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A t/s-diagnosable system permits diagnosis of faulty units within a set of s units provided the number of
faulty units does not exceed t. A characterization of t/s-diagnosable systems is presented. This characteriza-
tion is then used to develop an efficient algorithm for diagnosis of ¢/s-diagnosable systems. It is noted that
a useful modification of the algorithm can be used for fault diagnosis of sequentially t-diagnosable systems.

1. Introduction

Several models have been proposed in the literature for diagnosable system design. Of
these, the now well-known PMC model introduced by Preparata, Metze, and Chien!
has been extensively studied. In this model, each processor tests some of the other
processors and produces test results, which are unreliable if the testing processor is
itself faulty. The collection of all test results over the entire system is referred to as a
syndrome. The classical constraint used in the study of diagnosable systems is to assume
that the number of faulty processors in the entire system is upper bounded by an integer
t. A system is then said to be t-diagnosable if given a syndrome, all processors can be
correctly identified as faulty or fault-free, provided that the number of faulty processors
present in the system does not exceed t. Three problems of interest in this context are:
the t-characterization problem to determine the necessary and sufficient conditions for
the system test assignment to be ¢-diagnosable, the t-diagnosability problem to deter-
mine the largest value of ¢ for which a given system is t-diagnosable, and finally the
t-diagnosis problem to locate the faulty units present in a ¢t-diagnosable system, using
a given syndrome.

Hakimi and Amin? gave a solution to the t-characterization problem. An O(| E[n3?)
algorithm for the t-diagnosability problem was presented by Sullivan.? Dahbura and
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Masson* published an O(n?-) algorithm for the t-diagnosis problem; a t-diagnosis
algorithm with complexity O(JE| + t3) was presented by Sullivan.> A generalized
theory for system-level diagnosis was proposed by Somani, Davis, and Agarwal in Ref.
6. This paper presented a generalized characterization theorem which provides the
necessary and sufficient conditions for unique diagnosis of fault sets of any cardinality
under different fault models.

The requirement that all the faulty processors in a multiprocessor system be
identified exactly is rather restrictive. Friedman’ introduced the concept of
t/s-diagnosability which allowed the possible replacement of fault-free processors,
whereas in t-diagnosability only the replacement of faulty processors in considered. A
multiprocessor system S is said to be t/s-diagnosable, if given a syndrome, the set of
faulty processors can be isolated to within a set of at most s processors provided that
the number of faulty processors does not exceed t. Allowing some fault-free processors
to be possibly identified as faulty permits the system to have far fewer tests. It has been
shown that t/t-diagnosable systems with n*[(t 4+ 1)/2] tests can be constructed.®
t/t-diagnosable systems have been studied extensively in the literature. Chwa and
Hakimi® gave a characterization of t/t-diagnosable systems, Sullivan® presented a
polynomial time algorithm for the t/t-diagnosability problem, and Yang et al.'®
presented an O(n?3) algorithm for the t/t-diagnosis problem. Suilivan also presented,
in Ref. 11, a t/t + k-diagnosability algorithm which runs in polynomial time for each
fixed integer k. This diagnosability algorithm is based on a characterization of t/t + k-
diagnosable systems also developed in Ref. 11. In Ref. 12, Raghavan has developed,
among other things, a characterization of t/s-diagnosable systems. He has also given
improved algorithms for the t-diagnosability problem.

A system is sequentially ¢-diagnosable if at least one faulty unit can be identified
provided the number of faulty processors in the system does not exceed t. Equivalently,
a system is sequentially t-diagnosable if and only if given any syndrome there exists a
unit v which is present in every allowable fault set of cardinality at most t.!?

The objective of this work is to develop diagnosis aigorithms for t/s-diagnosable
systems. The paper is organized as follows. First in Sec. 2, we present certain basic
definitions, notations and results. We present in Sec. 3 the t/s-characterization theo-
rem of Ref. 13. With the objective of determining an efficient test for a vertex v to be
in an allowable fault set of cardinality at most t, we establish in Sec. 4 several properties
of allowable fault sets. Using these properties and the t/s-characterization, we develop
in Sec. 5 a t/t + k diagnosis algorithm which runs in polynomial time for each fixed
integer k. In this section we also show how this algorithm can be modified to determine
the set of all units which lie in every allowable fault set of cardinality at most ¢. These
units can be correctly identified as faulty. This modified algorithm can thus be used
for diagnosis of a sequentially t-diagnosable system.

