

Project 1 – Sensing and Movement

Team 1
Stephen Mckinney Jeremy Branecky Camilo Reyes

Dr. Dean Hougen
CS 4023 / 5023

Introduction to Intelligent Robotics
Spring 2003

The University of Oklahoma
Norman, OK 73019

Robot Design:

 The team decided on a rotation of members assigned to work on the design of the
robot; as a result each team member was given the opportunity to work on the design
alone in order to give a more constructive approach to the final design.

Body Design:

 Our final design was a big tractor like robot with large wheels on the back and a
small skid platter centered at the front. The big wheels on the back provided overall
stability to the alignment in order to keep the robot driving in a straight line. The skid
platter on front was round and smooth enough to introduce minimal friction with the
ground. With this design, the rear wheels controlled the movement of the robot; by
contrast, the skid platter was intended to support the weight of the front of the robot while
minimizing interaction with the ground. This configuration allowed for highly accurate
turns and perfectly straight driving under test conditions.

Robot Gearing:

 The gear system of our robot went through several stages of design. Initially, the
robot made very little use of gears; the motors drove the wheels directly. However, it
quickly became apparent that this approach would not be appropriate because such a
design would cause the robot to be very fast but very inaccurate. Eventually, after
several modifications, we settled on a design that used a 25 to 1 gear reduction (on top of
the gear reduction that is present inside the motors). This design provided the robot with
an acceptable level of torque and enabled it to drive slowly but accurately.

 The geartrain began with an 8-tooth gear connected directly to the motor. This
gear was horizontally connected to a 40-tooth gear that was coaxial with another 8-tooth
gear. The second 8-tooth gear was horizontally connected to another 40-tooth gear that
was coaxial with the wheel. This system, which of course was symmetrical for the right
and left sides of the robot, formed the drive train of the robot. However, we used
additional gears to achieve another effect. Attached diagonally to the first 40-tooth gear
was a 24-tooth gear that was, in turn, attached horizontally to an 8-tooth gear. This 8-
tooth gear was connected to an axle that held a pulley part that was used in our break-
beam shaft encoder system. This configuration had the effect of negating the gear
reduction on the shaft-encoded axle: the shaft-encoded axle spun at the same rate as the
motor. Our design gave the robot a good amount of torque while allowing the shaft
encoder system to be very accurate (because the encoded shaft spun at a much higher rate
than the drive axle).

 With our gear system design, we strove for stability and precision. However, the
fact that we used Lego gears and pieces to accomplish this presented us with yet another
challenge to accomplish the goal. Because of this, we ended up with a robot that
naturally veered to the right or left (at different stages in our design). This problem had
to be corrected in the software.

Sensors:

 Two kinds of sensors were used in the robot: a digital color camera (the
CMUcam) and a pair of break-beam shaft encoders. The shaft encoder sensors were
placed in the back of the robot in special housings surrounding the axle-pulley system
described above. The team decided to tape the shaft encoders on the back to add
consistency to the design. The main task of these encoders is to get a tic count coming
from the back wheels; this allowed for the team to keep the robot going straight and to
make accurate turns by comparing the number of tics (and therefore the number of
rotations) for each wheel. We relied very heavily upon the use of these encoders for the
overall maneuverability of the robot. The CMUcam was used as a part of the project to
acquire color readings in the course. The team placed the camera right on front of the
robot, above the front platter; this allowed any surrounding light to help the camera read
the colors laid out in the course. During the early stages of design our team planned to
add an extra set of sensors: a pair of IR sensors to keep the robot aligned with black tape
laid out in the course. However, due to time constraints and the fact that we achieved
straight driving over distances of more than ten feet and extremely accurate turns during
our testing, we did not add these sensors.

