Technical Report: Gait Performance at Two Speeds and Carrying Capacity by Men with an Osteomyoplastic Transfemoral Limb and Comparable Controls

AQ1 Carol P. Dionne, DPT, PhD,
James L. Regens, PhD,
Jonathan D. Day, MA, CPO, Andrew H. Fagg, PhD, Douglas J. Bryant, PhD, Kimberly P. Veirs, MPT, PhD(c), William J.J. Ertl, MD

ABSTRACT

Introduction: With advances in surgical approach like osteomyoplastastic amputation, it is unknown whether outcomes of walking at different speeds or carrying performance by men with an osteomyoplastastic transfemoral limb (OTFL) are comparable with those of intact controls.

Materials and Methods: Otherwise healthy men with unilateral OTFL and intact controls consented to participate. All were independent walkers without history of diabetes or other dysvascular condition. All underwent 2-minute walk tests (2MWTs) at self-paced and brisk-paced speeds and 25-ft carry-to-capacity testing as part of a multiphase work performance study. For the current report, investigators compared walking and carrying baseline outcomes between OTFL and control groups.

Results: Six men with OTFL (mean age, 33.7 ± 14.8 years) and 20 controls (mean age, 31.7 ± 11.1 years) completed the study. No initial differences between groups were found in age, height, weight, heart rate, blood oxygen saturation, hemoglobin A1c, overall reported pain, or report of perceived exertion scores. However, the OTFL group walked shorter mean distances at self-paced (137.2 ± 18.1 m) and brisk-paced (167.8 ± 20.3 m) 2MWTs than the controls did (self-paced, 155.7 ± 19.9 m; P = 0.015; brisk paced, 211.7 ± 3.0 m; P < 0.0001) and demonstrated less 25-ft carry-capacity (18.1 ± 9.7 kg) than the controls did (26.8 ± 3.1 kg; P = 0.001). Reported pain by the OTFL group was greater only during carry testing (P < 0.046).

Conclusions: Despite receiving similar, well-fitted prosthetic limbs and standard rehabilitation after osteomyoplastastic amputation, the OTFL group demonstrated lower walking and carrying capacities than a comparable control group. Results may reflect that the OTFL group may still be at risk of injury, demonstrating the need for further investigation of gait and other work performance outcomes by work-eligible men with OTFL and standard rehabilitation approaches. (J Prosthet Orthot. 2020;00:00-00)

KEY INDEXING TERMS: osteomyoplastastic transfemoral limb loss, work performance
documented in the literature. However, there is a paucity regarding work performance outcomes related to osteomyeloplastic transfemoral limb (OTFL) with current, standard rehabilitation approaches.

The walking performance of adults with transfemoral amputation in general has been previously examined. For example, Boonstra and colleagues compared self-paced and brisk walking performed by 24 men and women with transfemoral limb loss (transfemoral and knee disarticulation) and 15 healthy intact controls. The investigators determined that the mean self-selected gait speed and brisk-paced gait speeds were significantly slower in the groups of individuals with amputations than controls. However, comparability between working-age men, specifically with OTFL, and controls performed at different speeds or burden (carry capacity) has yet to be examined. The following report is from the initial segment of a completed multiyear work performance study. The purpose of the current study was to compare performance outcomes from the 2-minute walk test (2MWT) at self- and brisk-paced walking speeds and 25-ft carrying test between otherwise healthy men with unilateral OTFL and intact controls.

