Evolutionary Computation

Dean F. Hougen w/ contributions from Pedro Diaz-Gomez & Brent Eskridge

Robotics, Evolution, Adaptation, and Learning Laboratory (REAL Lab)

School of Computer Science University of Oklahoma

Outline

- Introduction to Evolutionary Computation
- Genetic Algorithms
- Genetic Programming
- "Real World" Example

Motivation for Evolutionary Computation (EC)

- Science
 - Understand evolutionary mechanisms
 - mutation
 - crossover
 - co-evolution
 - etc.
 - Understand evolved characteristics
 - behavior
 - learning
 - etc.
- Engineering
- Create better designs

Implementation of Evolutionary Computation (EC)

- Inspired by biological evolution
- Required components:
 - Replicators (genes)
 - Replication (copying)
 - Selection mechanism (survival)
- Requirement:
 - Replication must be high fidelity
- Result:

Details of Biological Evolution

- Additional terminology
 - Chromosome: A collection of genes
 - Locus: A location within a chromosome
 - Allele: A possible gene at a given locus
 - Genotype: All the genes of an individual
 - Phenotype: The expression of an individual's genes
 - may be environmentally influenced

Details of Biological Evolution

- At what level does selection take place?
 - Gene
 - Chromosome
 - Individual
 - Species
 - Genus
 - Other Group (e.g., Family, family, colony)
- Why does this matter to us?

EC Types

- Genetic Algorithms
- Genetic Programming
- Evolution Strategies
- Evolutionary Programming
- Grammatical Evolution
- Learning Classifier Systems
- Estimation of Distribution Systems
- Etc.

Genetic Algorithms (GAs)

- Genes bits, integers, floats, etc.
- Chromosome array of genes, e.g.: 001000010110111011100010111101
 - Also called genotype or individual
 - Note lack of distinction between:
 - chromosome and genotype
 - genotype and phenotype
- Locus position in array
- Population collection of individuals
- Generation population at a given time

GA Operators 1

- Crossover
 - Example two point, two offspring
 - Parents:

00001 01101101110 0010

11111 111111111 111

• Off-spring:

GA Operators 2

- Mutation
 - Example single point mutation
 - Original: 111110110111011101111
 - Mutated: 1110110111011101111

GA Procedure – Steady State

- Randomly initialize population
- Repeat
 - Selection
 - Reproduction Crossover
 - **Mutation**
- **Until** solution found or resources exhausted

GA Procedure – Generational

Randomly initialize population Repeat Repeat Selection *Reproduction – Crossover* **Mutation Until** new generation created **Until** solution found or resources exhausted

GA Selection

Randomly initialize population Repeat Repeat Selection – using fitness function **Reproduction – Crossover Mutation Until** new generation created **Until** solution found or resources exhausted

GA Fitness Function

- Example: Onemax
- Chromosomes:

label

Α

B

С

 \square

GA Selection				
label	string	<u>fitness</u>		
Α	0000110	2		
B	11101110	6		
С	00100000	1		
D	00110100	3		

- Can do selection proportional to fitness:
 AABBBBBBCDDD
- Generate numbers from 1 to 12
- Select corresponding parents
 Darwin

GA Selection				
label	string	<u>fitness</u>		
Α	0000110	2		
B	11101110	6		
С	00100000	1		
D	00110100	3		

- Can do selection proportional to fitness:
 AABBBBBBBCDDD
- Generate numbers from 1 to 12 (6, 10, 9, 6)

• Select corresponding parents (B, D, C, B)

GA Procedure – Generational Randomly initialize population Repeat Repeat Selection *Reproduction – Crossover* – e.g., Probability 60% **Mutation Until** new generation created Until solution found or resources exhausted ixinin

GA Crossover

- Suppose one crossover
- Use selected chromosomes:
 - B 11101110D 00110100
- Generate numbers from 1 to chromosome length (here 8), say 1 and 5, and generate offspring:
 - ' 1 <u>0110</u> 110 ' <u>0</u> 1101 <u>100</u>

GA Procedure – Generational Randomly initialize population Repeat Repeat Selection *Reproduction – Crossover* **Mutation** – e.g., Probability 0.1% per gene **Until** new generation created **Until** solution found or resources exhausted

GA Mutation & Results

• Suppose *no mutation*, then population of next generation is:

label	string	<u>fitness</u>
B'	1 <u>0110</u> 110	5
D'	<u>0</u> 1101 <u>100</u>	4
В	11101110	6
С	00100000	1

Results of One Generation

- Has average population fitness gone up, gone down, or stayed the same?
- Why?
- Are we making progress?
- Why?