Overall Layout:

 To give a more descriptive layout, the robot is touching the ground in three main
parts of the design: the two big tractor like wheels on the back, and the small skid platter
on front. The two shaft encoders have been placed in the back right behind the wheels;
they are also attached to the gear train that is going into the wheels. The handy board is
placed right above the back wheels in a comfortable housing: the team decided it was
best to place most of the weight of the robot on the back because we did not want a lot of
friction on the front part of the robot. The CMUcam is placed in front of the robot to give
better color readings; at some point the team decided placing it at the front would give us
better color readings than it would at its original position at the center of the robot
because the camera would get more surrounding lighting in the front of the robot. The
gear train was kept outside on the robot; it is natural to place the gears right next to the
wheel because these two designs go together.

Robot Code:

/** **********
 * Project 1 *
 * Team 1: Stephen Mckinney, Jeremy Branecky, Cami lo Reyes *
 * *
 * Program to make robot follow a course with colo red *
 * tiles on the floor that tell it where to go. *
 * *
 ** **********/

#use "cmucamlib.ic"
#define L_MOTOR 0
#define R_MOTOR 3

#define L_ENCODER 0
#define R_ENCODER 1

#define STRAIGHT_SPEED 40
#define LEFT_TURN_TICS 365
#define RIGHT_TURN_TICS 370

#define LEFT 0
#define RIGHT 1

// global color values:
#define ORANGE 1
#define BLUE 2
#define YELLOW 3
#define PINK 4
#define GREEN 5
#define FLOOR 6

// global variable used for the confidence values i n the colors.
int conf;

/***
 * void stop_wheels() - method used to brake *
 * the motors. *
 * Taken from dmiller-super-demo.ic *
 * *
 **/
void stop_wheels()
{
 motor(L_MOTOR,-20);
 motor(R_MOTOR,-20);
 sleep(0.05);
 ao();
}

/***
 * void straight(int tics) - method for driving*
 * the robot straight tics tics, where tics is *
 * the sum of the left and right encoder tics. *
 * The idea to scale the motor power by *
 * (n*STRAIGHT_SPEED)/10 was taken from *
 * the go_straight() method in *
 * dmiller-super-demo.ic *
 **/
// tics = total of left and right tics, 10000 ticks ~ 6ft.

void straight(int tics)
{
 int l_enc, r_enc;
 int totalTics = 0;
 reset_encoder(L_ENCODER);
 reset_encoder(R_ENCODER);
 while (totalTics < tics)

 {
 l_enc = read_encoder(L_ENCODER);
 r_enc = read_encoder(R_ENCODER);
 totalTics = l_enc + r_enc;
 if (l_enc > r_enc)
 {
 motor(R_MOTOR, STRAIGHT_SPEED);
 motor(L_MOTOR, (6*STRAIGHT_SPEED)/10);
 }
 else
 if (r_enc > l_enc)
 {
 motor(L_MOTOR, STRAIGHT_SPEED);
 motor(R_MOTOR, (7*STRAIGHT_SPEED)/10) ;
 }
 else
 {
 motor(R_MOTOR, STRAIGHT_SPEED);
 motor(L_MOTOR, STRAIGHT_SPEED);
 }
 }
 stop_wheels();
 ao();
}

/**
 * void turn_90(int dir) - method used to *
 * turn the robot to either right or left.*
 * Note: only makes 90 degree turns. *
 * This was inspired by the turn_tics() *
 * method in dmiller-super-demo.ic, but *
 * several modifications have been made. *
 ***/
void turn_90(int dir)
{
 int tics, speed, tot_tics;
 int r_enc, l_enc;

 if (dir == RIGHT){
 speed = -30;
 tot_tics = RIGHT_TURN_TICS;
 }
 else{
 speed = 30;
 tot_tics = LEFT_TURN_TICS;
 }

 // reset encoders
 reset_encoder(L_ENCODER);
 reset_encoder(R_ENCODER);

 // measure encoders for turn
 while (tics < tot_tics) {
 r_enc = read_encoder(R_ENCODER);
 l_enc = read_encoder(L_ENCODER);
 tics = r_enc + l_enc;
 motor(R_MOTOR, speed);

 motor(L_MOTOR, -speed);
 }

 // stop the turn
 motor(R_MOTOR, -speed/2);
 motor(L_MOTOR, speed/2);
 sleep(.1);
 ao();
}