Protocols

Once subjects formally gave written consent to participate, their heart rate, perceived exertion (rating of perceived exertion), and pain (visual analog scale [VAS]-pain) were monitored and recorded before and after each trial. All participants were instructed to perform as instructed without increasing pain levels. Participants were allowed to rest in between trials until their heart rates returned to baseline. If reported VAS-pain scores increased by 1.3 cm (indicative of worsening pain) during any trial or there was aberration in subject performance observed by the investigator, the trial was stopped. The 2MWT and carry capacity trials were conducted in random order. The 2MWT has been found useful in determining functional status of walking in patients with lower-limb amputations with or without assistive walking devices. For the purposes of the current study, the investigators modified the original 2MWT intent to determine the distance covered at both self-pace speed and brisk-pace (at capacity). The participants walked at a self-selected or brisk pace down a long hallway for a duration of 2 minutes while the distances walked were recorded. As described by the National Institute of Occupational Safety and Health, participants repeatedly carried a 39 × 29 × 11.4 cm box a measured distance of 25 ft (7.62 m), with incrementally added weight until one of these criteria were met, as per protocol approved by the University of Oklahoma Health Sciences Center Institutional Review Board: (1) participants stated they carried to capacity; (2) participants demonstrated aberration of biomechanical performance (determined by a certified orthopedic clinical specialist investigator, an expert in human functional capacity performance, verified by MinitSun portable gait laboratory system [for asymmetrical step length]); or (3) participants report a 1.3-cm increase in VAS-pain score during each trial. The test box was weighed at participants’ capacity and recorded. Data were analyzed with descriptive statistics and significance was set at $P = 0.05$.

Results

Participants

Six men with OTFL and 20 controls completed the study (Table 1). In the OTFL group, all received standard rehabilitation; the prosthetic componentry and fit were determined to be adequate by the prosthetist investigator.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age, y</th>
<th>Height, m</th>
<th>Weight, kg</th>
<th>Mean Calculated BMI</th>
<th>HR, bpm</th>
<th>Sat O2 (%SpO2)</th>
<th>VAS Pain (0–10 cm)</th>
<th>HbA1c, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limb loss</td>
<td>6</td>
<td>33.7 ± 14.8</td>
<td>1.8 ± 0.1</td>
<td>83.8 ± 16.4</td>
<td>25.6 ± 37.2</td>
<td>81.5 ± 11.8</td>
<td>97.3 ± 1.4</td>
<td>0.5 ± 1.2</td>
<td>5.17 ± 0.5</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>31.7 ± 11.1</td>
<td>1.8 ± 0.8</td>
<td>85.5 ± 33.3</td>
<td>24.2 ± 25.7</td>
<td>72.5 ± 11.0</td>
<td>97.6 ± 1.4</td>
<td>0.2 ± 0.7</td>
<td>5.23 ± 0.4</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>P = 0.871</td>
<td>P = 0.442</td>
<td>P = 0.778</td>
<td>P = 0.691</td>
<td>P = 0.085</td>
<td>P = 0.530</td>
<td>P = 0.415</td>
<td>P = 0.988</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD.
BMI indicates body mass index; HR, heart rate; VAS, visual analog scale; HbA1c, hemoglobin A1c.
Table 2. 2-Minute walk test (2MWT) and 25-foot carrying test—limb loss and control groups

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Distance or Amount</th>
<th>Post HR, bpm</th>
<th>Sat O₂ (ctHb)</th>
<th>RPE (6–20)</th>
<th>VAS pain (0–10 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-paced 2MWT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limb loss</td>
<td>6</td>
<td>137.2 ± 18.1 m</td>
<td>145.2 ± 141.3</td>
<td>97.3 ± 1.2</td>
<td>8.5 (6–11)</td>
<td>0.5 ± 1.2</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>155.7 ± 19.9 m</td>
<td>79.8 ± 16.5</td>
<td>94.6 ± 3.9</td>
<td>6 (6–8)</td>
<td>0.1 ± 0.5</td>
</tr>
<tr>
<td>Total/sig*</td>
<td>26</td>
<td></td>
<td>P = 0.045*</td>
<td>P = 0.120</td>
<td>P = 0.092</td>
<td>P = 0.083</td>
</tr>
<tr>
<td>Brisk-paced 2MWT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limb loss</td>
<td>6</td>
<td>167.8 ± 20.3 m</td>
<td>102.8 ± 20.3</td>
<td>97.3 ± 1.8</td>
<td>10.5 (8–13)</td>
<td>1.3 ± 2.2</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>211.7 ± 23.1 m</td>
<td>99.5 ± 21.4</td>
<td>96.1 ± 0.7</td>
<td>9 (8–13)</td>
<td>0.3 ± 0.64</td>
</tr>
<tr>
<td>Total/sig*</td>
<td>26</td>
<td></td>
<td>P < 0.0001*</td>
<td>P = 0.82</td>
<td>P = 0.125</td>
<td>P = 0.118</td>
</tr>
<tr>
<td>25-ft carry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limb loss</td>
<td>6</td>
<td>18.1 ± 4.4 kg</td>
<td>94.7 ± 15.0</td>
<td>96.8 ± 1.2</td>
<td>9 (8–13)</td>
<td>1.2 ± 1.8</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>26.7 ± 4.6 kg</td>
<td>94.9 ± 16.8</td>
<td>96.5 ± 2.8</td>
<td>11 (8–17)</td>
<td>0.1 ± 0.5</td>
</tr>
<tr>
<td>Total/sig*</td>
<td>26</td>
<td></td>
<td>P = 0.001*</td>
<td>P = 1.0</td>
<td>P = 0.49</td>
<td>P = 0.178</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD or median (range).

