
Robot Code Documentation for Project 2
March 31, 2003

Team 4 – Justin Fuller, Rahul Kotamaraju, Matthew Lawrence

1.0 Overview
The software used for the second project was designed to complement the robot’s

sensor array and accomplish the tasks necessary for the assignment. While the
architecture used does not exactly fit any of those discussed in class, it most closely
resembles a reactive paradigm with subsumption. The software consists of four distinct
behaviours arranged in a hierarchy such that any single behaviour can override any
lower-level behaviours. These behaviours were designed to search for the target light
bulb, advance toward the target light bulb, avoid large buckets, and recover from contact
with obstacles. Additionally, the software includes an arbitration routine to determine
which behaviour will be allowed to control the robot and a motor control routine to
execute the appropriate actions.

2.0 Behaviours
The software for the robot implements four behaviours, with each behaviour

intended to solve a unique problem encountered by the robot. The first problem
encountered by the robot is how to behave in the absence of sensory input; this is solved
by the random walk. Next the robot must be able to follow the light once it has been
located – a problem solved by the goal seeking behaviour. Another problem faced by the
robot is how to navigate around immovable obstacles; this can be assuaged by slip
recovery. Finally, the robot must never come in contact with any of the buckets; this can
be guaranteed by the bucket avoidance behaviour. These four behaviours are threaded
and thus are evaluated in parallel, so an arbitration scheme is included to determine
which behaviour will directly control the robot, and which will be overridden.

2.1 Random Walk
The random walk behaviour is designed to allow the robot to initially locate the

target light bulb. Under this behaviour, the robot cruises around the arena by driving
forward for a random amount of time, then spinning in place for a random time. This
activity allows the robot to effectively cover the entire arena in search of the currently lit
bulb. Once the target has been acquired, the goal seeking behaviour will override the
random walk.

2.2 Goal Seeking
The goal seeking behaviour allows the robot to hone in on the target light bulb.

This behaviour receives input by continually polling the four light sensors on the front of
the robot. Two conditions must be met before the robot can begin to seek the goal. First,
at least one of the sensors must yield a reading that indicates the presence of light greater
than ambient light. Second, there must be sufficient difference among the four sensors to
indicate that the light being detected is not ambient. Anytime these two conditions are
simultaneously met, the goal seeking behaviour can become active. Under these
conditions, the behaviour determines which light sensor perceives the greatest amount of
light. It then suggests that the robot move in the corresponding direction - either a left

arc, a right arc, or straight ahead. This behaviour will remain active as long as the robot
senses the light, unless it is subsumed by one of the higher-level actions.

2.3 Slip Recovery
The slip recovery behaviour is designed to detect when the robot is stuck and to

respond accordingly. The robot is said to be stuck when its powered wheels are driving
in a forward direction and yet the passive wheels are not turning. This condition is
determined by a global variable indicating the action (or inaction) or the powered wheels
along with sensor input from an encoder associated with a passive wheel. At regular
intervals, the robot polls the encoder to determine the amount of movement by the
passive wheel. If this value is below a given threshold, the robot is clearly not moving
forward. Then, if the global variable indicates that the powered wheels are driving, the
slip recovery routine becomes active. In this case, the behaviour checks to see whether
the robot has already become stuck in recent history. If it has not, the behaviour suggests
that the robot spin in place for a fixed amount of time. If the robot has recently been
stuck, the behaviour reasons that the previous recovery was insufficient and suggests that
the robot arc backwards away from the obstacle. This behaviour is sufficient for
maneuvering around some obstacles (lamps, rocks, and boundaries) but is insufficient for
avoiding buckets since it requires physical contact with the obstacle in question.

2.4 Bucket Avoidance
The bucket avoidance behaviour prevents the robot from ever coming into contact

with the buckets scattered throughout the arena. Because avoiding the buckets is the top
priority for the robot, this is the highest-level behaviour. This behaviour receives sensory
input from the two optical rangefinders mounted high on the front of the robot. Readings
from each sensor are thresholded to determine whether the sensor is sufficiently close to a
bucket. The behaviour will become active if either one of the sensors indicates the
nearness of a bucket obstacle. The behaviour responds by suggesting that the robot spin
in place, thus orienting it away from the obstacle.

2.5 Arbitration
Arbitration among the four behaviours is very straightforward. The robot

evaluates the behaviours from high to low, seeking out the highest-level behaviour which
is currently enabled. The robot then takes the suggested response from that behaviour
and assigns it to the motor control command. The arbitration routine runs continually, so
the motor command is always dictated by the appropriate behaviour and its suggested
action.

3.0 Motor Control
Motor control for the robot is implemented in a manner consistent with the

hardware’s differential drive mechanism. The robot’s left and right motors are
independently powered according to the dictates of the motor command as assigned by
the arbitration routine. By driving both motors forward at the same power, the robot can
be made to drive straight ahead. If the motors are given differential powers, the robot
will move forward in an arcing pattern. By driving one motor forward and the other

backward, the motor control routine can direct the robot to spin in place. Finally, motor
command may disable one motor and drive the other in reverse, causing the robot to
move backwards in an arcing fashion. The motor command routine executes
independently of any sensor information or behaviours – with one exception. When the
goal seeking behaviour is dominant it is necessary to drive the robot more slowly so that
it does not overshoot the target. For this reason, the motor command will disable both
motors on every third iteration when the goal seeking behaviour is dominant.