2. Preliminaries

A multiprocessor system S consists of n units or processors, denoted by the set
U = {u,,u,,...,u,}. Each unit is assigned a subset of other units for testing. Thus the
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Fig. 1. Test outcomes under the PMC model.

test inter-connection can be modeled as a directed graph G = (U, E). The test outcome
a;;, which results when unit u; tests unit uj, has value 1 (0) if u; evaluates unit u; to be
faulty (fault-free). Since all faults considered are permanent, the test outcome a; is
reliable if and only unit u; is fault-free. The collection of all test results over the entire
system is referred to as a syndrome. Test outcomes under the PMC model are shown in
Fig. 1. A system S with a syndrome corresponding to a fault set is given in Fig. 2. If
a; = 0 (1) then u; is said to have a 0-link (1-link) to u; and u; is said to have a 0-link
(t-link) from u;.
Given a syndrome, the disagreement set A, (u;) of u; € U is defined as

Al(ui) = {ujlaij =1lor aji = 1}
For a subset W = U,

A (W)= ug Ay (u;).
Given a syndrome, the set of 0-descendents of u; is represented by the set
Dy(u;) = {u; : there is a directed path of 0-links from u; to u;}
and for a set W = U, the 0-ancestors of W denotes the set

Ao(W) = {u;:u; € Do(u;) and u; € W.

For u; e U, Hy(u;) corresponds to the set Aq(u;) L {u;}.
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Fig. 2. A syndrome for a 3/4 diagnosable system.

The disagreement set, the 0-descendants and the 0-ancestors of the unit u, in Fig. 2
are given below.

Ai(uqg) = {us,“a,usa“%um}-
Do(u) = {ug,tys}.

Ao(ur) = ®@.

Definition 1*: Given a system S and a syndrome, a subset F < U is an allowable fault
set (AFS) if and only if

Condition 1: u;e (U — F)and a;; = 0 imply u; € (U — F), and

Condition 2: u;€ (U — F)and a; = 1 imply u; € F.

In other words, F is an AFS for a given syndrome if and only if the assumption that
the units in F are faulty and the units in U — F are fault-free is consistent with the
given syndrome. In Fig. 2, the subsets {u,,u;,u 3} and {u,,u,,u,3,u,,} are allowable
fault sets corresponding to the given syndrome. A minimum allowable fault set (MAFS)
is an allowable fault set of minimum cardinality.

Definition 2*: Given a system S and a syndrome, the implied faulty set L(u,) of u; e U
is the set of all units of S that may be deduced to be faulty under the assumption that
u; is fault-free.
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Fig. 3. (a) Implied fault path between two units. (b) Implied fault set for unit u.

It follows that
L(u;) = A{(Do(u;)) U Ag(A;(Do(u;))).

Note that if u; € L(u;) then there exists a 1-link (u, u,) or (4, u,) such that there is a
directed path of O-links from ; to u, and a directed path of O-links from u; to u;. Such
a path will be referred to as an implied-fault path between u; and u;.

The implied fault path and the implied fault set for a unit u; are shown in Fig. 3.

Ifu; € L(u;) then clearly the unit u; is faulty. Such a unit will be in every AFS. Without
loss of generality, we assume in this paper that u; ¢ L(u;) for any u; € U.

The following lemmas determine a few properties of AFS’s and implied faulty sets.

Lemma 1°: Given a system S and a syndrome, each of the following statements holds:
(1) for u;, u; € U, y; € L(w;) if and only if u; € L(u,),

(2) foru;, u;e U, if a;; = 0 then L(u;) < L(u,),

(3) f Fc Uisan AFS,then () L(u)<F.

u;eU—F
Q.ED.
Lemma 2'?: Given a system S and a syndrome, if F, and F, are AFS’s then so is
(F, U Fy).
QED.

Lemma 3: Given a system S and a syndrome, let F < U be an AFS containing u; € U.
Then Hy(u;) < F.

Proof: Suppose that u; € Hy(u;) is not a member of F. Since u; € Hy(u;) there exists a

directed path of 0-links from u; to u;. Since ;€ U — F and u; € F, there exists a 0-link

from U — F to F on this path, contradicting the assumption that F is an AFS.
Q.E.D.
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For what follows, let G’ = (U, E’) denote a general, undirected graph.

Definition 3: A subset K = U’ is called a vertex cover set (VCS)'* of G’ if every edge
in G’ is incident to at least one vertex in K. A minimum vertex cover set (MVCS) is a
VCS of minimum cardinality in G'.

Definition 4: A subset M < E' is called a matching'* if no vertex in U’ is incident to
more than one edge in M. A maximum matching is a matching of maximum cardinality
in G

A bipartite graph, with bipartition (X, Y), is one whose vertex set can be partitioned
into two subsets X and Y such that every edge is incident to a vertex in X and a vertex
in Y. Finally, for u; € U’, N(u;) denotes the set of all vertices which are adjacent to u;.

