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Multiprocessor Fault Diagnosis Under Local Constraints

A. Das, K. Thulasiraman, V. K. Agarwal, and K. B. Lakshmanan

Abstract—In this correspondence, we study fault diagnosis of multi-
processor systems when fault constraints in the local domain of each
processor are specified. We use the comparison-based model. A multi-
processor system S is t-in -L diagnosable, if given a syndrome, all faulty
processors can be uniquely identified provided there are at most ¢ faulty
processors in the local domain L(u;) U {u;} of every processor u; in
S, where L(u;) denotes the set of processors adjacent to u;. First, we
present certain basic results that lead to sffucient conditions for unique
diagnosis of a system when certain fault constraints are satisfied in the
local domain of each processor in the system. We then examine the ¢-
in-L diagnosability of certain regular interconnected systems under the
assumption that less than half of the total number of processors in the
system are faulty. We also present diagnosis algorithms for these systems.

Index Terms—Algorithms, distributed algorithm, fault diagnosis, graph
theory, multiprocessor system.

I. INTRODUCTION

Continuing advances in semiconductor technology have now made
available large multiprocessor systems such as the hypercube sys-
tems. The increasing complexity of these systems poses challenging
problems in ensuring their reliability. The problems of fault de-
tection, diagnosis, and reconfiguration of multiprocessor systems
have thus become active areas of intensive research in recent years.
Various models of fault diagnosis have been studied, and signifi-
cant algorithms and related complexity results have been reported
[1}-11].

In multiprocessor systems such as those implementable in very
large scale integration (VLSI) and wafer-scale integration (WSI),
the number of units in a system can be very large. Moreover,
the commonly used system interconnection networks such as the
rectangular grids are very symmetrical and sparse. When such a
system is analyzed using the classical theory, the number of faulty
processors permitted is very small in comparison to the number of
units in the system. This shortcoming motivated the recent works
on probabilistic diagnosis algorithms for sparsely interconnected
systems [10], [11]. Our work in this paper is also motivated by
the inadequacy of the classical approach when applied to large
sparsely interconnected systems and the need for distributed diag-
nosis algorithms. We use the comparison-based model introduced
by Chwa and Hakimi [5] in which all processors are assigned to
perform the same task and the outputs of neighboring processors
are then compared. Instead of a single global constraint, in this
paper, we consider local constraints on the number of faulty pro-
cessors in the neighborhood of each processor in the multiprocessor
system.
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II. PRELIMINARIES

A multiprocessor system consists of n independent processors
U = {ui,u2,-++,un}. As we stated carlier, in the comparison
model of multiprocessor fault diagnosis [5], all processors in S are
assigned to perform the same task. Upon completion, the outputs of
neighboring pairs of these processors are compared. The comparison
assignment can be represented by an undirected graph G' = (U, E)
where an edge e;; belongs to E if and only if the outputs of u;
and u; are compared. An outcome a;; is associated with each pair
of processors whose outputs are compared, where a;; = 0(1) if
the outputs compared agree(disagree). Only permanent faults are
considered, and as in [5] we assume that the outputs of a fault-free
and a faulty processor always disagree, so that a;; = O whenever
both u; and u; are fault-free, and a;; = 1 if one of u; and u;
is fault-free and the other faulty. If both u; and u; are faulty then
a;; is unreliable. L(u;) denotes the set of neighbors of u;, that is,
the set of all processors adjacent to u;. An edge that has a 0(1)
outcome associated with it is referred to as a O-link(1-link). Paths
starting from processor u; are said to be distinct if and only if they
have no vertex in common other than «;. The distance between two
processors u; and u; is denoted by d(ui,u;). A fault set F C U
is a permissible fault set for a set of fault constraints if F' satisfies
the requirements of the fault constraints. Given a syndrome, F'is an
allowable fault set if and only if F is a permissible fault set, and the
assumption that the processors in F are faulty and the processors in
U — F are fault-free is consistent with the given syndrome. Given a
fault set F, S(F) denotes the set of syndromes that can be generated
by F, and F° denotes the set U — F. Given two fault sets F7 and
F», Fy @ F> denotes the symmetric difference between Fy and F>. A
system S is defined to be t- in-L diagnosable if given a syndrome,
all faulty processors can be uniquely identified provided that there
are at most ¢ faulty processors in the local domain L{u) U {u} for
every processor % in S.