// make a right turn.
void right_turn()
{
 turn_90(RIGHT);
}

// make a left turn.
void left_turn()
{
 turn_90(LEFT);
}

// make a 180 degree turn.
void turn_180()
{
 left_turn();
 left_turn();
}

// track orange color.
int trackOrange()
{
 return trackRaw(150,200,40,100,10,35);
}

// track blue color.
int trackBlue()
{
 return trackRaw(65,90,40,80,80,150);
}

// tack yellow color.
int trackYellow()
{
 return trackRaw(120,150,16, 80,16,19);
}

// track pink color.
int trackPink()
{
 return trackRaw(179,230,61,120,30,80);
}

// track green color.
int trackGreen()
{
 return trackRaw(70,110,80,140,16,20);

}

// track floor.
int trackFloor()
{
 return trackRaw(120, 140, 60, 90, 20, 50);
}

/**
 * int getColor() - method used in cdetect for *
 * detecting colors; dependent on conf value. *
 * returns the color read by checking the *
 * confidence value. *
 * *
 ***/
int getColor()
{
 int confidence;
 int confidence2;
 // checking for pink
 confidence = trackPink();
 if (confidence > 10)
 {
 conf = confidence;
 return PINK;
 }
 // checking for orange
 confidence = trackOrange();
 if (confidence > 30)
 {
 conf = confidence;
 return ORANGE;
 }
 // checking for blue
 confidence = trackBlue();
 if (confidence > 10)
 {
 conf = confidence;
 return BLUE;
 }
 // checking for green
 confidence = trackGreen();
 if (confidence > 30)
 {
 conf = confidence;
 return GREEN;
 }
 // check yellow make sure is the right color
 confidence2 = trackYellow();
 if (confidence2 > 30)
 {
 conf = confidence2;
 return YELLOW;
 }
 else return -1;
}

// very simple method used to get on top of a color if it seems
// to find one.
void getOnTop()
{
 straight(20);
}

// compensate will make the robot move properly to make a turn
// once it finds a color.
void compensate()
{
 straight(500);
}

/** ************
 * main part of the code - our basic implementation is to run *
 * a process in order to make the robot move forwar d, then it *
 * checks for a color, it stops the motors and perf orms the *
 * appropriate actions once it finds one. In case i t never *
 * finds any color the robot stops. *
 * *
 ** ***********/
void main()
{
 int ticks=10000; // 10000 ticks ~ 6 ft.
 int straight_pid; // process id for straight
 int color; // variable for checking color
 // initilize camera
 init_camera();
 clamp_camera_yuv();
 // enable encoders
 enable_encoder(L_ENCODER);
 enable_encoder(R_ENCODER);
 // wait for someone to press start button
 printf("Press start to let loose!\n");
 while(!start_button());
 // start the straight pid
 straight_pid = start_process(straight(ticks)); // start the robot!
 while(1)
 {
 // get the color
 color = getColor();
 // if color is not the floor then check the color
 if(color != -1)
 {
 kill_process(straight_pid);
 stop_wheels();
 sleep(1.0);
 color = getColor();
 if (color == GREEN)
 {
 // go straight
 printf("Green - %d\n", conf);
 straight_pid = start_process(straig ht(ticks));
 }

 else if (color == PINK)
 {
 // found pink make a 180 degree tur n
 stop_wheels();
 printf("Pink - %d\n", conf);
 turn_180();
 straight_pid = start_process(straig ht(ticks));
 }
 else if (color == BLUE)
 {
 // found blue make a right turn
 stop_wheels();
 printf("Blue - %d\n", conf);
 compensate();
 right_turn();
 straight_pid = start_process(straig ht(ticks));
 }
 else if (color == ORANGE)
 {
 // found orange make a left turn
 printf("Orange - %d\n", conf);
 compensate();
 left_turn();
 straight_pid = start_process(straig ht(ticks));
 }
 else if ((color == YELLOW))
 {
 // found yellow stop the robot
 stop_wheels();
 getOnTop();
 sleep(0.5);
 color = getColor();
 if(color == YELLOW)
 {
 printf("Course complete. - %d\n ", conf);
 beep();
 beep();
 beep();
 beep();
 break;
 }
 else
 {
 straight_pid = start_process(st raight(ticks));
 }
 }
 else if (color == FLOOR)
 {
 // found the floor
 straight_pid = start_process(straig ht(ticks));
 printf("FLOOR... %d\n", conf);
 }
 else if (color == -1)
 {
 straight_pid = start_process(straig ht(ticks));
 printf("ERROR!\n");
 }