Definition 57; A system S is t/s-diagnosable if and only if, given a syndrome, all fauity
units can be isolated to within a set of at most s > ¢ units, provided that the number
of faulty units in the system does not exceed ¢.

It should be observed that a system is trivially t/s-diagnosable if n = s. Thus, in this
paper, it is required that 0 <t < s < n. It should also be noted that under these
conditions n > 2t + 1 for t/s-diagnosable systems.

3. T/S-Characterization: PMC Model

In the PMC model, two distinct fault sets F; and F, cannot generate a common
syndrome if there is a test from the outside into the disjoint union (symmetric difference)
of the two sets. For instance, Fig. 4 shows two subsets of a test interconnection graph
G(U, E) in which there is a test from the outside into the disjoint union of F; and F,.
Thus F, and F, cannot generate a common syndrome. This condition is both necessary
and sufficient to ensure that two distinct subsets do not generate a common syndrome.
This observation led to the following characterization by Kohda'® for t-diagnosable
systems.

A system S with test interconnection graph G = (U, E) under the PMC model
is t-diagnosable if and only if for all distinct, nonempty subsets X;, X; < U,
| X;| <t,|X;| <t, thereis a test from U — X; — X;into X; ® X.

The above approach for characterizing fault sets which generate a common syn-
drome is used in this section to develop a characterization for a t/s-diagnosable system.
Recall (Sec. 2) that n > 2t + 1, for a nontrivial t/s-diagnosable system.

Definition 6: Given a system S and a subset X < U, aset 4 = {X,,...,X,} is said to
be a t-decomposition of X if and onlyif () X;=XandO0<|X]|<tforl<i<r

1<i<r

The set Py is the collection of all t-decompositions of X.

Theorem 1: A system S with test interconnection graph G = (U, E) is t/s-diagnosable
if and only if for all X < U, | X| > s, and for all t-decompositions 4 € Py, there exist
subsets X;, X; € A4 such that there is a test from U — X, — X;to X; ® X.
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Fig. 4. Two fault sets which cannot generate a common syndrome under the PMC model.

Proof: (Necessity) Assume that the system S is ¢/s-diagnosable and that the condition
of the theorem does not hold. Then there exists X = U with | X| > s and A € Py such
that for all X;, X; € 4 there is no test from U — X; — X to X; ® X;. Consider now the
syndrome where for each edge (u,,u,) € E the outcome is defined as follows:

Casel: y;e U — XoruyeU — X.

Condition 1.1: u,, u;e€ U — X; then set g, = 0.

Condition 1.2: u, e U — X and for all X; € A4, u; € X;; then set a,; = 1.
Condition 1.3: w, € X and y, € U — X; then set a;, = 0.

Case 2: u,, u; € X.
Condition 2.1: u,, u; ¢ X; for some X; € 4; then set a,; = 0.
(Note: In this case, there is no subset X;e 4 such that u, € X; and u, ¢ X;. For
otherwise, there would be a test from U — X; — X;to X, ® X.)
Condition 2.2: For all X; € A either u, € X; or u; € X;; then set a,; = 1.
Let X; be a member of 4. We show that X, is an AFS of S for the above syndrome.
Let (u,,,) be an edge in G with u, u, e U — X,.
(i) If u,, u; € U — X then Condition 1.1 applies and q,, = 0.
(i) If u, € X and u, € U — X, then Condition 1.3 applies and a,; = 0.
(iii) If u,, u; € X then by Condition 2.1, a;; = 0.
Thus, for an edge (u;,u,) with u,, u, e U — X, a,, = 0.
Next let (u,, u;) be an edge in G with u, € U — X; and u; € X;.
(i) fu, e U — X and u, € X; for all X, then by Condition 1.2, a,, = 1.
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(i1} If u, € X then, as we have noted before, Condition 2.1 does not occur and so by
condition 2.2, a,; = 1.

Thus, for an edge (4, u;) with u, e U — X;and y, € X, q,; = 1.

From the above, it follows that X; is an allowable fault set.

Since X; is an arbitrary member of A4, it follows that, for the above syndrome, each
X; € A is an allowable fault set of size less than or equal to ¢. Since the union of all
these allowable fault sets is X and | X| > s, no subset of units of U of size at most s can
isolate the faulty units for the above syndrome. Hence S is not t/s-diagnosable, a
contradiction.