III. t¢-in-L DIAGNOSABILITY

In this section, we study ¢-in-L diagnosability. Given a system S,
we wish to determine the maximum value of ¢ such that § is ¢-in-
L diagnosable. Clearly, if we allow at most ||L(w:)|/2] faults in
L(u;) U {u;} for each u;, then a majority vote of the outcomes for
each processor will correctly diagnose the faulty or fault-free status of
each u;. Interestingly, as we shall see in the following section, unique
diagnosability of most regular systems of interest to us requires that
we permit no more than ||L(u;)|/2| + 1 faults in L(u;) U {u;} for
each u;. Thus, we confine our investigations to this case. We say that
a system satisfies local fault constraints if for each u; there are at
most ||L(u;)|/2] + 1 faults in the local domain L(u;) U {u:}.

In this section we present certain basic properties of allowable
fault sets corresponding to a given syndrome (Lemmas 1-3). These
properties lead to sufficient conditions (Theorem 1) for unique
diagnosis of a system S that satifies the local fault constraints.

Lemma 1: Given a system S and a syndrome, let F1 and F> be
two distinct allowable fault sets for the given syndrome such that
FiUF, # U, and for all processors v € U, L(u)— F1 and L(u)— F>
are both nonempty. Then there exist processors z,y € U such that

) zelU-(FLUPF)

)ye AR

3) 2 < d(z,y) < 3 and d(x,y) is minimum among all z and y

satisfying conditions 1 and 2.
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Proof: Since F1 U F; # U the set U — (Fy U F3) is nonempty.
Furthermore, since F; and F, are distinct, there exists at least one
processor that belongs to one fault set and is not contained in the
other. Thus there exist processors in U satisfying conditions 1 and
2. Now let = and y be processors in U satisfying conditions 1 and 2
such that the distance d(x,y) is minimum.

Assume d (i, y) > 4. Consider a processor w that is at a distance at
most [d(x,y)/2] from both « and y. Since L(w)—F; and L(w)—F;
are both nonempty, there exists a processor z € L(w) such that
ze U-(FUFR)orze ek Ifz ¢ U-(FRUPF)
then d(z,y) < d(w,y) +1 < d(z,y); if 2 € Fy & F, then
d(x,z) < d(z,w) +1 < d(z,y). In either case, the minimality
of d(x,y) is contradicted. Hence d(z,y) < 3.

To prove that d(z, y) > 2, we show that the assumption d(z,y) =
1 leads to a contradiction. Assume d(z,y) = 1. Then the link
between x and y is a 0-link with respect to one fault set and a
1-link with respect to the other, contradicting the assumption that F}

and F, share a common syndrome. O
Lemma 2: Let S be a system with test interconnection graph
G = (U,E) and which satisfies local fault constraints. Given a

syndrome s; and two allowable fault sets F; and F, with s, €
S(Fy)NS(Fy), the following conditions hold for every x € Fy @ F;,
where [L(z)] = k:

) |[hnFnL(z)] < 1.
) (o FR)NL(z) > k-1

Proof: Without loss of generality, assume z € Fy — F,. Then
x is faulty with respect to Fy and fault-free with respect to Fj. Let
X denote the subset of processors in L(z) that are fault-free with
respect to F5. The processors in X are all faulty with respect to
F\ since they have O-links with z, and z is faulty with respect to
F1.|X| < [k/2] since there are at most |k/2] + 1 faulty processors
in L(x) U {z}. Furthermore, | X| > [k/2] — 1, since the processors
in L(x) — X are all faulty with respect to F> and there are at most
[k/2] 4 1 faulty processors in L(z) U {x}. Thus,

[k/2] -1 < |X]| < |k/2].

