
Final Report: Project 1

Team 3:
Mark Branson
Amit Mathur

Matt Roman
Mike Taylor

February 16, 2003



Chapter 1

Hardware Description

1.1 Introduction

The key to the hardware design for this project is simplicity. Because of the fairly simple
nature of the problem and the relatively brief time allotted, we chose an approach which
minimized inaccuracy in robot movements. By minimizing error, we could avoid the costly
(both in time and power) movements caused by error correcting motion. For this reason, we
chose a design which was small and compact.

40-tooth 40-tooth

40-tooth 40-tooth24-tooth

24-tooth

Reflectance
Sensors

Shaft
Encoders

Motor

Motor

Handyboard

Wheel Wheel

Wheel Wheel

8-tooth

8-tooth

Figure 1.1: View of the robot from the top, with significant pieces labeled.

1.2 Sensors

Our robot design involved exactly four sensors: two break-beam sensors and two top hat
reflectance sensors. The two break-beam sensors were built into shaft encoders in the rear
of the robot. We built two shaft encoders to ensure that we were accurately measuring the

1



distance traveled by each side. The two shaft encoders facilitated calibration of the motors,
which in turn contributed to the extremely straight paths followed by the robot between
goal squares.

The top hat reflectance sensors were used for course corrections when leaving the goal
squares. These two sensors were placed on the very front of the robot, approximately 1-2
millimeters from the test surface. The two sensors were placed approximately 13 cm apart
(compare with an overall robot width of 18.5 cm). By placing the sensors close to the
test surface, we obtained extremely different readings on the black tape and on the dingy
grayish-white floor. Their extreme horizontal displacement enhanced their usefulness for
our purpose by ensuring that, if both sensors were reading black, then the robot must be
oriented perpendicularly to the tape to a very high degree of accuracy.

1.3 Motors and Gearing

Our primary concern in our motors and gearing was obtaining a system which incurred
minimal slippage, and thus maximal accuracy in direction. Because of the nature of the
project, a small error induced by slippage of one wheel could cause major inaccuracy by
the time the next goal square was reached. Additionally, no method existed for determining
whether the robot was on course while between goal squares. Operating under both these
conditions, we made several design decisions.

First, we chose to have a very short wheelbase. The distance from the front axle to the
rear axle was just 6.5 cm. This extremely short wheelbase (practically the minimum, since
the wheels have 2.5 cm radius) gave the robot extremely tight control, especially during
turns.

The second design decision lay in the gearing. The wheels were geared 5-1, which reduced
the robot’s speed tremendously. We decided that a faster moving robot, while able to
complete the course more quickly, would experience substantial slippage on the wheels.
Since our primary goal was accuracy and not speed (the robot still completed each lap in
approximately one minute), this geartrain worked admirably. In addition, the simplicity of
the one stage reduction from an 8 tooth gear to a 40 tooth gear provides little opportunity for
errors to be introduced in the geartrain. This gearing is what produces the superimposition
of gears in Figure 1.1. Specifically, the 8-tooth gear is directly above the 40-tooth gear.

The third and final design decision was to use a four-wheel drive system. We chose to
use four wheel drive for the same reason we chose to make the design decisions above. By
powering both front and rear wheels, we were assured that they were moving at precisely
the same speed.

2



Chapter 2

Software Design and Algorithms

2.1 Introduction

The software algorithm which we chose was extremely simple. In short, our robot drives
straight for a set distance, finds the edge of the box, moves into the box, and turns. It
then moves forward until it finds the edge of the goal square and then aligns itself with that
edge. This cycle repeats until the robot has moved around the course three times. Because
this simple algorithm permits little room for error and coordinates well with the hardware
design, the robot is able to move smoothly through the course.

2.2 Behavior Model

Although the actions which the robot takes are not behaviors in the sense that Murphy uses
the term, we will refer to them as such. Each behavior is triggered by the completion of the
previous behavior, so in reality, these behaviors form a kind of fixed action pattern. However,
since each depends on sensor data (whether as a taxis or a reflex) we cannot consider them
as an action pattern either. We thus use the term behavior ambiguously and leave it at
that. The robot has five basic behaviors. We will refer to them in this document as: Long
Move, Move into Box, Turn, Align, and Search, connected as shown in Figure 2.2. One of
these behaviors, Search, was not used in the demonstration, but will still be detailed in this
document.

2.2.1 Long Move

The move behavior is the simplest of the five. This behavior takes in data from the shaft
encoders only. While the shaft encoders tell the robot that it has moved less than a certain
distance, it continues to move forward. The behavior is initially triggered by the completion
of the Align behavior.

3



Long Move Move Into Box Turn Align

Search

If No
Box

If
Box

If No
Box

If
Box

Done

trips
= 12

Figure 2.1: The interconnection of individual modules in the software design.

