d <b; <t; — 1.

Proof: For the first part, consider the ends of a diameter.
The second part follows since d(u, v; G — V;) <d;.

Corollary 2: Suppose t, = 2. If p =2, then #3 < 5. If
p=3thenty <S5andts <6.If p >4thent, ; <j+4for
J<p.

Proof: Since ¢, =2, we have d = 2. This gives f, —2 <
b, <t, —1 and hence b, = 1. Now, Theorem 7 and the
inequality ¢t; —d < b; imply the required result.

Note 3: The sequence 2, 2, 2, 2, 4, 7 is not a feasible
T-sequence.

The constructions given for {b;} cannot be modified for
{¢;}, unlike in the case of {a;} and {d;}, because of the
following. In the case of vertex deletion, there exist subsets of
vertices V;, such that |V;| =i, V), C V2 C V3---, deletion
of V; changes some distance by a;, and, most importantly,
the diameter of the constructed graph is 2. None of these
properties hold good in the construction given for {b;}.

Corollary 3: t; <d; +d and t; < [(n —i —2)/(k —i)| +
d+1.

Proof.' t; —d -2 Sb, -2 <a; Sd, -2< L(n - —
) /tk —i)|+1-2.

Corollary 4: a; < {(n—i —2)/(k —i)] — 1 and b; <
min {( + )d +i+1, [((n —i +2)/(k —i)] +d}

Proof: These results follow from ¢; < d; —2 and b; <
- 1.

VII. CoNCLUSION

Motivated by their application in network topology design,
we have introduced two new measures of network perfor-
mance, namely, the incremental distance sequence and the
diameter sequence. These sequences are defined for both ver-
tex deletions and edge deletions. We have established several
results relating to these sequences. We have given general
procedures to design networks having prescribed incremental
distance and diameter sequences. The number of vertices in
these networks is linearly related to the number of distinct
nonzero elements in the sequences. In practical designs, such
nondistinct elements will be very few in number. For such
cases, the size of the networks designed by our procedures
will be considerably smaller than the sizes suggested by the
examples given in this paper.

Several interesting open problems remain. It is not clear
if polynomial time algorithms are possible to determine the
elements of the incremental sequences. It will be interesting
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to evaluate the several interconnection topologies presented
in the literature using these new measures of fault tolerance,
and present new designs based on these measures along with
certain other parameters like connectivity and the number of
vertices.
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