
On the ideal shortest vector problem over
random rational primes

Yanbin Pan1, Jun Xu2, Nick Wadleigh3, and Qi Cheng3

1 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

panyanbin@amss.ac.cn
2 State Key Laboratory of Information Security, Institute of Information Engineering

Chinese Academy of Sciences, Beijing 100093, China
xujun@iie.ac.cn

3 School of Computer Science, University of Oklahoma, Norman, OK 73019, USA.
ndwadleigh@gmail.com, qcheng@ou.edu

Abstract. Any non-zero ideal in a number field can be factored into a
product of prime ideals. In this paper we report a surprising connection
between the complexity of the shortest vector problem (SVP) of prime
ideals in number fields and their decomposition groups. When applying
the result to number fields popular in lattice based cryptosystems, such
as power-of-two cyclotomic fields, we show that a majority of rational
primes lie under prime ideals admitting a polynomial time algorithm for
SVP. Although the shortest vector problem of ideal lattices underpins
the security of the Ring-LWE cryptosystem, this work does not break
Ring-LWE, since the security reduction is from the worst case ideal SVP
to the average case Ring-LWE, and it is one-way.

Keywords: Ring-LWE · Ideal lattice · Average case computational com-
plexity.

1 Introduction

Due to their conjectured ability to resist quantum computer attacks, lattice-
based cryptosystems have drawn considerable attention. In 1996, Ajtai [1] pio-
neered the research on worst-case to average-case reduction for the Short Integer
Solution problem (SIS). In 2005, Regev [33] presented a worst-case to average-
case (quantum) reduction for the Learning With Errors problem (LWE). SIS
and LWE became two important cryptographic assumptions, and a large num-
ber of cryptographic schemes based on these two problems have been designed.
However, the common drawback of such schemes is their limited efficiency.

To improve the efficiency of lattice-based schemes, some special algebraic
structures are employed. The first lattice-based scheme with some algebraic
structure was the NTRU public key cryptosystem [15], which was introduced
by Hoffstein, Pipher and Silverman in 1996. It works in the convolution ring
Z[x]/(xp − 1) where p is a prime. The cyclic nature of the ring Z[x]/(xp − 1)



contributes to NTRU’s efficiency, and makes NTRU one of the most popular
schemes. Later the ring was employed in many other cryptographic primitives,
such as [25, 21, 31, 26, 36, 5].

In 2009, Stehlé et al. [37] introduced a structured and more efficient variant of
LWE involving the ring Fp[x]/(xN + 1) where N is a power of 2 and p is a prime
satisfying p ≡ 3 (mod 8). In 2010, Lyubashevsky, Peikert and Regev [22] pre-
sented a ring-based variant of LWE, called Ring-LWE. The hardness of problems
in [37, 22] is based on worst-case assumptions on ideal lattices. Recently, Peikert,
Regev and Stephens-Davidowitz [30] presented a polynomial time quantum re-
duction from (worst-case) ideal lattice problems to Ring-LWE for any modulus
and any number field. Lots of schemes employ the ring Z[x]/(xN +1) where N is
a power of 2, for example, NewHope [3], Crystals-Kyber [8], and LAC [20] sub-
mitted to NIST’s post-quantum cryptography standardization. Although solving
the ideal SVP does not necessarily break Ring-LWE, understanding the hardness
of ideal SVP is no doubt a very important first step to understand the hardness
of Ring-LWE.

1.1 Previous works

Principal ideal lattices are a class of important ideal lattices which can be gen-
erated by a single ring element. There is a line of work focusing on the principal
ideal SVP. Based on [9, 4], solving approx-SVP problems on principal ideal lat-
tices can be divided into the following two steps: Step 1 is finding an ideal gen-
erator by using class group computations. In this step, a quantum polynomial
time algorithm is presented by Biasse and Song [7], which is based on the work
[14]; a classical subexponential time algorithm was given by Biasse, Espitau,
Fouque, Gélin and Kirchner [6]. Step 2 is shortening the ideal generator in Step
1 with the log-unit lattice. This step was analyzed by Cramer, Ducas, Peikert
and Regev [11]. Then a quantum polynomial time algorithm for approx-SVP,

with a 2Õ(
√
N) approximation factor, on principal ideal lattices in cyclotomic

number fields was presented in [11].
In 2017, Cramer, Ducas and Wesolowski [12] extended the case of principal

ideal lattices in [11] to the case of a general ideal lattice in a cyclotomic ring
of prime-power conductor. For approx-SVP on ideal lattices, the result in [12]
is better than the BKZ algorithm [34] when the approximation factor is larger

than 2Õ(
√
N). Ducas, Plancon and Wesolowski [13] analyzed the approximation

factor 2Õ(
√
N) in [11, 12] to determine the specific dimension N so that the corre-

sponding algorithms outperform BKZ for an ideal lattice in cyclotomic number
fields. Recently, Pellet-Mary, Hanrot and Stehlé [32], inspired by the algorithms
in [11, 12], proposed an algorithm to solve approx-SVP with the approximation

factor 2Õ(
√
N) in ideal lattices for all number fields, aiming to provide trade-offs

between the approximation factor and the running time. However, there is an
exponential pre-processing phase.

Inspired by Bernstein’s logarithm-subfield attack [4], Albrecht, Bai and Ducas
[2] and Cheon, Jeong and Lee [10] independently proposed two similar subfield
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attacks in 2016 against overstretched NTRU that has much larger modulus than
in the NTRUEncrypt standard. Later, Kirchner and Fouque [16] proposed a
variant of the subfield attacks to improve these two attacks in practice. A typical
subfield attack consists of three steps: mapping the lattice to some subfield,
solving the lattice problem in the subfield and finally lifting the solution to the
full field.

1.2 Our results

In this paper, we investigate the SVP for lattices corresponding to prime ideals
in number fields normal over Q. Every nonzero ideal in a Dedekind Domain can
be factored uniquely into a product of prime ideals, so short vectors in prime
ideals may help us to find short vectors in general ideals. If, in a general prime
ideal p, we are able to efficiently find a vector with length within the Minkowski
bound for p, then for an ideal a with few prime ideal factors, we will be able
to approximate the shortest vector in a to within a factor much better than
what is achieved by the LLL [17] or BKZ [35] algorithms. The most difficult
step in factoring an ideal is actually factorization of an integer (the norm of
the ideal), which can be done in polynomial time by quantum computers, or in
subexponential time by classical computers.