(Sufficiency). Proof is given by using a contrapositive argument. Assume S is not
t/s-diagnosable. Then there exists a syndrome, say 0, and subsets X, X,, ..., X,, of
cardinality at most ¢ such that these subsets are allowable fault sets with respect to 6
and that | X'| > s, where X is the union of X, X,, ..., X,,.

Suppose that for some pair X;, X;, 1 <j < k < m thereis a test from U — X; — X
to X; ® X;. Let (4, u;) be such a test edge. Without loss of generality, let 4, € X;. If X;
is the fault set then the test outcome a,; = 1; if X; is the fault set then a,, = 0. This
contradicts the assumption that both X; and X; are allowable fault sets for 6. This
shows that the condition of the theorem is not satisfied.

Q.E.D.

4. Basic Properties of Allowable Fault Sets

Our approach to t/s-diagnosis is first to develop an efficient test to determine whether
a vertex v of a t/s-diagnosable system is an AFS of cardinality at most ¢. The set of all
vertices which satisfy this property will be the required isolating faulty units. This is
ensured from Lemma 2. With this objective in mind we first present in this section
several properties of AFS’s in a t/s-diagnosable system. Our investigations in this
chapter are based on the notions of the implied-fault set and the implied-fault graph
used by Dahbura and Masson* in their study.

Given a syndrome for a system S, define the implied-fault graph G* = (U*,E*) to
be an undirected graph such that U* = U and E* = {(u;, ;) : u; € L(u;)}. Recall that
L(u;) is the set of all units of S that may be deduced to be faulty under the assumption
that u; is fault-free and that Hy(u;) corresponds to the set Ay(u;) U {u;} where A, (u;) is
the set of 0-ancestors of {u;}. For u € U, let G} denote the subgraph of G* obtained after
all units in Hy(u) and all edges incident on these units have been removed from G*.
Let K, represent an MVCS of G* and let G — Hy(u) denote the subgraph of G where
all vertices in H,(u) along with all edges incident on these vertices have been removed
from G. These concepts are illustrated in Fig. 5 for the test interconnection graph and
the syndrome shown in Fig. 2. Finally, we define G*(F) to be the subgraph of G* such
that all edges which connect vertices entirely inside F have been deleted.

Note that if u; € L(u;) then u; can immediately be identified as faulty. Thus we assume
that u; ¢ L(u,) for any u; € U. This means that G* has no self-loops.

The results of the following lemma can be found in Ref. 4.
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Fig. 5. Implied fault graphs G* and G} .

Lemma 4: Given a syndrome for a system S, we have the following:
(i) Every AFS of G is a VCS of G*.

(i) If F < U is a minimal VCS of G*, then F is an AFS of G.

(iif) F = U is an MAFS of G if and only if F is an MVCS of G*.

Lemma S: F is an AFS in G of minimum cardinality containing unit v if and only if
H = F — Hy(v) is an MAFS of G — H,(v).



362 A.Dasetal.

Proof: (Necessity) We first show that H is an AFS of G — H,(v). Since U — F=
(U — Hy(v)) — H and F is an AFS of G all edges within (U — H,(v)) — H are 0-links
and all edges from (U — Hy(v)) — H into H are 1-links. Hence H is an AFS of
G — Hy(v). To show that H is an MAFS of G — H,(v), assume H, is an AFS of
G — H(v). Clearly all edges with both vertices incident on vertices in (U — Hy(v)) — H,
are O-links and all edges from U — Hy(v) — H, into H, are 1-links. Now consider edges
from (U — Hy(v)) — H, into Hy(v). These edges must all be 1-links, otherwise the
vertices incident on these edges would all belong to H,y(v). This shows that the set
H, U Hy(v) is an AFS of G. Hence if |H,| < |H| then H, u Hy(v) is an AFS of smaller
cardinality than F, contradicting the fact that F is an AFS of minimum cardinality
containing v. Hence |H,| > |H| and H is an MAFS of G — H,(v).

(Sufficiency) If F — Hq(v) is an MAFS of G — H,(v) then as we have shown in the
proof of necessity, F is an AFS of G. If F is not an AFS in G of minimum cardinality
containing v, then let F, be an AFS of G containing v with |F,;| < |F|. But then
F, — Hy(v), from the necessity part, would be an AFS of G — H,(v) of smaller cardi-
nality than F — Hy(v), a contradiction.

Lemma 6: For ve U, (G — Hy(v))* = GF.