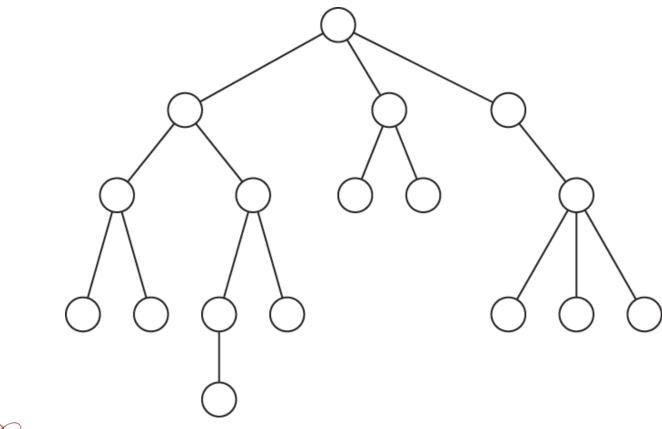
GA Procedure – Generational

- Randomly initialize population
- Repeat
- ✓ Repeat
 - Selection
 - Reproduction Crossover
 - **Mutation**
 - **Until** new generation created
- Until solution found or resources exhausted

GA Procedure – Generational

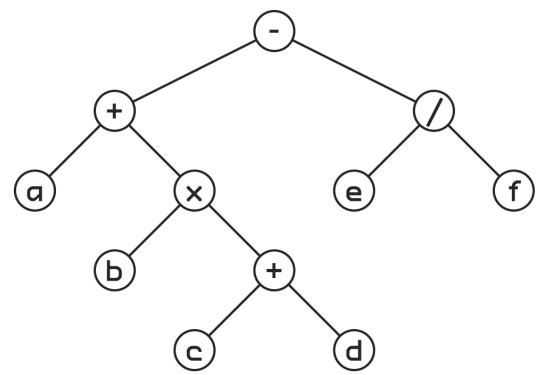
- Randomly initialize population
- Repeat
- ✓ Repeat
 - Selection
 - Reproduction Crossover
 - **Mutation**
 - **Until** new generation created
- Until solution found or resources exhausted – need a criterion,
 - Darwin e.g., an individual has all ones

Genetic Programming (GP)


- Genes typically operators and operands
- Chromosome typically tree of genes
 - Also called genotype or individual
 - Note lack of distinction between:
 - chromosome and genotype
 - genotype and phenotype
- Locus not well defined
- Population collection of individuals
- Generation population at a given time

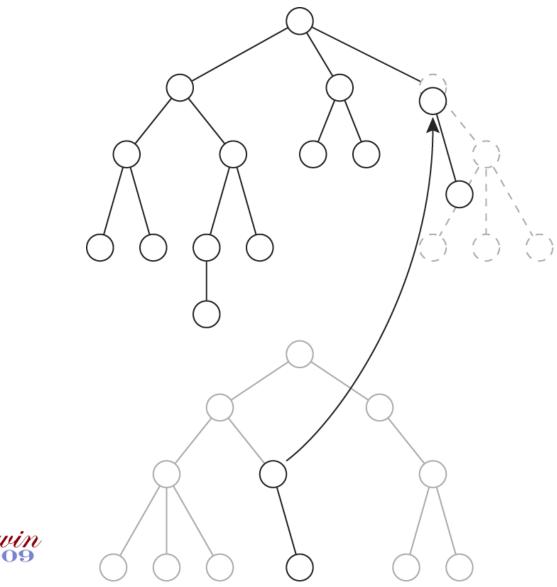
GP Individual

• Structure

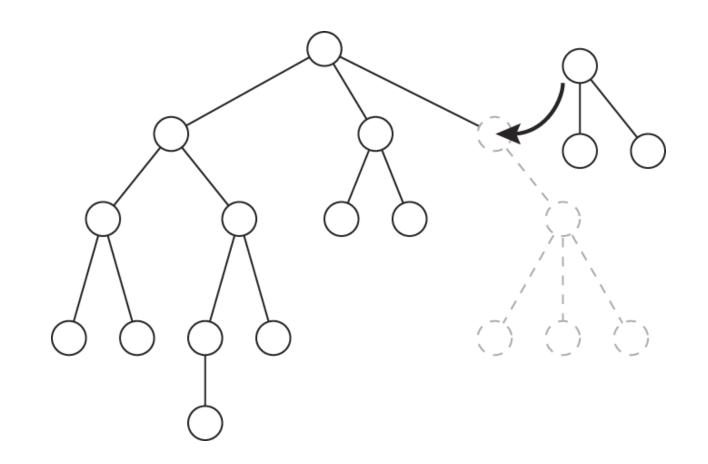


GP Individual

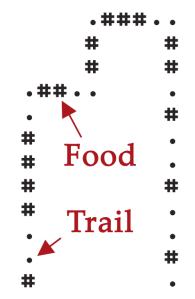
• Complete



arwin (a+(b×(c+d)))-(e/f)