Now consider the processors in L(z) — X. They are all faulty
with respect to F>. Now, if more than one processor in L(x) — X is
also faulty with respect to F1, then the number of faulty processors in
L(z)U{z} with respect to F} is greater than |k/2]| +1, contradicting
our assumption that F} is a permissible fault set. This shows that
condition 1 is true.

Since all processors in X are contained in F; — F, and all
processors except at most one in L(x) — X belong to Fy — F},
there are at least | L(x)| — 1 processors in L(z) which also belong to
Fy @ F>. Since |L(z)| = k, it follows that (2) holds. O

Lemma 3: Consider a system S with test interconnection graph
G = (U, E) in which the number of faulty processors is less than
[Ul/2. Let S satisfy the local fault constraints and |L(u;)| > 3 for
every u; € U. If s; is a syndrome, and F, and F, are two allowable
fault sets with s € S(F1) 0 S(F3), then we have the following:

i) There exist two processors ,y € U such that

) z€U~(FRAUR)

b) ve R ok

©) 2 < d(x,y) <3 and d(z,y) is minimum among all z
and y satisfying conditions a) and b).

d) I w lies on any shortest path between z and y and
d(w,y) = 2 then there is exactly one path of length 2
between w and y.
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Fig. 1. Tllustration for Theorem 1.

1i) For every pair of processors z and y satisfying conditions a)—)
of i), condition id) holds for every shortest path between x and
Y.

Proof: Consider any processor u; € U. Since there are at most
[L(u:)/2] + 1 faulty processors in the local domain L(u;) U {u;},
it follows that for any allowable fault set F, we have |L(u;) — F| >
|L(u)] = [L(u:)/2] = 1. So, | L(us)~ F| > | L(us)/2] 1, if |L(u:)]
is even; otherwise, |L(u:) — F| > [|L(u:)/2|]. But, by assumption,
|L(u;)| > 3. So [L(u;)~F| > 1, for any allowable fault set F. Since
both Fy and F> are allowable fault sets, L(u;) — F; and L(u;) — Fy
are nonempty, and so by Lemma 1 there exist z and y satisfying
conditions a)—) of i. Thus, to show that i and ii hold, we need now
only prove that if 2 and y are arbitrary processors in S satisfying
conditions a)-c) of i, then condition d) is true.

Let x and y be any pair of processors in § satisfying conditions
a)—c) of i. Now assume condition d) is not true. Then there exists
a processor w lying on a shortest path between z and y with
d(w,y) = 2 and there are two or more paths of length 2 between w
and y. We note that w could be the processor z itself. We also observe
that the system S, the fault sets Fy and F3, and the processor y satisfy
the conditions of Lemma 2. Hence there exists at most one processor
in L(y) that belongs to Fy N F; and all other processors belong to
Fi ¢ F>. Since there are two or more paths of length 2 between w
and y, there is at least one processor in L(y) belonging to Fy @ F»
that is closer to « than y. If w = z, this will contradict condition ic);
if 2 # w, this will contradict the minimality of d(z, y). O

The following theorem provides sufficient conditions for #-in- L
diagnosability.

Theorem 1: Consider a system S with test interconnection graph
G = (U, E) in which the number of faulty processors is less than
[U]/2. Let § satisfy the local fault constraints and let |L(u;)| > 3 for
all u; € U. Then S is uniquely diagnosable if for any two processors
x; and z; at distance 2 from each other, at least one of the following
holds:

a) There are at least two vertex disjoint paths of length 2 between

z; and ;.
b) The graph shown in Fig. 1(a) containing x; and z; is a subgraph
of G.

Proof: We show that if S is not uniquely diagnosable then for
some processor pair at distance 2 from each other neither a nor b is
true. So assume that the system is not uniquely diagnosable. Then
there exist two allowable fault sets Fy and F5 that share a common
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syndrome s. Thus there exist two processors = and y satisfying
conditions a)-d) of i in Lemma 3.