Proof: Since the vertex sets of both graphs are the same, we need only show that the
edge sets are identical. Clearly every edge in (G — H,(v))* is in G*. Now assume that
there is an edge (u;,4;) in G which is not in (G — H,(v))*. Then every implied-fault
pathin G between u; and u; must contain at least one vertex from H,(v). But this implies
that either u; or u;is a member of H,(v), contradicting the assumption that both vertices
are members of G — Hy(v). Hence the two edge sets are also identical.

Q.E.D.

Lemma 7: Given a syndrome for a system S, let F < U be an AFS containing v € U.
Then F — Hy(v) is a VCS of GF.

Proof: Let F; = F — Hy(v). From Lemma 3 and the proof of Lemma 6, it follows that
F, is an AFS of G — H,(v). Then from Lemma 5, F, is a VCS of (G — H,(v))*. Thus,
by Lemma 7, F, is a VCS of G*.

Q.E.D.

Theorem 2: Given a syndrome for a system S, F is an AFS of minimum cardinality
among all allowable fault sets that contain unit u € U if and only if F — H,y(v) is an
MVCS of GF.

Proof: Proof follows from Lemmas 5, 6 and 7.

The condition in the above theorem can be used to test if a unit belongs to an
AFS of cardinality at most ¢t for a given syndrome. However this condition requires
determining an MVCS for a general undirected graph. But the associated decision
problem, the Vertex Cover Problem, is known to be NP-Complete. So, we would like
to develop a test which requires determining an MVCS of a bipartite graph. With this
objective in mind, we now define a bipartite graph for each vertex v. This bipartite
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graph is derived from G}. We then relate an MVCS of this graph to an AFS containing
vertex v and establish certain properties of this AFS which will be used in the following
sections to develop appropriate diagnosis algorithms.

Given a system S and a syndrome, define B = (Up, Eg) to be the undirected bipartite
graph with bipartition (X, Y) where

X:{xl,...,x"}, Yz{yl’.."y"}
and
EB = {(xi’ yj) U e L(uj) in S}

For v € U, define the undirected bipartite graph B, = (U,, E,) with bipartition (X,, Y,)
to be the vertex induced subgraph of B such that

X, = {x;:u; € U — Hy(v)},
Y, ={y:u;e U— Hyv)}.

Figure 6 illustrates these concepts for the test interconnection graph and the syn-
drome given in Fig. 2. For each vertex v in G, let

tu =t— IHO(U)|’
and
U, = U — Hy(v).

Theorem 3: Given a syndrome for a system S, a unit v € U does not belong to any AFS
of cardinality at most ¢ if B, has an MVCS of cardinality greater than 2t,.

Proof: Let the cardinality of an MVCS of B, be greater than 2¢t,. Assume v € U belongs
to an AFS F such that |F| < t. Let H = F — Hy(v). Clearly |H| < t,. Define By(H) =
(Uy, Ey) to be the vertex induced subgraph of B,, where

Uy={x;:u;e H} v {y;:u; e U, — H}.
By(H) = (Uy, Ey) is defined to be the vertex induced subgraph of B,, where

Uy ={x;:u;e U, — HYu{y, u; e H}.
Clearly Fy = {x;:u;€ H} and Fy = {y,:u; € H} are VCS’s of By(H) and By(H) respec-
tively. It follows that F = Fy U Fy is a VCS of By(H) U By(H). Since F is an AFS, in

G* there are no edges connecting vertices of U — F. From this it follows that every
edge in B, connects vertices in Fg. Therefore Fg is a VCS of B,, contradicting our
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Fig. 6. Bipartite graph corresponding to G},

assumption that the cardinality of an MVCS of B, is greater than 2¢,. Hence v is not
contained in any AFS of cardinality at most ¢.
Q.ED.

We have shown in Ref. 13 that in the case of ¢/t + 1-diagnosable systems the
condition of the above theorem is also necessary for a vertex not to be in an AFS
of cardinality at most t. Unfortunately this condition is not necessary for t/t + k-
diagnosable systems when k > 1. To develop an efficient ¢/t + k-diagnosis algorithm
when k > 1 we carry out a further study of an MCVS of B,.

In the following we use Fy(v) to denote an MVCS of B,. For a given Fg(v) let

F, = {“i |x; € Fg(v) and y; € FB(U)}
and

F, = {u;]x; € Fp(v) or y; € Fa(v)}.
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We now proceed to establish certain properties of F,.
Lemma 8: F, U Hy(v) is an AFS of G.

Proof: Assume the contrary. Then at least one of the following conditions is satisfied.
(a) There exist u;, u;e U — F, — Hy(v) with a;; = 1.
(b) There exist u; € F, U Ho(v) and y; € U — (F, U Hy(v)) with a;; = 0.

