
 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez

PROJECT 1: FINAL REPORT

TEAM 10

Robot Design Synopsis

Design Phase:

Various ideas were contributed including one in which the robot travels in a circle

to visit each square and one that has one set of wheels for North-South travel and one set

for East-West travel. The initial design (see Fig 1) consisted of four independently

powered wheels and two IR sensors placed at the front of the chassis to sense traversal of

an edge of a square. We believed that sacrificing code simplicity for hardware simplicity

would be an acceptable solution.

Fig 1. Initial Robot Design Fig 2. Final Robot Design

Hardware Phase:

During construction, the complexities of using four independently powered

wheels forced us to reconsider our design. We removed the two front wheels and

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
replaced it with a third, passive wheel attached to the chassis using a caster mechanism.

It became apparent that, in this configuration, the robot's ability to travel in straight lines

was far too dependent on the position of this third wheel. Two options were considered.

The first option was to change which end was considered the front and reposition the IR

sensors accordingly. The second option involved replacing the caster mechanism with a

servo that allowed us to specify specific positions for the wheel. During testing of this

option, it became evident that the concept of traveling in a circle to visit each square

could be realized by this design.

There would be a number of benefits to this approach that previous designs would

not have. First, the robot would not be required to consistently perform precise 90° turns

a difficult proposition with the supplied materials. It would need only to maintain its

specified turn radius which is easily achievable using the servo. Second, the constant

starting and stopping required by traveling in a square drains the battery at an appreciable

rate. If the robot travels in a circle however, there is no need for it to start and stop.

Thus, the load the motors have on the battery is significantly reduced. Finally, the stops

and turns preformed during traveling in a square increases the travel time greatly and

jeopardizes the possibility of performing more than one run in the allotted time. When

traveling in a circle, not only are the stops and turns not required, but the robot maintains

its speed throughout the circuit which drastically lowers the travel time. In testing, we

were able to travel a complete circuit of the course in under fifteen seconds. It is

important to note that each of these three areas of difficulty have non-trivial solutions.

Rather than adding complexity to the robot's hardware and software design to implement

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
solutions to these problems, we have chosen a design that avoids the problems all

together.

Testing Phase:

During testing, a caster wheel was attached to the rear of the robot along with an

encoder to measure the distance the vehicle has traveled. This provides a secondary

sensing device to determine when the robot has made three circuits of the course. The

robot can be configured to stop after either the robot has traversed the requisite number of

black lines, the specified distance has been traveled, or both.

Robot Design (Fig 2):

The robot vehicle is propelled by two powered wheels on the rear left and right of

the vehicle. It is steered using a pair of small wheels positioned at the front of the vehicle

and is controlled by a servo that specifies their rotation angle (see Fig 3). An infra-red

sensor is attached to the front left of the vehicle and is used for sensing the traversal of

the robot over a piece of black electrical tape (see Fig 4). To provide sensor redundancy,

an optional wheel can be attached to the rear of the vehicle using a caster mechanism. An

encoder is attached this wheel and is used to measure the distance traveled by the vehicle

(see Fig 5).

 Fig 3. Servo Fig 4. IR Sensor Fig 5. Encoder

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez

Robot Code

/* Project 1
 * Group 10
 * Eskridge, Lopez, Maole, & Utley
 */

/*
 * Global variables
 */

// Boolean globals
int TRUE = 1;
int FALSE = 0;

// Motor IDs
int MOTOR_R_ID = 0;
int MOTOR_L_ID = 2;

// Encoder ID
int ENCODER_ID = 0;

// IR ID
int IR_ID = 3;

// The servo value that turns us at the correct angle
// to navigate around the track in a circle.
int SERVO_VALUE = 2735;

// The power levels to send to the motors
int MOTOR_PWR_FWD = 20;
int MOTOR_PWR_BRAKE = -40;
float MOTOR_PWR_BRAKE_TIME = 0.2;