 else
 {
 straight_pid = start_process(straig ht(ticks));
 printf("BIG ERROR!\n");
 }
 }
 else
 {
 printf("It's the floor...\n");
 }
 }
 disable_encoder(L_ENCODER);
 disable_encoder(R_ENCODER);
}

Robot Code Documentation:

 Our basic approach to the robot implementation is to have the robot running a
continuous process that will make it go forward. The team figured that at any given point
that the robot does not know what to do; it will just keep going forward. To give a brief
overall overview of the project, the robot is to start out in any given foot by foot tile with
a black tape around it. Then the robot will look for a 2 by 2 inch square and perform a
function given by the color of this square, the color scheme is as follows: Green-forward,
Pink-reverse, Blue-Right, Orange-Left, Yellow-Stop. Given the value of the color the
robot is to do the respective action fully autonomously.

Data Structures:

Some of the data structures used in the code were simple definitions of constants
and variables that are critical to the actual program. These included color code values,
right and left motor values to communicate with the handy board, the straight speed, left
and right turn ticks in order to make a 90 degree turn, and left and right encoder values. A
global constant was also used to keep the value of confidence within each color that came
from the camera. Most of the data for the code comes from single value variables stored
in the program. The color code values in the program were derived from the int
getColor() method, using the color tracking values for the camera the team put together
the essential values that came from the int getColor() method. The right and left motor,
alongside with the encoder left and right values came from the handy board itself; there is
a predefined set of values in the handy board that are useful to talk to the various devices
it is connected to. The straight speed was derived by the team; it is set to a value that gave
us the optimum balance between speed and stability. The team also came up with the
values in the right and left turn ticks, these were defined after days of testing the
equipment to see which value gave us a precise 90 degree turn. Amongst other variables
used in the main code are ticks, and straight_pid, these were used to keep control of the
overall flow of the program.

Program Algorithms:

 A very important and precise algorithm used in the implementation of the robot is
the straight(int ticks) algorithm used to keep the robot moving in a straight line. The team
had the help of shaft encoders to accomplish this goal; the overall design of the robot also
gave us a critical advantage to do this. At first the straight(int ticks) algorithm resets the
encoders to start counting the ticking values in each wheel; these values are essential
since they give us how much each one of the two wheels is off compared to the other one.
The algorithm then tries to compute the difference between the right and left wheel.
Given a certain difference the algorithm will then compensate for any misalignments in
the two back wheels by reducing the power supplied to either the left or right motor.
During different stages of the design, we found that we needed to adjust the amount of
power reduction on each side differently because certain unknown factors were causing
the robot to veer to the left or to the right. This algorithm is implemented to go a certain
number of ticks for a purpose: in case the robot misses a color or it gets lost, the
algorithm will simply end the method and have the robot sit there idle. Our turning
methods used the same principles as the straight algorithm, but the encoders were simply
used to get a certain number of ticks count and no compensation was done whatsoever.

 To obtain appropriate color readings from the CMUcam, we designed a simple
algorithm. First, we created color tracking methods for each color that we were
interested in: trackOrange(), trackBlue(), trackYellow(), trackGreen(), trackPink(), and
trackFloor(). These methods simply made calls to the trackRaw() library function,
supplying the YUV colorspace parameters that we determined experimentally for each
color. Then, to get a color reading, we created a simple method, int getColor(). This
method calls each color tracking method in succession and returns a corresponding
constant if the confidence value for that color’s tracking method is high enough. If no
colors are recognized with enough confidence, a default value is returned. In this way,
the color that currently predominantly fills the camera’s window can be determined at
any time.