Consider a finite Galois extension L ∼= Q[x]/(f(x)) of Q, and let P be a prime
ideal in the ring of integers OL of L. The subgroup of Gal(L/Q) that stabilizes
P set-wise is known as the decomposition group of P. Let K ⊂ L be the subfield
fixed by the decomposition group of P. K is called the decomposition field of P.
To find a short vector in P, we can search for a short vector in the lattice P∩K,
which may have smaller rank. More precisely, for a rational prime p, if pOL is
factored into a product of g prime ideals in OL, we can reduce the problem
of finding a short vector in any of these prime ideals to a problem of finding
a short vector in a rank-g lattice, provided that a basis of OK can be found
efficiently. Equivalently, the fewer the number of irreducible factors of f(x) over
Fp, the more efficiently we may solve SVP for prime ideals lying above p . One
argues from general facts of algebraic number theory that the determinant of
the sublattice is not too large compared to the original lattice in order to relate
Minkowski type λ1 bounds for the two lattices.

We go on to apply the foregoing idea to the rings Z[x]/(x2
n

+ 1), which are
quite popular in cryptography. We show that there is a hierarchy for the hard-
ness of SVP for these prime ideal lattices. This arises from the observation that
the decomposition groups (or their index-two subgroups) form a chain in the
subgroup lattice (See Appendices A and B). Roughly speaking, we can classify
such prime ideal lattices into n distinct classes, and for a prime ideal lattice in
the r-th class, we can find its shortest vector by solving SVP in a dimension-2r

lattice. This suggests that the difficulty of prime ideal SVP can change dramati-
cally from ideal to ideal, an interesting phenomenon that has, to our knowledge,
not been pointed out in the literature. By considering some of these classes, we
prove that a nontrivial fraction of prime ideals admit an efficient SVP algorithm.
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Theorem 1. Let N = 2n, where n is a positive integer. Let p be a prime ideal in
the ring Z[x]/(xN+1), and suppose p contains a prime number p ≡ ±3 (mod 8).
Then under the coefficient embedding, the shortest vector in p can be found in
time poly(N, log p), and the length of the shortest vector is exactly

√
p.

Can we conclude from the above result that the average case prime ideal SVP is
easy? It depends how we define an average prime ideal lattice. As prime ideals
are rigid structures, changing distributions gives us totally different complexity
results. If prime ideals are selected uniformly at random from the set of those
prime ideals whose norms are bounded, then easy cases are rare. Nevertheless
our result does show that an average case of the prime ideal SVP in power-of-
two cyclotomic fields is not hard, if the prime ideals are selected uniformly at
random from the set of all prime ideals whose rational primes are less than some
fixed bound. See Subsection 4.2 for details.

For general (non prime) ideals in Z[x]/(x2
n

+ 1), we present an algorithm
to confirm that the hierarchy for the hardness of SVP also exists; that is, we
can solve SVP for a general ideal lattice by solving SVP in a 2r-dimensional
sublattice, for some positive integer r related to the factorization of the ideal
(see Theorem 6). Following Theorem 1, we show how to solve the SVP for ideals
all of whose prime factors lie in a certain class. This is a special case of Theorem
6.

Proposition 1. Let N = 2n, where n is a positive integer. Let I be an ideal in
the ring Z[x]/(xN + 1) with prime factorization

I = p1p2 · · · pk.

If each pi contains a prime integer ≡ ±3 (mod 8), the shortest vector in I can
be found in time poly(N, log(N (I))).

We would like to stress that the algorithm works by exploiting the multi-
plicative structure of ideals in the ring of integers of a number field, without
factoring the ideal. We regard this as the second contribution of this work, in
addition to the algorithm for prime ideals.

Note that a decomposition field is a subfield of the number field. Our algo-
rithm can also be seen as a kind of subfield attack to solve the ideal Hermite-SVP
problem. Compared with the previous subfield attacks [4, 2, 10, 16], the main dif-
ferences are: the previous subfield attacks use relative norm (or trace) to map a
lattice into some subfield, while we use the intersection with the decomposition
field; The approximation factor in the previous attacks, such as [2], will suf-
fer during the lifting process, while our lifting costs not so much; The previous
attacks [2, 10, 16] work for NTRU with much big modulus, while the instances
amenable to our attack must satisfy the condition that the decomposition field
is a proper subfield of the number field.

We have to point out that it is still unknown how our result impacts the
security of cryptographic schemes. It does not break Ring-LWE, since the secu-
rity reduction is from the worst case ideal SVP to the average case Ring-LWE,
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and it is one-way. As pointed out by [4], Smart and Vercauteren [29] proposed
an ideal lattice-based fully homomorphic encryption scheme, which generated a
prime ideal lattice as the public key. It is enough to break the scheme by finding
a short vector in the lattice. To improve the efficiency, they chose ideals of prime
determinants, which are not weak instances revealed by our algorithm. Our pa-
per provides a security justification for using such ideal lattices. We should no
doubt avoid the weak instances when we construct cryptographic schemes. In
addition, our result is a beneficial attempt to solve ideal SVP by exploiting the
algebraic structure, and it helps us understand better the hardness of ideal SVP.

1.3 Paper organization

The remainder of the paper is organized as follows. In Section 2, we give some
mathematical preliminaries. In Section 3 we prove a reduction of approx-SVP
in the finite Galois extension of Q. Then in section 4 we present a reduction of
SVP for prime ideal lattices and then general ideal lattices in Z[ζ2n+1 ]. Finally,
a conclusion and some open problems are given in Section 5.

2 Mathematical preliminaries

2.1 Lattices and some computational problems

Lattices are discrete additive subgroups of RN . Any finite set of linearly inde-
pendent vectors b1, b2, · · · , bm ∈ RN generates a lattice:

L =

{
m∑
i=1

zibi| zi ∈ Z

}
.

Denote by B the matrix whose column vectors are the bi’s. We say B is a basis
(in matrix form) for L; m and N are the rank and dimension of L, respectively.
Denote by det(L) the determinant of lattice L, which is defined as the (co)volume
of L in the real subspace spanned by L. Note that if m = N , the determinant
of L is exactly |det(B)|.

The shortest vector problem (SVP), which refers to the problem of finding
a shortest nonzero lattice vector in a given lattice, is one of the most famous
hard problems in lattice theory. There are some variants of SVP that are very
important for applications.

– Approx-SVP: Given a lattice L and an approximation factor γ ≥ 1, find a
non-zero lattice vector of norm ≤ γ · λ1(L), where λ1(L) is the length of a
shortest non-zero vector in L.

– Hermite-SVP: Given a rank-N lattice L and an approximation factor γ ≥ 1,
find a non-zero lattice vector of norm ≤ γ · det(L)

1
N . Note that Minkowski’s

theorem [27] tells us that

λ1(L) ≤ 2

V1/N
N

· det(L)
1
N ≤

√
N · det(L)

1
N ,
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where VN is the volume of the N -dimensional ball with radius 1. Thus for
any γ ≥

√
N , Hermite-SVP is well-defined for all rank-N lattices.