// Flag indicating that the robot is done
// performing its task(s)
int DONE = FALSE;

// The amount of time to sleep while waiting for the servo to position itself
float SERVO_POSITION_SLEEP = 0.5;

// The amount of time to sleep between progress checks
float MONITOR_SLEEP = 0.2;

// IR threshold value between low and high

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
int IR_THRESHOLD_VALUE = 115;

// The default IR level
int DEFAULT_IR_VALUE = -1;

// The minimum number of lines we want to travers
int MIN_LINE_TRAVERSAL_COUNT = 24;

// The minimum number of encoder events in 3 circuits
int MIN_EVENT_COUNT = 3160 - 24;

// The amount of time to sleep between monitoring the distance
float MONITOR_DISTANCE_SLEEP = 0.2;

// Trigger for monitors to signal that they are finished
int CURRENT_DONE_TRIGGER_COUNT = 0;

// The threshold trigger value which signals that the monitors
// say we are done. A value of '2' says both monitors must agree
// (logical AND). A value of '1' says only one monitor must signal
// that it is finished (logical OR).
int DONE_TRIGGER_COUNT = 2;

// Current number of lines crossed
int CURRENT_LINE_COUNT = 0;

// Current encoder event count
int CURRENT_EVENT_COUNT = 0;

// PIDS
int CUTOFF_PID = 0;
int MONITOR_PID = 0;
int MONITOR_LINE_PID = 0;
int MONITOR_DISTANCE_PID = 0;

/*
 * Initialize the robot
 */
void init()
{
 printf("\nInitializing...");

 // Start our cutoff process
 CUTOFF_PID = start_process(cutoff());

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
 // Initialize the servo
 init_expbd_servos(TRUE);

 // Position the servo
 servo0 = SERVO_VALUE;

 // Sleep so the servo has time to position itself
 sleep(SERVO_POSITION_SLEEP);

 // Start the monitor process
 MONITOR_PID = start_process(monitorProgress());
}

/*
 * Monitors robot progress and signals completion of the tasks
 */
void monitorProgress()
{
 // Start the line traversal monitor
 MONITOR_LINE_PID = start_process(monitorLineTraversal());

 // Start the distance monitor
 MONITOR_DISTANCE_PID = start_process(monitorDistanceTraveled());

 // Loop until both are done
 while(CURRENT_DONE_TRIGGER_COUNT < DONE_TRIGGER_COUNT)
 {
 // Display our progress
 printf("\nLines=[%d] Events=[%d]",
 CURRENT_LINE_COUNT, CURRENT_EVENT_COUNT);

 // Sleep for a bit
 sleep(MONITOR_SLEEP);
 }

 // We are done
 MONITOR_PID = 0;
 DONE = TRUE;
}

/*
 * Monitors the number of black lines crossed
 */
void monitorLineTraversal()
{

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
 // Set up our variables
 int currentValue = 0;
 int lastValue = DEFAULT_IR_VALUE;
 int finished = FALSE;

 // Loop until we are done

 while(finished == FALSE)
 {
 // Get the current value of the sensor
 currentValue = analog(IR_ID);

 if((currentValue > IR_THRESHOLD_VALUE) && (lastValue <=
IR_THRESHOLD_VALUE))
 {
 // We have crossed a line
 CURRENT_LINE_COUNT++;

 // Have we crossed the desired number of lines?
 if(CURRENT_LINE_COUNT >= MIN_LINE_TRAVERSAL_COUNT)
 {
 // We are finished
 CURRENT_DONE_TRIGGER_COUNT++;
 finished = TRUE;
 }

 // Make sure the encoder is working
 if(CURRENT_LINE_COUNT == 1)
 {
 // Is the encoder count at 0
 if(CURRENT_EVENT_COUNT == 0)
 {
 // Something is wrong (maybe dying battery?)
 // Stop monitoring the encoder by triggering it's finished value
 CURRENT_EVENT_COUNT = MIN_EVENT_COUNT;
 }
 }
 }