Assume (a) holds. Then the edge (u;,4;) is in G. Hence (x;, ;) is an edge in B,. But
this contradicts the fact that Fgz(v) is a VCS of B, since neither x; nor y;is a member of
Fy(v).

Now assume (b) holds and (a) does not hold. Clearly u; ¢ H,(v); for otherwise u;
would also belong to Hy(v). Thus u; € F,. Hence either x; or y; is a member of Fp(v).
Without loss of generality let x; € Fy(v). Since Fg(v) is an MVCS of B,, there exists y,
in B, with y, ¢ Fy(v) such that (x;, y,) is an edge in B,. Hence u; € L(w,). Since a; =0,
u; € L(u,). Hence (x;, y,) is an edge in B,. Since neither x; nor y, is a member of Fy(v),
this contradicts the fact that Fg(v) is a VCS of B,.

Q.ED.

Lemma 9: Given a syndrome for a system S and a unit v € U, we have the following;
(i) In G*, there is no edge (u;,u;) with u; € U — (F, U Hy(v)) and y; € F, — F}.
(i) In G, there is no edge (u;, u;) with u; € U — (F, v Hy(v)) and u; € F, — F;.

Proof: (i) Assume the contrary. Let (u;,u;) be an edge from U — (F, U Hy(v)) into
F, — F;in G*. Then either x; or y; is not a member of Fyz(v). Thus in B, either the edge
(x:, y;) or the edge (x;, y;) is not incident on any vertex in F(v), contradicting the fact
that Fy(v) is a VCS of B,.
(i) By Lemma 8, the set F, U H,(v) is an AFS of G. Thus every edge from U —
(F, U Ho(v)) into F, — F; in G must be a 1-link. So if such an edge (u;, ;) exists in G,
then (u;, ;) is an edge in G*. Thus from (i) it follows that there is no edge (u;,u;) in G
with u; e U — (F, U Hy(v)) and u; € F, — F;.

Q.E.D.

Lemma 10: Every AFS of G contained in F, U H,(v) contains the subset F;.

Proof: To show that every AFS of G contained in F, U H,(v) contains the subset F; it
suffices to show that every VCS of G* contained in F, u H,(v) contains F,. The above
assertion holds if every vertex in F; is incident on some vertex of U — (F, u Hy(v)) in
G*. Assume the contrary. Let 4, be a vertex in F; which is not incident on any vertex
of the set U — (F, u Hy(v)). Then let Wy(v) = {x;|u; € F,} U {y;|u; € F; — {u;} }. From
Lemma 9(i) and the construction of B, it follows that in B,, there is no edge (x;,y;)
with u; € U — (F,u Hy(v)) and u; € F, — F;. So Wp(v) is a VCS of B,. But |W(v)| =
| Fg(v)| — 1. This contradicts the assumption that Fg(v) is an MVCS of B,. Thus every
vertex in F, is incident on some vertex of U — (F, u Hy(v)) in G*. This implies that
every VCS of G* contained in F, w Hy(v) contains the subset F;. By Lemma 4, it follows
that every AFS of G contained in F, U Hy(v) contains the subset F;.

Q.ED.
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5. Diagnosis of a ¢/t + k-Diagnosable System

In this section we first show that the set F, U Hy(v) indeed contains an AFS of
cardinality at most ¢ if such an AFS is present in the system. We also show that no
such AFS will be present if | F,| > t, + k. Thus the search for an AFS of cardinality at
most ¢t containing vertex v need be confined to a set of cardinality at most t, + k. This
leads to a t/t + k-diagnosis algorithm which is polynomial for each fixed integer k.

Theorem 4: F, U H,(v) contains an AFS F, containing unit v such that for every AFS
F, of G containing unit v, |F,| < |F,|.

Proof: Let F, be an AFS of smallest cardinality containing unit v such that F; =
F, U H,y(v). Assume F, to be an AFS of G containing unit v. Let F; = (F, — F;)u
(F, U Hy(v)) where F, = {u;|x; and y; both belong to M,}. We observe that F;u
H,(v) € F,, since every AFS of G containing v in F, U Hy(v) contains F; U Hy(v).

First we note that since F, and F, are VCS’s of G*, there are no edges in the
subgraphs of G* induced by the vertex sets U — F; and U — F,. Also, by Lemma 9(i),
for every edge in G* with one vertex in U — F; — F3, the other vertex is in F; N Fj.
From these facts we conclude that (Fy N F,) — F;) U ((F3 U F,) " F) is a VCS of G*.
The shaded area in Fig. 7(a) corresponds to this VCS which lies entirely within
F, U Hy(v).