GP Mutation



Artificial Ant: Problem Definition

- Navigate along food trail (Koza, 1992)
 - Trail has
 - turns
 - gaps
 - maximum moves allowed

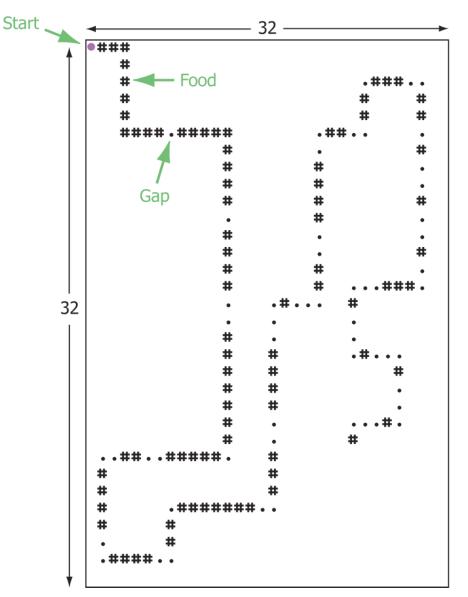
- Fitness:
 - amount of uneaten food at run end

Artificial Ant: Setup

Non-Terminals

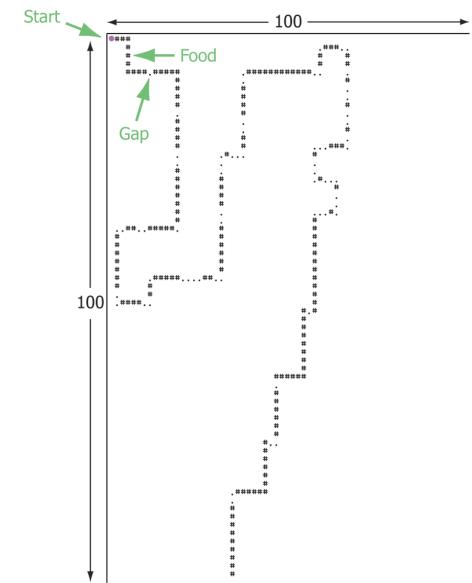
- IF-FOOD-AHEAD
- PROGN2
- PROGN3

Terminals


- MOVE (forward)
- LEFT (turn)
- RIGHT (turn)

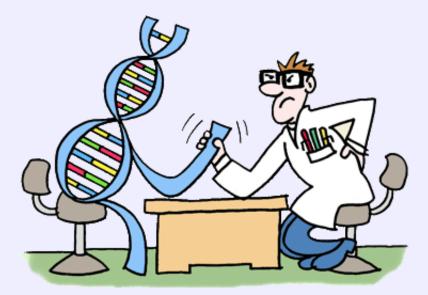
All terminals modify state

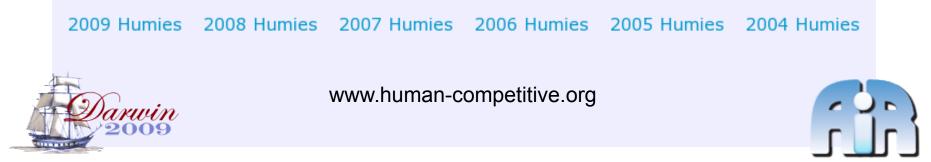
Artificial Ant: Sante Fe Trail


Sante Fe Trail: Sample Solution

```
(progn3
(if-food-ahead left
  (if-food-ahead
    (progn2 move left)
    (if-food-ahead right right)
(if-food-ahead
  (progn2 move left)
  (if-food-ahead right right)
(progn3
  (if-food-ahead move right)
  (progn2 move right)
  (progn2 right left)
```

inuin


Artificial Ant: Los Altos Trail



ANNUAL "HUMIES" AWARDS FOR HUMAN-COMPETITIVE RESULTS PRODUCED BY GENETIC AND EVOLUTIONARY COMPUTATION HELD AT THE ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE

Humie Example: Antenna Design

- NASA Space Technology 5 Mission
 - Three micro-satellites exploring Earth's magnetic fields
 - Requirements:
 - wide beam width
 - circularly-polarized wave
 - wide bandwidth
 - Competitive bid selected human engineering team (contractor)
 - team created antenna design based on best engineering practices

Humie Example: Antenna Design

- NASA Space Technology 5 Mission
 - *In addition*, different team used evolutionary computation methods
 - Evolvable Systems Group at NASA Ames Research Center
 - genetic algorithms
 - genetic programming

Humie Example: Antenna Design

- NASA Space Technology 5 Mission
 - Conventional design
 - did not meet mission requirements
 - required 5 person-months to complete
 - Evolved designs
 - did meet mission requirements
 - required 3 person-months to complete