 // Save the current value
 lastValue = currentValue;
 }

 // Clean up after ourselves
 MONITOR_LINE_PID = 0;

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
}

/*
 * Monitors the distance travelled
 */
void monitorDistanceTraveled()
{
 int finished = FALSE;

 // Only enable it if it isn't on
 if(read_encoder(ENCODER_ID) == 0)
 {
 // Not enabled
 enable_encoder(ENCODER_ID);
 }
 else
 {
 // Enabled
 reset_encoder(ENCODER_ID);
 }

 // Loop until we are finished
 while(finished == FALSE)
 {
 // Sleep for a bit
 sleep(MONITOR_DISTANCE_SLEEP);

 // Get the encoder event count
 CURRENT_EVENT_COUNT = read_encoder(ENCODER_ID);

 // Have we travelled the desired distance
 if(CURRENT_EVENT_COUNT >= MIN_EVENT_COUNT)
 {
 // We are done
 CURRENT_DONE_TRIGGER_COUNT++;
 finished = TRUE;
 }
 }

 // Clean up after ourselves
 MONITOR_DISTANCE_PID = 0;
}

/*
 * Turn on the motors and move forwards

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
 */
void startMotors()
{
 // Turn on both motors
 motor(MOTOR_R_ID, MOTOR_PWR_FWD);
 motor(MOTOR_L_ID, MOTOR_PWR_FWD);
}

/*
 * Turn off the motors and stop the vehicle
 */
void stopMotors()
{
 // Throw the motors in reverse so we don't coast
 motor(MOTOR_R_ID, MOTOR_PWR_BRAKE);
 motor(MOTOR_L_ID, MOTOR_PWR_BRAKE);

 // Sleep for a second so we stop
 sleep(MOTOR_PWR_BRAKE_TIME);

 // Turn all the motors off
 alloff();
}

/*
 * Cutoff method to shutdown robot
 */

void cutoff()
{
 // Loop forever until the stop button is pressed
 while(!stop_button())
 {
 // Do nothing
 }

 // We are quiting so change our pid to 0
 CUTOFF_PID = 0;

 // Signal that we are done and quit
 DONE = TRUE;
}

/*
 * Displays a message and waits for the start button to be pressed

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
 */
void waitForStart(char msg[])
{
 printf(msg);
 start_press();
}

/*
 * Cleans up any lingering processes
 */
void cleanup()
{

 // Clean up the cutoff thread
 if(CUTOFF_PID > 0)
 {
 kill_process(CUTOFF_PID);
 }

 // Clean up the thread
 if(MONITOR_PID > 0)
 {
 kill_process(MONITOR_PID);
 }

 // Clean up the thread
 if(MONITOR_LINE_PID > 0)
 {
 kill_process(MONITOR_LINE_PID);
 }

 // Clean up the thread
 if(MONITOR_DISTANCE_PID > 0)
 {
 kill_process(MONITOR_DISTANCE_PID);
 }

 // Disable the encoder
 disable_encoder(ENCODER_ID);

 // Disable the servo
 init_expbd_servos(0);
}

/*

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
 * Main method
 */
void main()
{
 // Wait for the user to start everything
 waitForStart("Press START...");

 // Initialize
 init();

 // Start moving
 startMotors();

 // Idle processing until we are done
 while(DONE == FALSE)
 {
 // Do nothing
 }

 // Stop moving
 stopMotors();

 // Clean up after ourselves
 cleanup();