Since λ1(L) is usually hard to determine given a basis of L, it might be very
hard to verify a solution returned by an algorithm for Approx-SVP with some
approximation factor. However, the solution to Hermite-SVP can be verified
efficiently. Hence, many algorithms, such as LLL [17] and BKZ [35], are
designed as polynomial-time Hermite-SVP algorithms for some exponential
approximation factor.

It is obvious that any algorithm that solves Approx-SVP with factor γ can
also solve Hermite-SVP with factor γ

√
N by Minkowski’s theorem. Furthermore,

based on an idea of Lenstra and Schnorr, Lovász showed that any algorithm
solving Hermite-SVP with factor γ can be used to solve Approx-SVP with factor
γ2 in polynomial time [19].

Moreover, a solution to Hermite-SVP with factor
√
N , that is, satisfying the

Minkowski bound, is usually taken as a good enough approximation of some
shortest vector in a ”random” lattice. In addition, when choosing parameters
for lattice-based cryptosystems in practice, such as in NewHope[3], Crystals-
Kyber [8], and LAC [20], the time complexity of solving Hermite-SVP with some
particular factor usually determines the concrete security of these cryptosystems.
Therefore, the algorithm for Hermite-SVP is key to both solving Approx-SVP
and analyzing the security of lattice-based cryptosystems.

The closest vector problem (CVP) is another famous hard problem in lattice
theory. This refers to the problem of finding a lattice vector that is closest to a
given vector.

2.2 Some basic algebraic number theory

We will review some basic algebraic number theory in this section. More details
can be found in [23] or [28]

Number fields An algebraic number ζ ∈ C is any root of a nonzero polynomial
f(x) ∈ Q[x] and its minimal polynomial is the unique monic irreducible f(x) ∈
Q[x] of minimal degree that has ζ as a root. An algebraic number is called an
algebraic integer if its minimal polynomial lies in Z[x].

An algebraic number field is a finite field extension K of Q. Such a field can
be obtained by adjoining a single algebraic integer ζ to Q. That is, K = Q(ζ)
for some algebraic integer ζ. The degree N of the minimal polynomial f(x) of ζ
is also the degree of K over Q.

Denote by OK the ring of algebraic integers in K. It is an integral domain
and also a free Z-module with rank N .

For example, let ζ2n+1 be a complex primitive 2n+1-th root of unity, whose
minimal polynomial is f = x2

n

+ 1. Then, K = Q(ζ2n+1) is the cyclotomic
number field of order 2n+1 with degree 2n. Its ring of integers is well known to
be Z[ζ2n+1 ].

6



Embeddings A number field K of degree N over Q has exactly N embeddings
into C. Let σ1, σ2, · · · , σs1 be the real embeddings from K to R, and let

σs1+1, σs1+2, · · · , σs1+s2 ,

σs1+s2+1 = σs1+1, σs1+s2+2 = σs1+2, · · · , σs1+2s2 = σs1+s2

be the non-real embeddings from K to C, where · denotes complex conjugation.

From these σi’s we can define the canonical embedding ΣK from K to CN :

ΣK : K→ CN , a 7→ (σ1(a), σ2(a), · · · , σN (a)).

It is known that the image of ΣK falls into a subspace in CN , which is isomorphic
to RN as an inner product space (see [22]).

Another important embedding from K to RN is the coefficient embedding,
which is most commonly used in cryptographic constructions. This embedding
depends on a choice of generator α for K: write K = Q(α) and map β = a0 +
a1α+ ...+ aN−1α

N−1 to its coefficient vector, C(β) := (a0, a1, ..., aN−1).

If α may be chosen so that

OK = Z + αZ + α2Z + ...+ αN−1Z

we say OK is monogenic. In this case the coefficient embedding maps OK to ZN .
Alternatively, via OK ∼= Z[x]/(f(x)), where f(x) is the minimal polynomial of α,
we may think of C mapping a polynomial in Z[x]/(f(x)) to its coefficient vector:

C(a0 + a1x+ · · ·+ aN−1x
N−1) = (a0, a1, · · · , aN−1).

Discriminants If K ⊂ L are number fields, the (relative) discriminant of a
K-basis b1, b2, . . . , bN for L is defined by

dL/K(b1, b2, . . . , bN ) = |det(σibj)|2,

where σi varies over the [L : K] embeddings L→ C which fix all elements of K.
The discriminant disc(OL/OK), also denoted by disc(L/K), is then the ideal of
OK which is generated by the discriminants dL/K(b1, b2, . . . , bN ) of all the K-bases
b1, b2, . . . , bN of L which are contained in OL.

For any number field K, the (absolute) discriminant disc(K/Q) becomes the
principal ideal generated by d(b1, b2, . . . , bN ) for any basis b1, b2, . . . , bN of the
free Z-module OK. In this case we just write disc(K) to refer to this ideal or
the unique positive integer that generates it. In a sense made precise by the
embeddings defined above, the discriminant gives a notion of the co-volume of
a ring of integers in its fraction field. Specifically, the discriminant is just the
square of this co-volume.
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2.3 Ideal lattices

The ring of integers OK of K is a free Z-module, and any ideal I in OK is a free
Z-submodule since Z is a principal ideal domain. Under the canonical embedding
or the coefficient embedding, any such I is sent to a lattice in RN . We call this
image the ideal lattice associated with I, and we denote it also by I.

Under the canonical embedding ΣK from K to CN , the co-volume (i.e. the vol-
ume of a fundamental domain) of an ideal lattice I is given by NK(I)

√
|disc(K)|,

where NK(I) is the norm of I, defined as the cardinality of OK/I. Note that
when we say the norm of a vector, it refers to the Euclidean norm rather than
the algebra norm of an ideal.

Usually it is easier to use the canonical embedding in mathematical analysis,
and to use the coefficient embedding in cryptography. For example, under the
coefficient embedding of Z[ζ2n+1 ], the lattice associated with the prime ideal pi =
(p, fi(ζ2n+1)) is generated by the coefficient vectors of the following polynomials
(modulo xN + 1)

fi, xfi, · · · , xN−1fi and p, px, · · · , pxN−1,

where p is some rational prime, and fi is some irreducible factor of x2
n

+ 1
modulo p. The minimum generating set should have only N vectors, which can
be found by computing the Hermite Normal Form.

Ideals in Z[ζ2n+1 ] The cyclotomic field of order 2N = 2n+1 is widely used in
cryptography. Its ring of integers is Z[ζ2n+1 ], which is isomorphic to Z[x]/(xN+1).
Its discriminant is 2n2

n

.
Let p be a rational prime, and let

xN + 1 = (f1f2 · · · fg)e

be the prime factorization of xN + 1 in the polynomial ring Fp[x]. Then we have

(p) = (p1p2 · · · pg)e,

where pi = (p, fi(ζ2n+1)) (here fi is any integer polynomial which projects to the
fi in the above factorization). We say the prime ideal pi lies over the prime p. If
e is greater than 1, we say the prime p is ramified (in Z[ζ2n+1 ]); otherwise we say
p is unramified. One can verify that 2 is the only ramified rational prime in the
cyclotomic field of order 2N , and that the prime ideal (2, ζ2n+1 +1) = (ζ2n+1 +1)
lies above the ideal (2).

