Group 7 Project 1 Presentation

Robert Moe John Zumwalt Mark Woehrer Celi Sun

Team Organization.

- Consists of 2 teams.
 - Hardware Team (Robert Moe and Celi Sun).
 - Software Team(John Zumwalt and Mark Woehrer).
- Each Team has a Junior member and a Senior Member.
 - Robert Moe Senior for Hardare
 - John Zumwalt Senior for Software

Team Organization Cont.

- Senior members are required to coordinate each teams actions.
- Senior members are members who are most experienced with either the hardware or the software.
- Junior members then become Senior members in their team after each project and Senor members move to Junior.

Team Organization Cont.

- Our team stuck with the plan pretty close, as being the first project all members were fairly new so everyone helped out whether they were junior or senior members.
- Milestones were completed on time or ahead of schedule in every case.

Team Organization Cont.

- All team members participated in synchronizing the two hardware and software sections together for each milestone.
- All design ideas were accounted for and reviewed by all team members to determine if they are best suited for the project as a whole.

Team Organization - Future

- Our team will continue to use the team organization structure for the 2nd project that was used for this current project.
- One team member will stay behind in each team and the other two team members will swap teams and become Junior members.

Robot Design.

• Keep it simple

- Our team agreed that the design should be as simple as possible to minimize any type of mechanical failure or diffuculty during the run.
- Simple box cart type robot was constructed.
- 2 wheel encoders.
 - This allowed us to calibrate the 90 degree turns inside the box.
 - Also measured distance traveled.

Robot Design – Sensors.

2 Infrared Sensors

- Mounted at the front of the robot very close to the ground.
- Allowed us to determine when we have crossed the black tape and what state the robot is in as it crosses the black tape.

Robot Design – Gears.

Gearing

- First design used a low torque high speed gear ratio but found that the motor was not equipped to handle that ratio.
- Used a 5:1 gear ratio with a 8 tooth gear on the motor and a 40 tooth gear on the axle which allowed for high torque but low speed.
- Advantage was the ability to more easily control the turning and approach of the robot.

Robot Design – Wheels

- First design we used a tricycle type design with rear wheel drive.
 - Could not get the robot to drive straight.
 - Added 2 wheels up front and rear wheel drive still did not drive straight
- Turned the robot around and made it front wheel drive.
 - Robot drove a lot straighter after matching motors.

Robot Code – Main Loop

- DO UNTIL 3 cycles
- drive sraight
- IF traveled distance > 5ft THEN
- look for black tape
- IF looking for black tape AND left sensor found black tape THEN
- stop left motor
- left side in the box
- IF looking for black tape AND right sensor found black tape THEN
- stop right motor
- right side in the box
- IF right and left side in the box THEN
- move forward 6 inches
- turn
 - allign

Robot Code – Turn Sequence

- turn:
- DO UNTIL 90 degrees
- IF left sensor found black tape THEN
- break the turn
- back up until right sensor is inside the box

Robot Code – Align (shimmy)

- DO UNTIL aligned
- move forward slowly
- IF left sensor finds tape THEN
- apply left brakes
- left aligned

- IF right sensor finds tape THEN
- apply right brakes
- right aligned
- IF left aligned and right not aligned THEN
 - twist robot counter-clockwise
- IF right aligned and left not aligned THEN
- twist robot clockwise
- IF left aligned and right aligned THEN
 - rest for a time to allow the bot to settle
 - IF current sensors are in an acceptable range THEN
 - alligned
- ELSE
 - continue

The End