Proceedings of the 2002 IEEE
International Conference on Robotics & Automation
Washington, DC « May 2002

Real Time Visualization of Robot State with
Mobile Virtual Reality

Peter Amstutz and Andrew H. Fagg
Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003
{amstutz, fagg}@cs.umass.edu

Abstract— With the deployment of large, distributed
networks of cameras and other sensors, it is becoming
necessary to also address the issue of how to effectively
present the large volume of gathered information to a
user. One approach to this problem is to summarize the
information gathered by these sensors using a three-
dimensional, virtual environment which enables a user
to engage her own natural abilities to absorb the spa-
tial information inherent in the data streams. Tasks
that require a user to have access to this information
while in the field (e.g., search and rescue) point toward
the need for portable solutions to this problem. This
paper presents a virtual/augmented reality architecture
that has been explicitly designed for use with a fully-
portable, wearable computing system. A critical com-
ponent of this system is a network-based mechanism for
the representation of virtual objects and the live com-
munication of changes in their state to users located
elsewhere on the network. By presenting virtual ob-
jects in a uniform manner over the network, it becomes
easy to construct new dynamic, virtual environments
that reflect the state of robots or humans within the
real environment. We demonstrate the utility of the
architecture through several robot and human tracking
examples.

I. INTRODUCTION

Widely distributed sensor networks are becoming
commonplace in our environments. Web-available
cameras allow anyone with an Internet connection to
peek in real-time into office spaces, national parks, and
sporting events; security guards have access to tens or
hundreds of cameras; and robot explorers carry cam-
eras and other sensors into dangerous or out-of-reach
areas. However, the individual sensors generally pro-
vide constrained viewpoints from which to experience
these locations. Furthermore, there is often very little
information that makes explicit the spatial relation-
ship between the different sensors. These difficulties
limit the ability of the user to immerse herself in the
experience provided by the space, to construct coher-
ent models of the spatial geometry, and to make real-
time, life-critical decisions. One approach to solving
this problem is to synthesize a three-dimensional vir-
tual experience from the live sensor streams.

Many of the application areas also require access

U.S. Government work not protected by U.S. Copyright

241

to this real-time information while the user is on the
move. For example, security guards on patrol need
access to information about individuals moving within
a building; and search and rescue personnel located in
the field require access to summaries of survivor and
hazard data gathered by large numbers of robots that
are assisting in the efforts. These types of tasks have
led us to focus on solutions that allow full mobility of
a user.

In order to construct such a system for the three-
dimensional presentation of distributed, live sensory
data, a wide variety of problems must be solved. First,
individual sensory processing systems must be capable
of extracting the information of interest (for example,
the presence of a nearby moving object). Second, in-
formation from groups of sensors must be fused, taking
into account the relative (and possibly dynamic) po-
sitions of the sensors, in order to compute estimates
of the three dimensional location of the features of
interest. Third, the data that is gathered must be
communicated in some form to the mobile computers
that are carried by users, taking into account band-
width limitations. Finally, the information must be
rendered within an egocentric frame of reference at a
video frame rate such that virtual object movements
on a head-mounted-display (HMD) correspond in a
convincing manner to the movements of the user’s

head.

In this work, we leverage ongoing work at UMass in
the development of smart spaces. Containment units
provide the organizational mechanism by which mul-
tiple sensors (including visual, thermal, and acoustic
sensors) are marshaled together in a robust manner
in order to provide continuous tracking of a subject
throughout the smart space [1], [2]. High level sensory
state (including the position of the tracked subject) is
made available through a JINI service, thus enabling
access to the information by a wide variety of applica-
tions.