2.2.2 Move into Box

This behavior is triggered by the completion of the Long Move. In this behavior, the robot
moves forward slowly until it finds the box, and then moves into the box. If it does not
find the edge of the box (using the reflectance sensors) after a certain number of turns of
the shaft encoder, it initiates the Search behavior. If it does, it moves into the square and
initiates the turn behavior.

2.2.3 Turn

This behavior causes the robot to turn 90 degrees. The exact value of distance turned is
inputted as a calibration value. Since we desire for the robot to turn in a very small area,
this turn is completed by driving one motor forward and the other backward. This, together
with the robot’s short wheelbase, causes the robot to turn in a very small area.

2.2.4 Align

This behavior is triggered by the completion of the Turn. The robot moves forward until
one of the reflectance sensors reads black. The robot then turns (in very small increments)
until the other sensor reads black. Once both sensors read black, the Long Move behavior
is initiated.

2.2.5 Search

This behavior is only initiated in the event that the edge is not found during the Move into
Box behavior. This behavior is very simple, because the robot has very little time to find
the box if it has missed. The robot first searches to the left of where it is by turning and
moving forward (our robot has a slight pull to the right - if the box is missed, it should be
on that side). If it still does not find the box, it moves backwards by twice the distance that
it just traveled, effectively moving just as far to the right, again checking for the box along
this whole route. If it still cannot be found, the robot stops moving. If the box has been

4



missed by this much, there is clearly a calibration error that must be repaired by the team.
If the box is found, the robot returns to the Move into Box behavior.

2.3 Conclusion

Overall, this strategy worked very well. Since the robot never went off course, the Search
behavior was never actually used, although it worked well in test. The key to the performance
of the software (and specifically performance on the extra credit course) was the robots
selective perception. Although the line on the floor would have been sensed by the reflectance
sensors, the Long Move behavior ignored that data because it was unnecessary. Rather than
constantly checking for errors, the robot relied on its data being correct and trusted to the
strength of the hardware design. Because of our iterative hardware design (see Section 3.2),
this software design was indeed robust enough to earn that trust.

5



Chapter 3

Team Organization Evaluation and

Plans

3.1 Introduction

Overall, our team organization worked extraordinarily well. Each team member completed
his required individual tasks and communicated well with the others. However, we did
experience some difficulties with our milestones (several of the larger tasks taking longer
than expected) and were forced to adjust our fallback plan.

3.2 Individual Efforts

Although our initial team organization document called for each team member to work
independently for most of the time, the actual organization reflected a much more balanced
approach to the project. Two team members, specifically Amit and Matt, ended up working
closely together to ensure that the hardware and software designs would mesh. Rather than
working independently, they met as a team and produced iterated designs of both software
and hardware components. This worked well for this project because of the simplicity of
both of these components.

Since this model worked so well for this project, though, we are considering keeping
it for the next project. Specifically, this model would call for the hardware and software
manager to work as a design task force to revise the initial design agreed upon by the team.
As the projects become more computationally complicated, though, this model will likely
become less useful for the software component and more useful for the hardware component.
Specifically, as the software component grows, the hardware component can be iteratively
constructed to match the needs of the software component. We currently plan to adopt this
strategy for at least the second project, and then to reevaluate its usefulness.

Another individual effort which ended up being distributed amongst the entire team
was the testing phase. Each team member tested his individual component, and the final
integration testing was completed at a team meeting. Although this worked well for this
project, a more structured environment may be more appropriate for later projects, where
individual robot tasks will need to be tested independently. In these later projects, the need

6



for one person to organize the integration testing will be paramount. Our current model,
despite the fact that it emphasizes teamwork and cooperation, would become difficult to
organize on a more complicated project.

3.3 Team Structure and Supervision

Our team, which uses a floating supervisor position rather than a concrete team leader,
worked very well. The floating supervisor, Mike on this project, became a coordinating figure
rather than an authoritarian leader. Rather than making decisions about group activities,
he coordinated efforts to plan activities and make decisions amongst team members. The
presence of a team supervisor as an equal and a coordinator reduced friction among team
members. By reducing team friction, we improved the product that we created and worked
more efficiently.

In general, we plan to continue using the existing team structure and supervisory system.
Because of the overall success of this project, we have been extremely pleased with our team
structure. All team members reported a feeling of satisfaction and are looking forward to
using this structure in the future.

3.4 Conclusions

We have found the team organization to be an overwhelming success. Because of our success
with this system and team member satisfaction, we have decided to retain this system in
whole, with the few changes mentioned in section 3.2. Of course, as with any model of this
type, we will remain constantly in search of methods to improve the overall team structure
and organizational model.

7