HR indicates heart rate; RPE, rating of perceived exertion; VAS, visual analog scale.

AQ8

WALK TESTS

The OTFL group walked shorter mean distances in the self-paced 2MWT (137.2 ± 18.1 m) than the controls did (155.7 ± 19.9 m; P = 0.015) and in the brisk-paced 2MWT (OTFL, 167.8 ± 20.3 m) than the controls did (211.7 ± 3.0 m; P < 0.0001) (Table 2).

CARRY TEST

Men with OTFL also demonstrated less capacity in carrying a weighted test box a distance of 25 ft (18.1 ± 9.7 kg) than the controls did (26.7 ± 3.1 kg; P = 0.001). It should be noted that the limb-loss group also reported higher visual pain scale scores only during the carrying task (1.83/10 ± 1.83 cm) than the controls did (0.10/10 ± 0.45 cm; P = 0.046) (Table 2).

COMPARABILITY BETWEEN GROUPS

No differences were found between the OTFL group and the control group in age, height, weight, heart rate, blood oxygen saturation, HbA1c, overall initial pain scores, or report of perceived exertion scores (P > 0.05). For this report, we also calculated the mean body mass index (BMI) per group based directly on participant height and weight. Overall, the groups' similar calculated BMI were between the “normal” and “overweight” categories with the OTFL group insignificantly heavier than the control group as seen in Table 1. All OTFL participants were weighed while wearing their prosthetic limb. All of the OTFL participants used similarly constructed lower-limb prostheses deemed appropriate by the prosthetist investigator. Each OTFL participant reported having undergone standard rehabilitation after osteomyoplastic transfemoral or knee-disarticulation amputation surgery conducted by the surgeon investigator. All of the participants with OTFL reported well-controlled perceived exertion during the trials and little to no pain during the walk testing. These two groups should be considered appropriate to compare walk and carry performance.

GAIT SPEED COMPARISON WITH ANOTHER PUBLISHED STUDY

The 2MWT data from the current study were compared with data from a previously published investigation of transfemoral amputees.

Table 3. Gait speed without equipment by limb loss and control groups from the current study and Boonstra et al. 13

<table>
<thead>
<tr>
<th>Group</th>
<th>Study Gait Speed</th>
<th>Boonstra et al. 13</th>
<th>Study Gait Speed</th>
<th>Boonstra et al. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self-paced 2MWT</td>
<td>Transfemoral</td>
<td>Brisk-Paced 2MWT</td>
<td>Transfemoral</td>
</tr>
<tr>
<td>Limb loss</td>
<td>n = 6 (combined)</td>
<td>1.1 ± 0.2 m/s</td>
<td>n = 6 (combined)</td>
<td>1.4 ± 0.2 m/s</td>
</tr>
<tr>
<td>Control</td>
<td>n = 20</td>
<td>1.30 ± 0.17 m/s</td>
<td>n = 20</td>
<td>1.75 ± 0.19 m/s</td>
</tr>
</tbody>
</table>

2MWT indicates 2-minute walk test.
gait speed by Boonstra et al.13 that used a 10-m walk test24 to compare gait speed between adults with TFL and intact controls. As seen in Table 3, the OTFL group in the current study and the limb-loss participants in the Boonstra et al.13 study demonstrated slower gait speed than the respective control groups. The OTFL group in the current study walked at speeds within the range of self-paced and brisk-paced gait speeds set by the transfemoral and knee disarticulation participant groups in the Boonstra et al.13 study.