Case 1: d(z,y) = 2. Clearly condition d) in i is violated if a
holds for processors = and y. Now assume b holds and a does not
hold for processors = and y. Consider Fig. 1(b). We observe that
z1 € F1 N F;. By Lemma 2, 22 € Fy @ F> which, in turn, implies
that z3 € Fy @ F3. This again contradicts condition ic) of Lemma 3.

Case 2: d(z,y) = 3. Consider processor w, which lies on
the shortest path between x and y, such that d(w,y) = 2. Clearly
condition id) of Lemma 3 is violated if a holds for w and y. Now
assume b holds and a does not hold for processors w and y. Consider
Fig. 1(c). We observe that z1 € Fy N F; otherwise, condition ic) of
Lemma 3 is violated. Again by Lemma 2, 22 € Fi @ F> which, in
turn, implies that z3 € Fy @ F>. But this contradicts the minimality
of d(,y). '

Thus, if S is not uniquely diagnosable then there exist two
processors at distance 2 from each other such that neither a nor b
holds. Hence the theorem follows. O

The following is a straightforward consequence of Theorem 1.

Corollary 1.1: Let S be a system with interconnection graph
G = (U, E) in which the number of faulty processors is less than
|U|/2 and |L(u;)| > 3 for all u; € U.S is t-in-L diagnosable for
t = |6/2] + 1, where § is the minimum degree of G, if for any two
processors z; and z; at distance 2 from each other in G at least one
of the following holds.

1) There are at least two vertex disjoint paths of length 2.
2) The graph shown in Fig. 1(a) containing x; and z; is a subgraph
of G. 0

IV. t-in-L DIAGNOSABILITY OF REGULAR INTERCONNECTED SYSTEMS

In this section we study the ¢-in-L diagnosability of certain
regular interconnected systems—the closed rectangular, hexagonal,
and octagonal grid systems and the hypercube systems. First, we
consider the hypercube systems.

Theorem 2: Let S be a hypercube system containing 2* proces-
sors, k > 3. The system S is t-in-L diagnosable for ¢t = |k/2] +1
provided less than half the total number of processors in S are faulty.

Proof: The preceding result follows immediately from Corollary
1.1 and the observation that between any two processors at distance
2 from each other in a hypercube system there are two vertex disjoint
paths of length 2. ‘ O

We now proceed to determine the maximum value of ¢ for which
other regular systems are t-in-L diagnosable under the assumption
that less than half the total number of processors in these systems
are faruty. Interestingly, we will see that the value of ¢ is equal to
|6/ +1 in these cases too, where § is the minimum degree.

Thecrem 3: The maximum value of ¢ that permits a closed rect-
angular grid S to be t-in-L diagnosable, given that less than half the
processors in S are faulty, is 3.

Proof: The theorem is proved by contradiction. Assume there
exist two permissible fault sets Fy and F, sharing a common
syndrome s, such that are at most three faulty processors in L{u) U
{u} for every processor v in S and F1 and F each contain less than
half the total number of processors in the system. Since |L(u)| = 4
for every processor u, the system S and the two fault sets Fy and
F, satisfy the requirements of Lemma 3. Thus there exist processors
z and y satisfying the conditions ia}—id) of this lemma. Assuming
conditions ia), ib), and id) are satisfied by  and y, we arrive at a
contradiction by showing that condition ic) is violated.

We observe that the status of all processors in L(z) remains
unchanged with respect to both F; and F; since  is fault-free in the
presence of either fault set. This means that all processors that share
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Fig. 2. [Illustration for Theorem 3.

a 1-link with z belong to Fy N F>. We also note that there cannot be
a path of fault-free processors between z and y with respect to either
fault set; otherwise, F; and F, cannot share a common syndrome.

Case 1: d(z,y) = 2. Consider Fig. 2(a). All other cases with
d(x,y) = 2 satisfying conditions ia), ib), and id) of Lemma 3 are
symmetric to this case. The processor z must be faulty with respect
to both fault sets; otherwise, there is a path of fault-free processors
between x and y. Now the following subcases arise.