We are therefore interested in the explicit factorization of the 2n+1-th cyclo-
tomic polynomials, x2

n

+ 1, over Fp[x]. This is computed in [18, Thm. 2.47 and
Thm. 3.75] when p ≡ 1 (mod 4) and in [24] when p ≡ 3 (mod 4).

Theorem 2. Let p ≡ 1 (mod 4), i.e. p = 2A ·m+ 1, A ≥ 2, m odd. Denote by
Uk the set of all primitive 2k-th roots of unity modulo p. We have
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– If n < A, then x2
n

+ 1 is the product of 2n irreducible linear factors over Fp:

x2
n

+ 1 =
∏

u∈Un+1

(x+ u).

– If n ≥ A, then x2
n

+ 1 is the product of 2A−1 irreducible binomials over Fp
of degree 2n−A+1:

x2
n

+ 1 =
∏
u∈UA

(x2
n−A+1

+ u).

Theorem 3. Let p ≡ 3 (mod 4), i.e. p = 2A ·m− 1, A ≥ 2, m odd. Denote by
Ds(x, a) the Dickson polynomials

b s2 c∑
i=0

s

s− i

(
s− i
i

)
(−a)ixs−2i

over Fp. For n ≥ 2, we have

– If n < A, then x2
n

+ 1 is the product of 2n−1 irreducible trinomials over Fp:

x2
n

+ 1 =
∏
γ∈Γ

(x2 + γx+ 1),

where Γ is the set of all roots of D2n−1(x, 1).
– If n ≥ A, then x2

n

+ 1 is the product of 2A−1 irreducible trinomials over Fp
of degree 2n−A+1:

x2
n

+ 1 =
∏
δ∈∆

(x2
n−A+1

+ δx2
n−A

− 1),

where ∆ is the set of all roots of D2A−1(x,−1).

3 Solving Hermite-SVP for prime ideal lattices in a
Galois extension

In the following, we will consider solving Hermite-SVP for prime ideals of OL
when L is a finite Galois extension of Q.

A prime ideal p in OL contains a rational prime p, and therefore occurs as
one of the prime ideals in the factorization

pOL = (p1p2 · · · pg)e.

Without loss of generality, we assume p1 = p.
To find a short vector of p1, we try to find a short vector in the sublattice

given by the intersection of p1 with some intermediate field between Q and L.
Since this sublattice has smaller rank, this may lead to a more efficient algorithm
than working in L directly.
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More precisely, let G be the Galois group of L over Q. Recall the decompo-
sition group, D, and decomposition field, K, for p1:

D := {σ ∈ G : σ(p1) = p1},

K := {x ∈ L : ∀σ ∈ D,σ(x) = x}.

Let OK be the algebraic integer ring of K. It is well known that the degree of
K over Q is g (see [23, Thm. 28]). This is our desired intermediate field, and we
have the following theorem.

Theorem 4. Suppose L/Q is a finite Galois extension with degree N , and sup-
pose p is a prime ideal of OL lying over an unramified rational prime p such that
pOL has g distinct prime ideal factors in OL. If K is the decomposition field of p,
then a solution to Hermite-SVP with factor γ in the sublattice c = p∩OK under
the canonical embedding of K will also be a solution to Hermite-SVP in p with

factor

√
N/g

NK(disc(L/K))1/(2N) · γ (≤
√

N
g · γ) under the canonical embedding of L.

In particular, when γ =
√
g, a vector in the sublattice c satisfying the Minkowski

bound will produce a vector in the lattice p satisfying the Minkowski bound.

Proof. Consider the following diagram

p OL L CN

c OK K Cg

(p) Z Q C

⊂ ⊂ ΣL

⊂ ⊂ ΣK

β

⊂ ⊂ ⊂

Here β is chosen to be the linear map making the diagram commute.

Note that every embedding of K in C can be extended to exactly N
g em-

beddings of L in C [23, Thm. 50]; thus β is (up to permutation) just the linear
embedding given by repeating each coordinate N/g times. Thus for any v ∈ Cg
we have

‖β(v)‖ =

√
N

g
· ‖v‖. (1)

Note that the norm of c is exactly p [23, Thm. 29], so that the determinant
of c is p

√
|disc(K)|. Thus, under the canonical embedding of OK into Cg, any

solution v0 ∈ c to Hermite-SVP with factor γ satisfies

‖v0‖ ≤ γ · p
1
g |disc(K)|

1
2g .
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By Equation (1) above and the fact that disc(L) = disc(K)N/gNK(disc(L/K))
[28, Corallary (2.10), pp. 202], we therefore have

‖β(v0)‖ ≤ γ ·

√
N

g
p

1
g |disc(K)|

1
2g

= γ ·
√
N/g

NK(disc(L/K))1/(2N)
p

1
g |disc(L)| 1

2N

= γ ·
√
N/g

NK(disc(L/K))1/(2N)
(p

N
g

√
|disc(L)|) 1

N

Note that the norm of p is p
N
g , and thus p

N
g

√
|disc(L)| is exactly the deter-

minant of the ideal lattice p under the canonical embedding of L. Hence v0 is

also a solution to Hermite-SVP with factor

√
N/g

NK(disc(L/K))1/(2N) · γ.

Note that NK(disc(L/K)) is a positive integer. Thus√
N/g

NK(disc(L/K))1/(2N)
≤

√
N

g
.

In particular, when γ =
√
g,

√
N/g

NK(disc(L/K))1/(2N) ·γ ≤
√
N still holds. The theorem

follows. �

Remark 1. To design an algorithm from the theorem, we need to calculate the
decomposition field from a prime ideal. In general this is not an easy problem.
Fortunately, for power-of-two or prime order cyclotomic fields, the subfield struc-
tures have been worked out in the literature. Another technical problem is to
compute a basis for c = p ∩OK. This can be solved if we know a Q-basis of K.

Remark 2. How many prime ideals are vulnerable to this attack? In other words,
given an irreducible polynomial over Z, how does its factoring pattern change
over Fp as p varies? This is a central topic of class field theory when the Galois
group is solvable. In the general case, it has been studied in the famous Langlands
program, where many challenging problems remain. The answer is well known
for number fields popular in lattice based cryptography. There exists a set of
rational primes, of positive density with non-trivial decomposition group, such
that for any p in this set, the decomposition fields of the prime ideals lying above
p are never the whole field L. In this case, p ∩ OK has rank no more than half
that of p, resulting in a much easier SVP problem.