 The method called compensate() was used to force the robot to center its turns
around the colored squares (i.e. after a color is recognized by the camera, the robot must
move forward a certain amount before turning so that the robot will remain centered in
the square). Another method called getonTop() was an algorithm used to get better color
readings by placing the camera right on top of the color when it thinks it has found a
color.

 The main loop of our program starts a process to cause the robot to drive straight.
It then continually senses the colors on the floor using getColor() and stops the robot
when a color other then the floor is detected. After the robot is stopped, it senses the
color again to obtain a more accurate reading and then instructs the robot to do one of
several tasks depending on the color. These tasks include turning left, right, and around
completely, driving straight, and stopping. If the robot sees a color it does not recognize,
it simply goes straight again.

 All other algorithms implemented in the program were designed to help aid the
three main tasks of the robot, that is: driving in a straight line, making turns, and getting

color readings from the camera. These algorithms were successful at accomplishing the
goal, however lots of time was spent finalizing the parameters used in such methods.

Team Organization Evaluation and Plans:

 The team decided to use a concept of a rotating leader for the organization of the
team. Camilo Reyes was assigned as the leader of this particular project. This style of
organization will give each person on the team a chance to lead a project. One important
job of the leader is to coordinate tasks and keep everyone informed on how things are
going. The team also decided to allocate rotating tasks so that not one person in the group
was given a general responsibility such as hardware, software, or paperwork; instead the
team would assign one particular person to do one job, then another person would take on
a different task as it seemed clear of what is to be done. This style of organization led us
into working with different parts of the robot, and a general exposure to the project as a
whole.

 Given the small timeframe to complete this project the team was forced to arrange
itself into a more democratic organization in which everyone was involved in every step
of the decision making. As the project progressed the team went trough a decentralization
phase where one person was given the robot to take home, and the next day the team
would meet again to see what progress has been done and what changes have taken place
on the robot. Lots of time was also spent during the fine tuning part of the project. For
this last phase, the team as a whole went through a sleepless night of figuring out the
proper parameters that would make the robot work properly. Our team organization
suffered somewhat given the small timeframe, and small number of team members to
complete the project; we believe this sort of project is meant more for one person,
however having a group of members with different ideas working on the project helps a
lot. The project was a success for the team; the team believes a successful demonstration
was done at the end, but we wish that the robot would have been more accurate and that it
had completed the course without “help” as it did in our test runs.

 The team believes our overall organization looks good on paper, however the
actual implementation of the project does not always seem to follow what has been
written. Milestones were indeed completed in a timely fashion, every team member did
their best to contribute to the project, and we believe the project was a success. The team
organization worked out well, therefore a fall back plan was never needed; our team
members stood together until the end and solved many number of challenges that came
up as the project progressed.

 Perhaps a primary lesson to be learned from this project is that building a robot is
not as simple as it seems. When we read the description of the project, we assumed that
it would be fairly easy. After all, our robot only needed to be able to perform three
simple tasks: drive straight, turn accurately, and recognize colors. In reality, while all of
those tasks proved to be more difficult than we anticipated, the true difficulty arose in the

combination of these tasks and in the appearance of unforeseen complications. For
example, we initially achieved straight driving at distances of more than ten feet and
accurate turns using a caster wheel in the front instead of the skid platter. But when we
actually tested this design on a mock course, we found that the caster was catching on the
electrical tape, rendering the robot useless. So we spent some time redesigning the front
of the robot, only to find that this threw off our perfectly calibrated driving and turning
routines. A similar setback occurred with our CMUcam code. We had routines that
accurately recognized all of the colors in our test conditions, but when we went to the
robotics lab to test our robot on a course we found that the different lighting conditions
rendered our color recognition useless. Setbacks such as these seem to add up; because
of these and many more, we were never as close to completing the project as we thought
we were. Due to this unpredictable nature of robot design, we should plan to allow for
more time to complete tasks for future projects.