Case 1.1: w; or wy belongs to Fy & Fz. In this case, from
Lemma 2, z is adjacent to a processor belonging to Fy @ Fy; this
contradicts the observation that processors in L(x) belong to F; N F;
or (F1 6] FQ)C.

Case 1.2: w; and w2 belong to F; N F5. If both w; and wo are
faulty with respect to Fy and F3, then since y is faulty in the presence
of one of these fault sets, L(z) U{z} contains more than three faulty
processors with respect to Fy or F3; a contradiction.

Note that if w; or wy is in (F} U F3)¢, then there would be two
paths of length 2 between y € Fy @ F; and w, (or wz) € (RUFR)°,
contradicting condition id) of Lemma 3.

Case 2: d(z,y) = 3. We consider Fig. 2(b). All other cases with
d(zx,y) = 3, satisfying conditions ia), ib), and id) are symmetric to
this case.

The processors w2 and ws belong to Fy N Fp; otherwise, the
minimality of the distance d(z, y) is violated. Similarly, w1 and w3
cannot be fault-free with respect to both Fy and F> and so they
belong to Fy U F5. Since w; and ws are at distance 3 from z and
both have two disjoint paths of length 2 to w4, by Lemma 3, they
cannot belong to Fy @ F». Thus w; and w3 are in F1 N F>. But
then L(w2) U {w2} will have more than three faulty processors with
respect to either Fy or Fy.

From the preceding it follows that the system S is 3-in-L diag-
nosable given that less than half the processors in S are faulty. In
addition, for a closed rectangular grid we can construct a syndrome
and two allowable fault sets Fy and F> such that for each F;,: = 1,2,
there exists a processor u with four faulty processors in L(u) U {u}.
Thus the maximum value of ¢ for which a closed rectangular grid is
t-in-L diagnosable is 3. . O
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Theorem 4: 1et S be a closed hexagonal grid or a closed octagonal
grid system. Then the maximum value of ¢ that permits S to be ¢-in-L
diagnosable given that less than half the total number of processors
in the system are faulty is k, where k = 4 and 5, respectively.

Proof: The conditions of Theorem 1 are satisfied for every pair
of processors at distance 2 from each other in a hexagonal grid and
in an octagonal grid. Hence, these systems are t-in-L diagnosable for
t = 4 and t = 5, respectively.

In addition, for a hexagonal grid we can construct a syndrome and
two allowable fault sets F; and F3 such that for each F},i = 1,2,
there exists a processor u with five faulty processors in L(u) U {u}.

Similarly, for an octagonal grid we can construct a syndrome and
two allowable fault sets Fy and F such that for each F;,i = 1,2,
there exists a processor u with six faulty processors in L(u) U {u}.

Thus, the maximum values of ¢ for which a hexagonal grid and an
octagonal grid are ¢-in-L diagnosable are 4 and 5, respectively. O

V. t-in-LDIAGNOSIS

In this section we consider ¢-in-L diagnosis. The following lemma
forms the basis of our approach.

Lemma 4: Given a system S and a syndrome, let u be a processor
in S such that |L(u)| = k, L(u) U {u} has at most {k/2] + 1 faulty
processors, and at least two processors in L(u) have been identified
correctly. Then u can be identified correctly.