4 Solving SVP for ideal lattices in Z[ζ2n+1]

In the following, we use the above idea to solve SVP for ideal lattices in Z[ζ2n+1 ],
the ring of integers in the cyclotomic field Q(ζ2n+1), a field which is widely used in
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lattice-based cryptography. The decomposition field of any prime ideal is either
equal to, or a degree-2 subfield of, one of the following

Q[i] ⊂ Q[ζ8] ⊂ · · · ⊂ Q[ζ2n ] ⊂ Q[ζ2n+1 ].

The subfields in this chain are convenient because they are monogenic and their
integer rings have Z-bases (powers of ζ2n+1) that are mutually compatible and
orthogonal under the canonical embedding. This results in a hierarchy of com-
plexity of prime ideal SVP problems. Furthermore, for a non-prime ideal I, we
can approximate the shortest vectors of I by finding short vectors in I ∩ OK,
where K is the smallest field in the above chain containing all the decomposition
fields of the prime factors of I. This allows us to find short vectors for many
non-prime ideals. In contrast to the approximation result we achieved in the
general setting of Theorem 4, an exact SVP solution is possible in power-of-two
cyclotomic fields. We will first prove a reduction for SVP for prime ideal lattices
in Z[ζ2n+1 ], and then we will prove a reduction for general ideals. We would like
to point out that in the case of a general ideal lattice I, we do not need to know
the prime factorization of I to run our algorithm.

4.1 Solving SVP for prime ideal lattices in Z[ζ2n+1 ]

For simplicity we let ζ = ζ2n+1 . In the sequel we say goodbye to the canonical
embedding and adopt the coefficient embedding C:

Q(ζ)→ R2n ,

2n−1∑
i=0

aiζ
i 7→ (a0, a1, ..., a2n−1).

The coefficient embedding is widely used in cryptographic constructions. For
power-of-two cyclotomic fields, the two embeddings are related by scaled-rotations,
since for any v ∈ Z[ζ2n+1 ] it is easy to see that

‖ΣL(v)‖ =
√

2n‖C(v)‖.

Hence, the shortest vector under the coefficient embedding of Q(ζ) must be the
shortest under the canonical embedding.

The prime 2 is the unique ramified prime in Q(ζ), and the prime ideal lying
over (2) is (2, ζ + 1) = (ζ + 1). Hence it is easy to find the shortest vector in the
ideal lattice (ζ + 1), and its length is

√
2.

Below we consider a prime ideal lying over an odd prime and show that
there is a hierarchy for the hardness of solving SVP for prime ideal lattices in
Z[ζ]. Roughly speaking, we can classify all the prime ideal lattices into n classes
labeled with 1, 2, · · · , n, depending on the congruence class of p (mod 2n+1),
and for a prime ideal lattice in the r-th class, we can always find its shortest
vector by solving SVP in a 2r-dimensional lattice. More precisely, we have:

12



Theorem 5. For any prime ideal p = (p, f(ζ)) in Z[ζ], where p is an odd prime
and f(x) is some irreducible factor of x2

n

+ 1 in Fp[x]. Write

p =

{
2A ·m+ 1, if p ≡ 1 (mod 4);
2A ·m− 1, if p ≡ 3 (mod 4),

for some odd m and A ≥ 2, and let

r =

{
min{A− 1, n}, if p ≡ 1 (mod 4);
min{A,n}, if p ≡ 3 (mod 4).

Then given an oracle that can solve SVP for 2r-dimensional lattices, a shortest
nonzero vector in p can be found in poly(2n, log2 p) time with the coefficient
embedding.

Proof. It is well known that the Galois group G of Q(ζ) over Q is isomorphic to
the multiplicative group (Z/2n+1Z)∗. Let G = {σ1, σ3, · · · , σ2n+1−1} where

σi : Q(ζ)→ Q(ζ);

ζ 7→ ζi.

We proceed by considering two separate cases.
Case 1: First we deal with the case when p ≡ 1 (mod 4). The theorem is

vacuously true for n < A.
If n ≥ A, we have r = A− 1. By Theorem 2, we know that

f(x) = x2
n−A+1

+ u = x2
n−r

+ u

for some u ∈ UA. Then the prime ideal lattice p can be generated by p and
f(ζ) = ζ2

n−r

+ u. Consider the subgroup H = 〈σ2r+1+1〉 of G generated by
σ2r+1+1. H is a subgroup of the decomposition group of the ideal p since

σ2r+1+1(p) = p, σ2r+1+1(f(ζ)) = f(ζ).

Note that K = Q(ζ2
n−r

) is the fixed field of H and its integer ring OK has a

Z-basis (1, ζ2
n−r

, ζ2·2
n−r

, · · · , ζ(2r−1)·2n−r

).
Let c = p

⋂
OK. We claim that p is a direct sum:

p =

2n−r−1⊕
k=0

ζkc. (2)

Indeed for any a ∈ p, there exist integers zi’s and wi’s such that

a =

2n−1∑
i=0

ziζ
if(ζ) +

2n−1∑
i=0

wipζ
i

=

2n−r−1∑
k=0

ζk
2r−1∑
j=0

(zk+j·2n−rζj·2
n−r

f(ζ) + wk+j·2n−rpζj·2
n−r

)

=

2n−r−1∑
k=0

ζk
(

(

2r−1∑
j=0

zk+j·2n−rζj·2
n−r

)f(ζ) + (

2r−1∑
j=0

wk+j·2n−rζj·2
n−r

)p

)
.
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Let a(k) = (
∑2r−1
j=0 zk+j·2n−rζj·2

n−r

)f(ζ) + (
∑2r−1
j=0 wk+j·2n−rζj·2

n−r

)p for any k.

Since p ∈ c and f(ζ) ∈ c, a(k) ∈ c. We have established (2).
Since multiplication by ζ is an isometry and for x ∈ c, the coefficients of ζix

and ζjx are disjoint for i 6= j mod 2n−r, Equation (2) implies

λ1(p) = λ1(c),

and that to find the shortest vector in the ideal lattice p, it is enough to find the
shortest vector v in the ideal lattice c, a lattice with dimension 2r. Indeed ζkv
for any 0 ≤ k ≤ 2n−r − 1 will be a shortest vector in the ideal lattice p.

Case 2: For the case when p ≡ 3 (mod 4), everything is similar except that
r = A.

Algorithm: We can summarize the algorithm to solve SVP in a prime ideal
lattice as Algorithm 1.

Algorithm 1 Solve SVP in prime ideal lattice

Input: a prime ideal p = (p, f(ζ)) in Z[ζ], where p is odd.
Output: a shortest vector in the corresponding prime ideal lattice.