However, threats to comparability were that the current study had fewer participants, included only men, and did not divide the participants’ data into either a transfemoral or knee disarticulation subgroup. Furthermore, it is unknown whether the participants in the Boonstra et al.13 study underwent conventional or osteomyplastic amputation surgical procedures. In addition, in the current study, controls’ gait speeds were slower in general than those of the controls in Boonstra et al.13 during the self-paced and brisk walking tests. However, both the current study and the Boonstra et al.13 study tested adults with transfemoral limb loss at self-paced and brisk speeds.

CARRY CAPACITY

As shown in Table 2, the OTFL group performed the 25-ft carry test at significantly lower capacity than their intact counterparts. Furthermore, those in the OTFL group also reported greater pain ($P = 0.046$) during this test.

However, as per Dictionary of Occupational Titles21 standards, the OTFL and control groups can be categorized to carry a distance of 15 ft at the light-to-medium duty level of physical demand.21 To the authors’ knowledge, this was the first controlled study that described 25-ft carry testing as per federal standards21 performed by working-age otherwise healthy men with unilateral OTFL loss.

RECOMMENDATIONS

The performance deficits demonstrated by this small group ($n = 6$) with OTFL suggest that the participants may be at work-related risk of injury at the time of initial gait and carry testing. The investigators recommend a more expanded study to determine differences in gait speed between conventional and osteomyplastic TFL groups using a 10-m walk test, to determine gait speed by surgical approach and minimize influence from fatigue.

In addition, risk of injury has been linked to spatiotemporal variability in gait performance during gait (differences in timing, cadence, step speed, step length, stride length, time in double support, etc.), as well as distance walked or gait speed. To better understand the spatiotemporal changes over time (e.g., 1 year), investigation of variability in gait performed by those with OTFL is warranted.

Another factor on which to direct future study is the actual rehabilitation after amputation. All with OTFL in the current study underwent “standard” rehabilitation. The authors recommend further investigation of work-related performance linked to rehabilitation approach, by working-age persons with either traditional or OTFL loss.

REFERENCES

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Please check if authors name are correctly captured for given names (in red) and surnames (in blue) for indexing after publication.

AQ2 = Please check if the expanded form captured for HbA1c is correct.

AQ3 = Please check if the section headers (i.e., section leveling) in this article were captured correctly.

AQ4 = The data appearing with the means here were assumed to be SD. Please check if correct.

AQ5 = HR in the tables were assumed to be referring to heart rate. Please check if correct.

AQ6 = Please check if the expanded form captured for VAS is correct.

AQ7 = Please check if the changes made to this sentence are correct.

AQ8 = Please provide footnote text for *. Also, please indicate what the data in bold represent.

AQ9 = Please check if this statement, added as legend to this table, is correct.

AQ10 = Please check if capturing this as header is correct.

AQ11 = Please check if the reference citation is allowed here.

AQ12 = References were renumbered because the citations were not in sequence.

AQ13 = Please provide accession date.

AQ14 = Please provide publisher name and location and page range.

AQ15 = The URL in this reference entry is not working. Please check. Please also provide accession date.

AQ16 = Please provide the location and exact date where and when the event here was held.

AQ17 = Please provide specific URL here for the article/page provided.

AQ18 = Should there be a URL for this reference? (There is an accession date provided.)

AQ19 = Because of space restrictions, the short title was amended. Please check if the changes made are correct.

END OF AUTHOR QUERIES