We now claim that the following inequality holds (See Fig. 7(b)):

|(F3n Fy) — Fi| > |F; — F, — F3]. (1)

Assume (1) is not true. Then the VCS ((F; n F,) — Fy) U ((F3 v F5) 0 Fy) is of smaller
cardinality than F, and so by Lemma 4(ii) it contains an AFS of G of cardinality smaller
than F,, a contradiction.

By Lemma 9(i), in B, for every edge (x;,y;) with u;e U — F; — F, — F;, the vertex
u;is in F; N F, since F; U Hy(v) = F; N F;. From this and the fact that F, is a VCS of
G*, it follows that in B, for every edge (x;, y;) withu; € U — F; — F, — F; the vertex u;
isin F; n F, n F; — Hy(v). So the set

F,= {xi|”ie(F1UF2UF3)— Ho(U)}U{YiWiE(Fl NF,nF;)— Ho(”)}

is a VCS of B,.
We claim that the following inequality also holds (See Fig. 7(c)):

|F, — Fy — F3| 2 |(F3n Fy) — F,|. (2
If (2) is not true, then |F,| <|Fg(v)| because (See Fig. 7(d)) |Fg(v)| — |F,| =

(Fyn F,) — F,| — |F, — F|, — F4| > 0, contradicting the fact that Fy(v) is an MVCS
of B,.
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Fig. 7. Illustrations for Theorem 4.

Thus (1) and (2) are true. But this implies that F,| > F;|. It follows that the set F,
contained in F, U H,(v) is a smallest AFS containing v.
Q.ED.

Theorem 5: Given a syndrome for a ¢/t + k system S, if |F,| > t, + k for some unit
v e U, then G does not have an AFS of cardjnality at most ¢ containing v.

Proof: Assume the contrary. Let F; be an AFS of smallest cardinality contained in
F, v Hy(v) of which vis a member. From Theorem 4, F, is an AFS of smallest cardinality
of which v is a member. Thus |F,| < t. Let F, = (F, U Hy(v)) — (F, — F; — Hy(v)). We
claim that |F,| < |F,|. For otherwise, the set

M= {xiluiEFl - HO(U)}U{yiluiEFl - Ho(v)}
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(XN

(d)
[l = Al + |B] + |Cl + 2|D| + |E| + | F| + |G| — 2H,(v)
[Fowi = 1Bl + |C| + 21D} + |E| + 2|F| + |G] — 2H,(v)

Fig. 7. (Continued)

would be a vertex cover of B, and since |M| < |Fg(v)|, this would contradict the
minimality of | Fz(v)]. Hence |F,| < |F,| <t
Consider the two sets F; and F,. |F,| <t, |F,| <t and |F; u F,| > ¢ + k. Since all
edges from U — F, — Hy(v) into F, U H,y(v) are incident on F; U Hy(v), there is no test
from U — F, — F, into F, @ F,. This contradicts the assumption that the system is
t/t + k-diagnosable.
Q.E.D.

Our diagnosis algorithm for isolating all faulty units in a t/t + k-diagnosable system
is as follows. For each v, we determine a maximum matching K, of B,. If |K,| > 2t,
then, by Theorem 3, v does not belong to any AFS of cardinality at most t. Otherwise
we determine from K, an MVCS Fg(v) of B,. We then construct F, and F;. If F, < ¢,
then v is in an AFS of cardinality at most t. If not, we check if F, contains a VCS of
cardinality at most t,. We do so by taking all possible subsets W of F, of cardinality
equal to ¢, with F; € W and examining if W is a VCS of the subgraph induced on G}
by the vertex set F,. A formal description of the algorithm is given below.

Algorithm 1: ¢/t + k-Diagnosis

Stepl: Givenat/t + k-diagnosable system S and a syndrome, construct the bipartite
graph B = (Ug, Eg) with bipartition (X, Y).

Step 2: Set F = ¢; for all v € U, label v unmarked.

Step3: While there exists an unmarked v € U
begin
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Step 3.1: Label v marked
Step 3.2: Sett,=1t— |Hy{)|.
Step 3.3: Construct B, from B.
Step3.4: Compute a maximum matching K, of B, using the Hopcroft/Karp
algorithm.!®
Step3.5: If|K,| < 2t, then
begin
Compute an MVCS Fg(v) of B, from K, using
the Konig Construction Technique.!4
Determine F, and F, from Fg(v).
If|F)) <t,thenaddvto F
elseif |F,| < t, + k then
For each subset W with F; = W and W = ¢, check if Wis a VCS
of the subgraph induced on G* by the vertex set F,. If so, add v
to F.
end
end
Step 4: If |F| < s then F is the required set.