}

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez

Robot Code Documentation

The following global variables are used in the robot code:

int TRUE = 1; Used as a Boolean value
int FALSE = 0; Used as a Boolean value
int MOTOR_R_ID = 0; Motor Port 0 is the Right Motor
int MOTOR_L_ID = 2; Motor Port 2 is the Left Motor
int ENCODER_ID = 0; Encoder Port 0 is the Encoder
int IR_ID = 3; Analog Port 3 is the Infrared Sensor
int SERVO_VALUE = 2735; Specifies the position for the Servo
int MOTOR_PWR_FWD = 20; The motors use 20% power for forward
int MOTOR_PWR_BRAKE = -40; The motors use 40% power for backward
float MOTOR_PWR_BRAKE_TIME = 0.2; Wait for 0.2 seconds after stopping
int DONE = FALSE; Flag to indicate when robot is done
float SERVO_POSITION_SLEEP = 0.5; Waits for 0.5 seconds to position
 the servo
float MONITOR_SLEEP = 0.2; Wait 0.2 seconds before checking progress
int IR_THRESHOLD_VALUE = 115; Reading above 115 are black lines
int DEFAULT_IR_VALUE = -1; The default IR level before starting
int MIN_LINE_TRAVERSAL_COUNT = 24; The minimum number of lines to detect
int MIN_EVENT_COUNT = 3160 - 24; The minimum number of encoder events to
 detect
float MONITOR_DISTANCE_SLEEP = 0.2; Wait 0.2 seconds before checking distance
int CURRENT_DONE_TRIGGER_COUNT = 0; Trigger for monitors to signal that they
 are finished
int DONE_TRIGGER_COUNT = 2; The threshold trigger value which signals
 that the monitors say we are done. A value
 of '2' says both monitors must agree (logical
 AND). A value of '1' says only one monitor
 must signal that it is finished (logical OR).
int CURRENT_LINE_COUNT = 0; Current number of lines crossed
int CURRENT_EVENT_COUNT = 0; Current encoder event count
int CUTOFF_PID = 0; PID for cutoff() process
int MONITOR_PID = 0; PID for monitorProgress() process
int MONITOR_LINE_PID = 0; PID for monitorLineTraversal() process
int MONITOR_DISTANCE_PID = 0; PID for monitorDistanceTraveled() process

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez

The following processes are used:

cutoff() This process loops continuously waiting for the stop button
 to be pressed. When it is, the program terminates.

monitorProgress() The process continuously checks to see if
 CURRENT_DONE_TRIGGER_COUNT is less than
 DONE_TRIGGER_COUNT. If it is, the values of
 CURRENT_LINE_COUNT and
 CURRENT_EVENT_COUNT are displayed. If it is not,
 then the DONE flag is toggled and the program ends.

monitorLineTraversal() This process keeps track of how many lines have been
 detected. Lines are detected when the currentValue of the
 IR sensor is greater than the IR_THRESHOLD_VALUE
 and the lastValue was less than the
 IR_THRESHOLD_VALUE. This way, we only detect the
 line when we first go over it. Once the desired number of
 lines are detected, the process increments the
 CURRENT_DONE_TRIGGER_COUNT and exits.

monitorDistanceTraveled() This process keeps track of how far the robot has traveled.
 This is done by reading the encoder. Once the
 CURRENT_EVENT_COUNT is larger than the
 MIN_EVENT_COUNT, the process increments the
 CURRENT_DONE_TRIGGER_COUNT and exits.

The following functions are used:

waitForStart() This function prints out a message and waits for the start
 button to be pressed.

init() This function starts the cutoff() process, initializes the
 servos, sets the servo to the desired position, and starts the
 monitorProgress() process.

startMotors() This function turns on both motors at the desired power
 level.

stopMotors() This function puts both motors in reverse at double the
 power of forward. This is done for 0.2 seconds to prevent
 the robot from coasting. Then, all motors are turned off.

cleanup() This function is the last to execute. It goes through the
 processes and kills them all. It also disables the encoder
 and the servo.

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez

Testing and Demo Synopsis

The variables in the testing phase that received our attention were: the servo

angle, the number of lines caught by the IR sensor, and the number of encoder events.

The servo setting, which dictated our turn radius, was empirically determined.