Proof: Let F denote the set of processors in L(u) that have
been identified correctly. If any member of F is fault-free then the
status of u can be determined correctly. We now consider the case
when all processors in F' have been identified to be faulty. Let X,
and X, represent the set of processors in L(u) — F that has O-links
and 1-links, respectively, with u. If

IF| +1X1] > [k/2] + 1 ()

then u can be declared faulty; u can be declared fault-free if
|F|+1Xol +1> [k/2] +1. @
Both (1) and (2) cannot be satisfied simultaneously; otherwise, the
assumption that there are at most [k/2] + 1 faults in L(u) U {u} is

violated or the processors in F* have been identified incorrectly. At
least one of (1) and (2) is satisfied if we ensure that

P+ max {1Xo + LI} > (/2 +1. @)
Since |Xo| + |X1| = k — |F|, max {|Xo| + 1,1X1|} > |(k —
|F))/2] + 1.
But

[Fl+ (k= [F])/2] + 1> [k/2] +2

if |F| > 2. Hence (3) is satisfied if |F| > 2. 0

Next we present a procedure called LABEL. This procedure is
applicable to all the regular systems considered in the previous section
as well as those that satisfy the conditions of Theorem 1. Given a
fault-free processor, » LABEL(v) determines the status of all the
processors in the system.

procedure LABEL (v : node)

S.1) Label node v fault-free. Let A := {v}.

5.2 (a) Pick a node x € A such that z is adjacent to a node in
A and satisfies one of the following properties:

i.  z is adjacent to a fault-free node y in A; (ii) =
is adjacent to two faulty nodes in A; (iii) z is
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adjacent to a faulty node y in A which already
has |deg(y)/2] nodes labeled faulty in L(y).

(b) if (i) is true then label z as fault-free if = and y share
a O-link; label z as faulty, otherwise;
elseif (ii) is true then determine the label of x using
Lemma 4;
elseif (iii) is true then lable z as fault-free.

() Add z to the set A.

S$.3) Repeat S.2 until A = U.

end procedure

Note that it can be proved that for all the systems to which
LABEIL(v) is applicable, there exists a processor that satisfies one
of the properties mentioned in S.2 of procedure LABEL. Thus in
these cases the procedure will terminate after determining the status
of all the processors.

Our approach to ¢-in-L diagnosis is as follows:

1) determine a fault-free processor v;

2) apply procedure LABEL(v) to determine the status of all the

other processors.

We now show that by applying LABEL(v) at most two times we
can determine a fault-free processor.

First, we pick a node ¢ with at least [deg(q)/2] — 1 O-links. Such a
node exists since each fault-free processor has this property. In fact, a
node with this property can be found in the neighborhood L(u)U{u}
of every processor u in the system. If the degree of ¢ > 3, then let
w and z be two nodes sharing 1-links with g¢; if ¢ does not have two
1-links, then ¢ must be fault-free. If the degree of ¢ is two, w and
z will be the two nodes adjacent to g.

Having selected w and z as earlier, we apply procedure LABEL
on these two nodes. If either one of them determines a consistent
labeling, then it is fault-free and we are finished. If both are faulty,
then ¢ must be fault-free; otherwise, L(g) U {¢} will have more
than {deg(g)/2] + 1 faulty processors, contradicting the local fault
constraints.

Thus, we need to use procedure LABEL at most two times
to determine a fault-free processor. One more application of this
procedure on the fault-free processor will complete the diagnosis.

The complexity of our ¢-in-L diagnosis algorithm is dominated by
the complexity of procedure LABEL, which is called at most three
times. It can be shown that the complexity of LABEL(v) is O(n?).
So the overall complexity of our diagnosis algorithm is also O(n?).

Summarizing our discussions, we have the following.

Theorem 5: Let S be a closed rectangular grid, a closed hexagonal
grid, a closed octagonal grid system, or a hypercube system (with
2P processors) in which for every u; € U there are at most
| k/2] +1 faulty processors in L(u;)U{u;} where k = 4,6,8, and p,
respectively. Given a syndrome, all processors in S can be identified
correctly provided less than half the total number of processors in S
are faulty. O

Theorem 6: Consider a system S with test interconnection graph
G = (U, E) in which for every u; € U, there are at most |k/2] + 1
faulty processors in L(u;) U {u;} where k is the degree of u;.
Let |L(u;)| > 3 for all u; € U. Then given that less than [U]/2
processors in S are faulty, all processors in the system can be
identified correctly in O(n?) time, if for any two processors z; and
z; at distance 2 from each other in S, at least one of the following
holds:

1) There are at least two vertex disjoint paths of length 2 between

x; and zj.
2) The graph shown in Fig. 1(a) containing z; and z; is a subgraph
of G.
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VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the problem of diagnosing faulty
processors in a multiprocessor system when fault constraints in a local
domain of each processor are specified. We have introduced the ¢-in-
L diagnosability theory. A system S is ¢-in- L diagnosable if, given
a syndrome, all faulty processors can be identified uniquely, provided
there are at most ¢ faulty processors in the local domain L(u)U {u}
of every processor in S. Assuming that less than half the processors
in the system are faulty, we have shown that regular interconnected
systems such as the hypercube systems and the closed rectangular,
hexagonal, and octagonal grid systems are t-in-L diagnosable for
t = |8/2{+1, where 6 is the minimum degree of the interconnection
graph. We have established a sufficient condition for a system to be
t-in-L diagnosable for ¢t = |6/2] + 1. We have also presented ¢-in-
L diagnosis algorithms for all the cases considered. These algorithms
are of linear complexity with respect to the number of procesors in
the system.

In most useful multiprocessor systems, each processor has direct
connections to a small number of processors. If only processors
with direct connections are allowed to test one another, then for
most practical systems that are sparsely connected, the classical
diagnosability theory will allow only a small number of faulty
processors. The t-in-L diagnosability theory overcomes this short-
coming of the classical diagnosis approach. Our diagnosis algo-
rithms can be implemented in a totally distributed manner on the
system itself requiring no global syndrome analysis. Synchronous
implementations of these diagnosis algorithms with linear message
and time complexities (with respect to system size) can easily be
designed.
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Geometrical Learning Algorithm for Multilayer
Neural Networks in a Binary Field

Sung-Kwon Park, Member, IEEE and Jung H. Kim, Member, IEEE

Abstract— This correspondence introduces a geometrical expansion
learning algorithm for muitilayer neural networks using unipolar binary
neurons with integer connection weights, which guar convergence
for any Boolean function. Neurons in the hidden layer develop as neces-
sary without supervision. In addition, the computational amount is much
less than that of the backpropagation algorithm.

Index Terms—Binary field, convergence, hardlimiting neurons, integer
weights, learning, neural networks.

I. INTRODUCTION

Since the perceptron was proven to be incapable of classifying
linearly inseparable patterns and pessimistically abandoned in 1960,
there have been several technological breakthroughs such as the
Hopfield neural network [1] and the backpropagation algorithm (BPA)
[2]). In addition, the area has been prolific despite the many unsolved
problems and inefficiencies. In addition to the slow learning speed of
BPA, it has several other problems. First, the convergence of learning
is not guaranteed in advance. In addition, the minimum structure
of a backpropagation network (BPN) (or multilayer perceptron with
sigmoid neurons) for a set of training patterns is not well understood.
Moreover, for functions in discrete space, BPA searches weights
and thresholds in a continuum space. Because of the unnecessary
complexity of BPA, it usually requires hundreds of iterations to
train a BPN even for very simple two-variable Boolean functions.
In addition, practical hardware implementation of a BPN and BPA
with a fair accuracy seems still unrealistic [3].

In this paper, a geometrical learning algorithm is introduced in
an effort to resolve the problems mentioned earlier, especially for
arbitrary functions in a binary field. Systematically finding a network
using unipolar binary neurons and integer connection weights for an
arbitrary Boolean function without using an ad hoc method is still an
unsolved task even for a small number of input variables [4], [S]. The
structure of networks for the functions presented herein is identical
with that of the multilayer perceptron. However, the networks use
neurons with a hard-limiting activation function and integer weights.

Moreover, one of the significant differences between BPA and the
new learning algorithm is that the new one first finds the required
hyperplanes based on a geometrical analysis of given patterns. It
then finds the weights and thresholds based on these identified
hyperplanes. However, BPA indirectly finds the hyperplanes by
minimizing the error between the actual outputs and desired outputs

[2).
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