1: Compute the ideal c generated by p and f(ζ) in OK where K = Q(ζ2n−r

).
2: Find a shortest vector v in the 2r-dimensional lattice c.
3: Output v.

The most time-consuming step in Algorithm 1 is Step 2 and the other steps
can be done in poly(2n, log2 p) time. �

Remark 3. By the decomposition (2) above, a similar result will hold for a prime
ideal p in OL other than Q(ζ), whenever OL is a free OK-module where K is the
decomposition field of p, and some Z-basis of OK can be extended to the Z-
basis of OL that determines the coefficient embedding. If we disregard the last
condition that a basis of OK extends to a basis of OL, there may be a distortion
of length, depending on the basis of OK, when we lift the solution from c to
p. That is, an approximation factor, which may be much larger than 1, will be
involved.

Remark 4. By the remark above, solving the closest vector problem (CVP) for
a prime ideal lattice can be also reduced to solving CVP in some 2r-dimensional
sublattice.

SVP of some special prime ideals in Z[ζ2n+1 ] Using Theorem 5, we can
prove Theorem 1, which shows that the SVP for prime ideals lying above some
special rational primes is very easy.
Proof of Theorem 1

If p ≡ −3 (mod 8), we may write p = 4m + 1 with odd m. By Theorem
2, x2

n

+ 1 is the product of 2 irreducible binomials over Fp of degree 2n−1:

x2
n

+ 1 = (x2
n−1

+ u1) · (x2n−1

+ u2), where ui satisfies u2i ≡ −1 (mod p).

14



For any prime ideal (p, ζ2
n−1

+ ui) over (p), by the proof of Theorem 5, the
shortest vector can be found by solving the 2-dimensional lattice Li generated

by


ui 1
−1 ui
p 0
0 p

 . Note that (−1, ui) ≡ ui · (ui, 1) (mod p) and (0, p) = p · (ui, 1)−

ui · (p, 0). The generator matrix can be reduced to the basis of Li as

(
ui 1
p 0

)
,

which is exactly the Hermite Normal Form of the lattice basis.

For any vector v ∈ Li, there exists an integer vector (z1, z2) such that v =

(z1, z2)

(
ui 1
p 0

)
= (z1ui + z2p, z1). Note that

‖v‖2 = (z1ui + z2p)
2 + z21 = z21(u2i + 1) + z22p

2 + 2pz1z2ui ≡ 0 (mod p).

Then for the nonzero shortest vector v, we have 0 < ‖v‖2 < 4
π · p < 2p (by

Minkowski’s Theorem [27]) and ‖v‖2 ≡ 0 (mod p), which implies that ‖v‖2 = p.

In case p ≡ 3 (mod 8), we may write p = 4m− 1 with odd m. By Theorem
3, then x2

n

+ 1 is the product of 2 irreducible binomials over Fp of degree 2n−1:

x2
n

+1 = (x2
n−1

+ δ1x
2n−2 −1) · (x2n−1

+ δ2x
2n−2 −1), where δi satisfies δ2i ≡ −2

(mod p) since the Dickson polynomial is D2(x,−1) = X2 + 2.

For any prime ideal (p, ζ2
n−1

+ δiζ
2n−2 − 1) over (p), we similarly consider

the shortest vector in Li generated by

−1 δi 1 0
0 −1 δi 1
−1 0 −1 δi
−δi −1 0 −1
p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


.

Similarly, we can easily get the basis for Li in the Hermite Normal Form
0 −1 δi 1
−1 δi 1 0
0 p 0 0
p 0 0 0

 ,

and prove that for any vector v ∈ L,

‖v‖2 ≡ 0 (mod p).

For the shortest vector v, by Minkowski’s Theorem, we know 0 < ‖v‖2 ≤ 4
√
2

π <
2p, which implies that ‖v‖2 = p. By Theorem 5, the proposition follows. �
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4.2 SVP average-case hardness for prime ideals in Z[ζ]

Precisely defining the average-case hardness of SVP for a prime ideal lattice in
Z[ζ] requires specifying a distribution. We consider the following three distribu-
tions.

The first distribution. To select a random prime ideal, one fixes a large M ,
uniformly randomly selects a prime number in the set

{p is a prime : p < M},

and then uniformly randomly selects a prime ideal lying over p. This process
provides a reasonable distribution among prime ideals, since every prime ideal
in the ring of integers of Q[x]/(f(x)) is of the form (p, g(x)), where p is a prime
number and g(x) is an irreducible factor of f(x) over Fp[x]. Since roughly half
of all primes p ≤ M satisfy p ≡ ±3 (mod 8), according to Dirichlet’s theorem
on arithmetic progressions, at least half of all such p have the property that the
ideals lying over p admit an efficient algorithm for SVP.

The second distribution. Again fixing a large M , we might alternatively
select a prime ideal uniformly at random from the set

{p prime ideal : p ∈ p, p is a prime, p < M}.

In this case, a non-negligible fraction of prime ideals admit efficient SVP algo-
rithm. More precisely, we have

Proposition 2. Under the distribution above, a random prime ideal of Z[ζ]
admits an efficient SVP algorithm with probability at least 1

1+2n−1 .

Proof. For simplicity, we disregard the single prime ideal lying over 2. Note that
for p = 8k±3, there are exactly two prime ideals over p, and, by Theorem 1, the
SVP for the corresponding ideal lattices is easy. For p = 8k±1, there are at most
2n prime ideals lying over p, by Theorems 2 and 3. Then by Dirichlet’s prime
number theorem, even if we only count the prime ideals lying over p = 8k ± 3,
the fraction of easy instances is at least 1

1+2n−1 . �

The third distribution. The third distribution is more common in mathe-
matics. Namely, after fixing a large M , we select uniformly at random a prime
ideal from the set

{p prime ideal : N (p) < M},

where N (p) is the norm of the ideal p.
By Theorem 5, SVP for a prime ideal lattice p reduces to SVP for a 2r-

dimensional sub-lattice c, where r is as defined in the statement of Theorem 5.
Note that our algorithm will not improve matters if r = n, that is, if p splits com-
pletely in Q(ζ), or equivalently if N (p) = p. By Chebotarev’s density theorem
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[38], there are about M
2n logM rational primes which split in Q(ζ) and hence M

logM
prime ideals lying above those primes, for which our algorithm cannot provide
a reduction for SVP.

If our algorithm is to provide a reduction, the prime ideal under study must
lie over a rational prime p with p ≤

√
M , since N (p) = pf < M where f is some

integer greater than 1. Hence there are at most
√
M such primes and hence at

most 2n−1
√
M prime ideals for which our algorithm provides a reduction.

Under such a distribution, therefore, the density of the easy instances for our

algorithm is at most 2n−1 logM√
M

, which goes to zero when M tends to infinity.