We initially attempted to analytically determine the value, but found that to do so

required technical specifications of the servo that we did not have. After a number of

trials, the value of 2728 was found to steer the robot though the approximate center of

each marked square. This value proved to give the desired path for the rest of testing that

day. However, in testing the next day, an increased value of 2735, indicating a tighter

turn radius, was required. On the day of the demo, the value again required modification

and was increased to a value of 2741. The cause for this required change is unknown as

no modifications were made to the robot.

The performance of the infra-red detector as a line traversal sensor was excellent.

Once an appropriate position for the sensor and the threshold values were determined, it

only failed to detect a line in a few instances. These failures were minimal and can be

attributed to dirt on the tape which interfered with the sensing.

The encoder was used to determine the distance that the robot had traveled since

the start. The total number of events was analytically determined and incorporated into

the robot's software. The robot's ability to calculate the distance it had traveled

performed quite well until the battery began to lose charge and shut down the sensor. As

a result, the robot was given the ability to detect if the encoder was working and shut

down the monitoring thread if necessary. During the final day of testing (after

modifications to the servo value had been made), the calculated number of events proved

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
to be too small. Our calculations showed that one circuit of the course should generate

1053 events, but approximately 1200 events were being generated. The cause for this

change is unknown as no modifications were made to the robot.

In conclusion, our first attempt at the demo failed as result of a low battery and

the servo angle not being too small. Since the software required the encoders to signal

completion, the robot did not shut down because the encoders were not functioning

because the battery was low. This particular battery has charging problems from the

start. The other problem was the servo angle being too small. For an unknown reason,

the angles we tested and got to work were not sufficient to put the robot within an inch of

the third box.

The first attempt at the demo failed as a result of a low battery and an incorrect

servo value, which was previously discussed. The battery had proved to be a concern

earlier in testing as we encountered difficulty in charging it and getting it to keep the

charge. Since the turn radius was too large, the robot did not travel over the specified

squares and therefore the line traversal sensor was unable to stop the robot. The second

attempt failed as a result of an incorrect servo value and an incorrect calculation of the

events required to complete the course. Since the servo value had proved to be incorrect

in the previous attempt, the decision was made to change the two requirements for

completion, namely crossing a required number of black lines and traveling a desired

distance, be changed from an AND requirement to an OR requirement. Since the event

count that would measure the distance traveled was too small, the robot halted before it

had completed its third circuit of the course.

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez

Team Organization Evaluation and Plans

Organization Evaluation

Before attempting to complete Project 1, Team 10 decided to organize the team

into six main divisions (Design, Hardware, Software, Testing, Management, and

Presentation). Design and Presentation were to be team tasks, while the other four would

be assigned to two group members. After completing Project 1, it has been decided that

the organizational structure of the team is more than sufficient and works quite well. In

instances where one team member was unavailable, the other member assigned to that

task picked up for him. All tasks were accomplished on time except for hardware design

which was delayed because of insufficient parts. The division of labor is one aspect of

the organization that will be kept for Project 2.

 One suggestion for change is to incorporate more milestones, with each milestone

having a corresponding demonstrable goal (i.e., recognize a black stripe, make a 90

degree turn, etc.). This will allow the progress of the team to be tracked to a greater

degree of accuracy. Another suggestion is to meet more frequently. During this first

project, the team was adjusting to learning the member’s schedules and it appeared that

meeting more often would be beneficial. This would allow for greater communication

between team members.

Lessons Learned

The first project always holds many surprises and this one was no different.

Team 10 learned that a fully functional working battery is very important. A failing

battery would cause the servos and encoders to fail. During coding, IC does not check

 Amit Maole
 Brent Eskridge
 Klo Utley
 Tony Lopez
type mismatches in programs. It will crash if it encounters one during compiling.

Additionally, servo positions are not 100% static from test to test. Testing is one of the

most important phases of the project where many unexpected things could happen that

could not be foreseen during the hardware or software phases. The initial design will be

thrown away, but is useful for learning. In the future, group 10 will have a quick

prototype phase to help get a good grasp of the problems in solving the task.