The correctness of the above algorithm follows from Theorems 3, 4 and 5.

Regarding complexity of this algorithm, the bipartite graph in Step 1 can be con-
structed in O(n*°) operations.* Computations in Steps 3.1-3.4 is dominated by the
computation of a maximum matching in a bipartite graph which is of O(n*-3). Step 3.5
may require computing all subsets of F, of cardinality equal to ¢, and testing each of
them for the required VCS property. This step may require | E|C/"*! operations. Note
that|F,| < t, + k. Since C}* = O(t¥)and ¢, < t, the overall complexity of the algorithm
is O(n®° + mnt").

Note that if, in the above algorithm, a unit v is included in the set F then all units
in F; U Hy(v) can also be added to F. So for these units, we do not need to perform
Step 3 separately. Though, by doing so, we may reduce the number of computations,
it will not affect the overall complexity of the algorithm.

Given a valid syndrome, if an AFS does not contain v, then it must contain L(v), the
set of units implied faulty when v is implied to be fault-free. Then by Theorem 3, a unit
v does not belong to an AFS of cardinality at most ¢ if the bipartite graph B,,,,, the
subgraph induced on B when vertices corresponding to L(v) have been removed,
contains an MVCS of cardinality at most 2(t — L(v)). Using this we can modify
Algorithm 1 to identify all units which belong to every AFS of cardinality at most t.
The following is a formal description of such an algorithm.

Algorithm 2:

Step1: Given a t/t + k-diagnosable system S with test interconnection graph G =
(U,E) and a syndrome arising from a z-fault situation, construct G* and
remove all vertices with self-loops. From the resulting graph, construct the
bipartite graph B = (Uy, Eg) with bipartition (X, Y).
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Step 2: Set F = ¢; for all v € U, label v unmarked.
Step 3: While there exists an unmarked v e U
begin
Step 3.1: Label v marked.
Step 3.2: Sett;,, =1t — |L@)l
Step 3.3: Construct By, from B.
Step3.4: Compute a maximum matching K, of By, using the Hopcroft/Karp
algorithm.!¢ ,
Step3.5: I |Kyl > 2t;,, themadd v to F.
else
begin

Compute an MVCS Fg(v) of By, from K, ,, using

the Konig Construction Technique.!*

Determine F, and F; from Fg(v).

If|F,| >ty +kthenaddvto F

elseif |F,| > 1, then

For each subset W with F, € W and W = t,,, check if Wis a VCS
of the subgraph induced on G* by the vertex set F,. If notadd vto F.
end
end

Step 4: F is the required set of units which lie in every AFS of cardinality at most ¢.

Thus for a t/t + k-diagnosable system not only can all faulty units be isolated to
within at most ¢t + k faulty units, but also all units which lie in every AFS of cardinality
at most t can be identified in polynomial time for every fixed positive integer k. The
units of the set F obtained by the algorithm given above can be correctly identified to
be faulty. Note that if a t/t + k-diagnosable system is not sequentially r-diagnosable
then the set F produced by the above algorithm may be empty.

6. On the Diagnosis of a Sequentially -Diagnosable System

Recall that (Sec. 1) a system is sequentially t-diagnosable if and only if given any
syndrome there exists a unit v which is present in every allowable fault set of cardinality
at most ¢. Algorithm 2 of the previous section can easily be modified to arrive at an
algorithm for diagnosis of a sequentially ¢-diagnosable system. The only modification
required is to substitute ¢ for k. The complexity of this algorithm can be shown to be
O(n*> + mnt").

7. Conclusions

In this paper we have studied the problem of diagnosing t/s-diagnosable systems. We
have presented a t/t + k-diagnosis algorithm which runs in polynomial time for each
fixed integer k. We have also shown how this algorithm can be modified to design an
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algorithm for identifying all units which lie in every AFS of cardinality at most ¢ of
a t/t + k diagnosable system. These units can then be correctly identified as faulty.
We then presented an approach for diagnosing a sequentially t-diagnosable system.
This approach leads to an algorithm which is of complexity O(n®* + mnt*). The t/t-
diagnosis algorithm of Ref. 10, the ¢/t + 1-diagnosis algorithm of Refs. 13, 17 and the
t/t + k-diagnosis algorithm of this paper complement the corresponding t/t + k-
diagnosability algorithms of Sullivan.’’ It might be possible to improve the com-
plexity of this algorithm using the characterizations and properties of sequentially
t-diagnosable systems developed in Refs. 12, 18.
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