Remark 5. From a cryptographic perspective, there seems to be no construction
relying on the average hardness of ideal SVP in ideals following one of the two
first distributions above. However, our algorithm reveals the concrete reason why
we should avoid such distributions in the cryptographic constructions although
it seems very easy to sample according to the two distributions.

4.3 Solving SVP for a general ideal lattice in Z[ζ2n+1 ]

For simplicity, we let ζ = ζ2n+1 . We will show that even for a general ideal lattice
I ⊂ Z[ζ], there is a similar hierarchy for the hardness of SVP. We would like to
stress that although the following theorem refers to the prime factorization of I,
the resulting algorithm does not require it.

Theorem 6. Let I be a nonzero ideal of Z[ζ] with prime factorization

I = p1 · p2 · · · pt,

where pi = (fi(ζ), pi) for rational primes pi, and where the pi are not necessarily
distinct. Write pi = 2Ai ·mi+1 when pi ≡ 1 (mod 4) and pi = 2Ai ·mi−1 when
pi ≡ 3 (mod 4) with odd mi, and let r = max{ri}, where

ri =

min{Ai − 1, n}, if pi ≡ 1 (mod 4);
min{Ai, n}, if pi ≡ 3 (mod 4);
n, if pi = 2.

Then the shortest vector in the ideal lattice L corresponding to I can be solved
via solving SVP in a 2r-dimensional lattice.

Proof. If r = n, then the theorem follows simply.

If r < n, W.L.O.G., we assume r = r1. Following the proof of Theorem 5,
denote the Galois groupG = {σ1, σ3, · · · , σ2n+1−1} of Q(ζ) over Q, where σi(ζ) =
ζi. Consider the subgroup H = 〈σ2r+1+1〉 of G generated by σ2r+1+1. For any τ ∈
H and every prime ideal pi = (pi, fi(ζ)), we have τ(pi) = pi since σ2r+1+1(pi) =

pi, σ2r+1+1(fi(ζ)) = fi(ζ). Note that K = Q(ζ2
n−r

) is the fixed field of H and

its integer ring OK has a Z-basis (1, ζ2
n−r

, ζ2·2
n−r

, · · · , ζ(2r−1)·2n−r

).
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Let c = I
⋂
OK. We claim that for any a ∈ I, there exist a(k) ∈ c for

0 ≤ k < 2n−r, such that

a =

2n−r−1∑
k=0

ζka(k).

We proceed by induction. When t = 1 the above claim holds by Theorem 5.
Suppose the claim holds for t − 1. Then setting I = p1 · p2 · · · pt, and I =
p1 · p2 · · · pt−1, we have I = I · pt. For any a ∈ I, we can write a =

∑
xiyi where

xi ∈ I and yi ∈ pt. It suffices to show that for any xy, where x ∈ I and y ∈ pt,

there exist b(k) ∈ I
⋂
OK for 0 ≤ k < 2n−r, such that xy =

∑2n−r−1
k=0 ζkb(k).

By the induction assumption, there exist x(i) ∈ I
⋂
OK for 0 ≤ i < 2n−r

such that x =
∑2n−r−1
i=0 ζix(i), and there exist y(j) ∈ pt

⋂
OK for 0 ≤ j < 2n−r

such that y =
∑2n−r−1
j=0 ζjy(j). Hence, we have

xy =

2n−r−1∑
i=0

2n−r−1∑
j=0

ζi+jx(i)y(j)

=

2n−r−1∑
k=0

ζk
∑
i+j=k

x(i)y(j) +

2·2n−r−2∑
k=2n−r

ζk
∑
i+j=k

x(i)y(j)

=

2n−r−1∑
k=0

ζk
∑
i+j=k

x(i)y(j) +

2n−r−2∑
k=0

ζk
∑

i+j=k+2n−r

ζ2
n−r

x(i)y(j)

=

2n−r−2∑
k=0

ζk(
∑
i+j=k

x(i)y(j) +
∑

i+j=k+2n−r

ζ2
n−r

x(i)y(j)) + ζ2
n−r−1

∑
i+j=2n−r−1

x(i)y(j).

Let b(k) =
∑
i+j=k x

(i)y(j) +
∑
i+j=k+2n−r ζ2

n−r

x(i)y(j) for any 0 ≤ k ≤ 2n−r−2

and b(2
n−r−1) =

∑
i+j=2n−r−1 x

(i)y(j). We have that b(k) ∈ I
⋂
OK for 0 ≤ k <

2n−r. Hence, for any a ∈ I, there exist a(k) ∈ c for 0 ≤ k < 2n−r, such that

a =
∑2n−r−1
k=0 ζka(k).

As in the proof of Theorem 5, we can show that λ1(I) = λ1(c) and any
nonzero shortest vector in c will yield 2n−r nonzero shortest vectors in I. �

We would like to point out that in some cases, the r in Theorem 6 can be
improved. Consider the case when n ≥ 3 and I = (2, ζ − 1)2 = (2, ζ2 + 1). We
need to solve SVP in a 2n-dimensional lattice by Theorem 6. However, using the
intermediate field Q(ζ2) as in the proof of Theorem 6, we can find a shortest
vector by solving SVP in a 2n−1-dimensional lattice.

Furthermore, since for any a ∈ I, there exist a(k) ∈ c for 0 ≤ k < 2n−r, such

that a =
∑2n−r−1
k=0 ζka(k), we conclude that if (b(i))0≤i<2r is a basis of the ideal

lattice c, then (ζjb(i))0≤i<2r,0≤j<2n−r is a basis of the ideal lattice I. Denote by

Lj the lattice generated by (ζjb(i))0≤i<2r . Then we have that the ideal lattice I
has an orthogonal decomposition: L0 ⊕ L1 ⊕ · · · ⊕ L2n−r−1.
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In fact, for any r̄, let c = I
⋂
OK where K = Q(ζ2

n−r̄

). For any basis
(b(i))0≤i<2r̄ of the ideal lattice c, if (ζjb(i))0≤i<2r̄,0≤j<2n−r̄ is a basis of the ideal
lattice I (meaning that the ideal lattice I has an orthogonal decomposition),
then the shortest vector in c is also a shortest vector in I. Hence we have the
following algorithm to solve SVP for a general ideal in Z[ζ] without knowing the
prime factorization of the ideal.

Algorithm 2 Solve SVP in general ideal lattice

Input: an ideal I;
Output: a shortest vector in the corresponding ideal lattice L.
1: for r̄ = 1 to n do
2: Compute a basis (b(i))0≤i<2r̄ of the ideal lattice c = I

⋂
OK, where K =

Q(ζ2n−r̄

).
3: if (ζjb(i))0≤i<2r̄,0≤j<2n−r̄ is exactly a basis of ideal lattice I then
4: Find a shortest vector v in the 2r̄-dimensional lattice c;
5: Output v.
6: end if
7: end for

Note that Step 2 can be done efficiently by computing the intersection of the
lattices I and OK under the coefficient embedding.

