
Paritosh Chokandorkar
Amandeep Gill
Joshua Shuller

CS 4970, Spring 2003
Project 1 - Robot Code Documentation

Robot Code Documentation – Team 2

Code Overview:
The robot used no data structures. There were two simple algorithms, or functions:
goStraight() and align2(). There was one helper function,
shouldStop(), and the main function.
• The goStraight() function made the robot go straight by checking the

encoders.
• The align2() function used reflectivity sensors to align the robot with a strip of

black tape.
• The shouldStop() helper function returned whether the stop button had been

pressed or not.
• The main() function is the main, high-level procedure for achieving the project

1 task.

Code Detail:
The code evolved from a simple procedural outline for testing the basic tasks of the
robot (i.e. turning, alignment, and going straight) to a full fledged procedure for
handling the goal functionality of project 1. So the code used a bottom-up design
approach, which is rarely successful for larger projects. Even though this is just the
first project and this project is supposedly simple, the time needed to connect the
robot to the download cable, download the code, reset the robot, and move the robot
back into position was really the biggest problem with debugging the hardware and
software both.

At any rate, the code is detailed as follows:
• The shouldStop() helper function returned whether the stop button had been

pressed or not. This function used a global variable, stopPressed, to record if
the stop button had been pressed or not. The function first checked if the stop
button is currently being pressed with the stop_button() function. If the stop
button was currently being pressed, it would then set the stopPressed global
variable to 1, or true. The function then read and returned the value contained
by the global stopPressed variable. This function was used in both the
main() function and in the goStraight() function. It was not used in the
align2() function because the align2() function was added to the project
Friday morning, the same day of the demonstration. For this reason, when the
robot is going straight, it can be stopped by pressing the stop button at any time
except while it is trying to align itself with black tape.

• The align2() function used reflectivity sensors to align the robot with a strip of
black tape. The align2() function can be described as two separate behaviors.
Each sensor would have its own behavior in which it tells the wheel its same side

of the robot to go forward until it has reached a black line. When it reaches a
black line then that side of the robot goes backwards rather than forwards. These
two behaviors only stop when both the left and right reflectivity sensors switch
from light to dark on the same iteration of the loop. Furthermore, for each time a
reflectivity sensor remains in either light or dark, it multiplies the number of times
it has remained in either light or dark by it’s motor power to increase the power to
the motors to help it switch to the opposite shading again. The implementation
was neither graceful nor efficient, but it worked.

• The goStraight() function made the robot go straight by checking the
encoders. The function used the enable_encoder(), read_encoder(),
and disable_encoder() functions to count how many times the state of the
encoder sensors changed. This function was programmed along with the first
prototype robot. To get a better view of how this function transcends exact robot
designs, it was used with a second hardware design, and then with a third and final
hardware design with no changes at all from the first robot design. In specific,
this function took care of slowly accelerating the wheels of the robot to avoid
sudden slippage from jerk of acceleration. This function also counted how many
clicks each encoder counted from both the left and right wheels. To compensate
for lost clicks, it would give the wheel with the lost ticks the number of lost ticks
times the correctionAccell parameter more power to that motor. To
compensate for extra ticks, it would give the wheel with the extra ticks the number
of extra ticks times the correctionAccell parameter less power to that
motor. In short, it one wheel was falling behind, it would receive more power; if
a wheel was going to fast, it would receive less power.

• The main() function is the main, high-level procedure for achieving the project
1 task. The main() function counted the number of times that the robot had to
align itself and go straight, and also handled all of the different cases for hitting
the black tape square from different angles. The different cases handled were:

1. Head on contact. Head on contact happens when both the left and right
sensors notice the black tape at the same time. In this case, the robot just
goes forward for a period of time and then turns 90 degrees left, and starts
the align process upon the next iteration of the main loop.

2. Right sensor reads first. In this case, the right reflectivity sensor is the first
to notice the presence of the black tape. Here, it can be concluded that the
robot was traveling left of straight. In this case it would be easiest to
simply back up, rotate a little bit right, and go straight again to reduce
coding. It would execute this procedure repeatedly until it encountered
one of the other 3 cases listed here.

3. Left sensor reads right side of square. In this case, it just did the same
thing as in case 1, except that after the robot turns 90 degrees to the left, it
goes forward for a certain time period to avoid detecting the black tape on
the next alignment.

4. Neither sensor reads black tape, encoder count down ends. In this case, it
simply turns 90 degrees left and aligns itself twice – once with the outer
black tape line, and then again with the inner black tape line.

Our software approach was straightforward and the design was bottom-up. In
hindsight, it may be wise to design a robot first by emulating or designing its
functionality it in software, and then in constructing its mechanical body. This would
fit in well with the top-down design approach.

	Robot Code Documentation – Team 2