Remark 6. By the proof of Theorem 6, solving the closest vector problem (CVP)
for a general ideal lattice can also be reduced to solving CVP in some 2r-
dimensional lattice.

5 Conclusion and open problems

We have investigated the SVP of prime ideal lattices in the finite Galois extension
of Q, and designed an algorithm exploiting the subfield structure of such fields
to solve Hermite-SVP for prime ideal lattices. For the power-of-two cyclotomic
fields, we obtained an efficient algorithm for solving SVP in many ideal lattices,
either prime or non-prime ideals. We also determined the length of the shortest
vector of those prime ideals lying over rational primes congruent to ±3 (mod 8).
It is an interesting problem to study the length of the shortest vectors in other
prime ideals. The worst case hardness of prime ideal lattice SVP for power-of-two
cyclotomic fields is also left open.
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A The subfields of Q(ζ2n)

Now we sketch the subfield lattice of Q(ζ2n+1). Consider the three subfields

Q(ζ2n+1 + ζ−12n+1), Q(ζ2n), Q(ζ2n+1 − ζ−12n+1).

First we claim Q(ζ2n+1) is degree two over each. On the one hand, all are proper
subfields since Q(ζ2n+1+ζ−12n+1) is contained in the fixed field of the automorphism

ζ2n+1 7→ ζ−12n+1 , and Q(ζ2n+1 − ζ−12n+1) is in the fixed field of the automorphism

ζ2n+1 7→ −ζ−12n+1 . On the other hand, ζ2n+1 is a root of the quadratic polynomials

x2 − (ζ2n+1 + ζ−12n+1)x+ 1 ∈ Q(ζ2n + ζ−12n+1)[x] and x2 − (ζ2n+1 − ζ−12n+1)x− 1 ∈
Q(ζ2n+1 − ζ−12n+1)[x].

Moreover, since the involutions

ζ2n+1 7→ ζ−12n+1 , ζ2n+1 7→ ζ2
n−1+1

2n+1 , ζ2n+1 7→ −ζ−12n+1

are distinct, these three subfields are distinct. Finally it is routine to sketch the
subgroup lattice of Z2 ⊕ Z2n−1

∼= (Z/2n+1Z)∗ ∼= Gal(Q(ζ2n+1)/Q):

〈(0, 0)〉

〈(1, 0)〉 〈(0, 2n−2)〉 〈(1, 2n−2)〉

〈(1, 0), (0, 2n−2)〉 〈(0, 2n−3)〉 〈(1, 2n−3)〉

〈(1, 0), (0, 2n−3)〉 〈(0, 2n−4)〉 〈(1, 2n−4)〉

...
...

...

〈(1, 0), (0, 2)〉 〈(0, 1)〉 〈(1, 1)〉

Z2 ⊕ Z2n−1
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Here all lines indicate extensions of index two. Combining these facts we have
the subfield lattice for Q(ζ2n):

Q(ζ2n+1)

Q(ζ2n+1 + ζ−12n+1) Q(ζ2n) Q(ζ2n+1 − ζ−12n+1)

Q(ζ2n + ζ−12n ) Q(ζ2n−1) Q(ζ2n − ζ−12n )

Q(ζ2n−1 + ζ−12n−1) Q(ζ2n−2) Q(ζ2n−1 − ζ−12n−1)

...
...

...

Q(ζ8 + ζ−18 ) Q(i) Q(ζ8 − ζ−18 )

Q

where all lines indicate extensions of order two.

B Decomposition groups and fixed fields

Let ζ = ζ2n+1 , p a rational prime with p ≡ 3 (mod 4), A the natural number
with 2A||p+ 1, and let p be a prime ideal in Z[ζ] containing p. Then

p = (p, ζ2
n−A+1

+ δζ2
n−A

− 1)

for some δ ∈ Z. Let σ ∈ Aut(Q(ζ)/Q) be the automorphism of Q(ζ) with

ζ 7→ ζ−2
A−1. Then we have

σp = (p, σ(ζ)2
n−A+1

+ δσ(ζ)2
n−A

− 1)

= (p, ζ2
n−A+1(−2A−1) + δζ2

n−A(−2A−1) − 1)

= (p, ζ−2
n+1

ζ−2
n−A+1

+ δζ−2
n

ζ−2
n−A

− 1)

= (p, ζ−2
n−A+1

− δζ−2
n−A

− 1)

= (p, − ζ−2
n−A+1

· (ζ2
n−A+1

+ δζ2
n−A

− 1))

= p.

We have used the fact that ζ is a unit in Z[ζ].
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Since ζ 7→ ζ−1 is an involution, the order of σ is the order of ζ 7→ ζ2
A+1

(denoted by σ′ ) which is the multiplicative order of 2A + 1 in (Z/2n+1Z)∗. We
claim that, for A ≥ 2, this order is 2n+1−A: First note that for k ≡ 1 (mod 4),

ord(Z/2n+1Z)∗(k) = 2m

if and only if 2n+1||k2m − 1. This fact follows easily from the identity

k2
g+1

− 1 = (k2
g

− 1)(k2
g

+ 1)

and the fact that for k = 2A+1, we have 2||(k2g +1). Now, that the multiplicative
order of 2A + 1 is 2n+1−A follows from an induction argument using the above
identity.

The preceding two paragraphs prove that σ lies in the decomposition group
of p and that σ has order 2n+1−A. It follows from a standard result in the theory
of number fields that the decomposition group of p has order 2n+1−A. Thus 〈σ〉 is
precisely the decomposition group of p. Now recall the subfield/subgroup lattice
for Q(ζ)/Q and its Galois group Z∗2n+1 . A simple computation shows that σ fixes

ζ2
n−A − ζ−2n−A

. But from the subfield lattice we can see that

[Q(ζ) : Q(ζ2
n−A

− ζ−2
n−A

)] = 2n+1−A = |〈σ〉|.

Thus Q(ζ2
n−A − ζ−2n−A

) is precisely this fixed field.
A similar, in fact easier, analysis can be carried out for p ≡ 1 (mod 4). In

this case
p = (p, ζ2

n−A+1

− u)

for some u ∈ Z and 2A||p − 1. Then it is seen that σ′ fixes p. As in the 3
(mod 4) case, we know from a general result of algebraic number theory that
the decomposition group of p has order 2n+1−A, which matches the order of

σ′ (computed above). We see that Q(ζ2
n+1−A

) is contained in the fixed field of

σ′, and again, by looking at the subfield lattice to find [Q(ζ) : Q(ζ2
n+1−A

)] =

2n+1−A, we see that Q(ζ2
n+1−A

) is precisely the fixed field of the decomposition
group of p.
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