This paper describes our approach to constructing
a versatile framework for the representation, commu-



nication, and rendering of dynamic, three dimensional
object state information. Virtual objects are repre-
sented in a distributed fashion, with components pos-
sibly spread across multiple computers located on the
network. Objects may represent volumetric primitives
(e.g., boxes, spheres and meshes) or may constitute
collections of objects. Live sensory data is represented
through the real-time update of the position or other
state of these objects. Application programs with an
interest in specific objects register this interest with
the hosting server. As object state is updated, the
server communicates these state changes through an
XML-based protocol. The three dimensional render-
ing of the virtual environments is accomplished us-
ing a fully-mobile, wearable computer equipped with
a HMD, a head orientation sensor, and wireless net-
working capability.

II. PrREVIOUS WORK

Mobile virtual and augmented reality has been the
focus of several wearable computing-based research ef-
forts. Feiner et al. demonstrated a fully portable im-
plementation of an augmented reality system for a
tour guide task [3]. This system relied on the use of
GPS/dGPS, a digital compass, and tilt sensors to infer
the head pose of the user. Three dimensional textual
information was superimposed on top of the user’s field
of view in real time as the head pose changed, thus sim-
ulating the existence of the text within the real world.

Starner et al. and Jebara et al. described the use
of augmented reality for constructing tutoring systems
for copy machine maintenance and billiards playing [4],
[5]. In both examples, three dimensional graphical ob-
jects were painted on top of images captured with a
stereo camera pair. These images were then presented
to the user using an opaque stereo display. The align-
ment of the virtual objects with the captured view was
accomplished through the application of image pro-
cessing techniques to identify landmarks in the images.
Although the non-see-through display eliminates the
problem of calibration between the cameras and the
HMD, this work required the use of off-board compu-
tation for the image processing.

Foxlin and Harrington introduced a wearable com-
puter interface that relied on a head tracking system
to scroll the viewport of HMD through a space of win-
dows that surrounded the user [6]. Their system uti-
lized a set of gyroscopic sensors that were corrected by
a compass and inclinometers to determine head orien-
tation. A sonar-based sensor was used to determine
the position of the user’s hand relative to the head.
This mechanism allowed the user to direct the po-
sition of the cursor in three dimensions using hand
movements.

Gibson and Murta have explored the use of reflec-

242

Fig. 1. The virtual representation of the arm mirrors, in real
time, the position of the real arm. The visualization can be
performed on any computer with access to the network.

tion mapping, light sourcing and shadowing extracted
from the real-world environment to better integrate
synthetic objects into a fixed-frame scene [7]. Their
system is able to render fairly complex models at 10
FPS, but requires an SGI Onyx2 workstation to do so.

III. A NETWORK-DISTRIBUTED REPRESENTATION
FOR VIRTUAL ENVIRONMENTS

The focus of this work is the design of a network-
distributed object system that facilitates the represen-
tation and dissemination of sensor-driven virtual envi-
ronments. At one end of the network are sensors which
may be anything from complex autonomous robots to
simple, fixed-location cameras. This network also in-
cludes the visualization platform implemented on a
wearable computer which must communicate with the
sensor system, extract information and present it to
the user in an intuitive, graphical manner.

For ease of explanation we will utilize an illustrative
example: the network-accessible, three-dimensional vi-
sualization of the state of the UMass robotic torso (fig-
ure 1). The torso consists of a pair of seven-degree-of-
freedom jointed arms, each with a three-fingered hand
(the hands are not presently modeled in the visualiza-
tion). The joint angle information is used to update
the positional state of the 3D model, which may be
accessed by any machine on the network.

In our system, components such as data sources,
processing nodes, models, and user interfaces can be
freely distributed to the various nodes of a network.
For example, the workstation that provides the user
interface and 3D rendering could be located right next
to the robot, across campus, or (as we have done)
a free-roaming wearable computer utilizing a wireless
LAN. This allows for the components of the system
to be located for the convenience of implementation.
The particular software that ties these components to-
gether that we have developed is the Virtual Object
System, a distributed object system designed to sup-
port (among other things) multi-user Virtual Reality
(VR) applications.



A. Virtual Object System Goals

One of the most important aspects of the design of a
complex system is the ability to reduce the system into
appropriately-simple conceptual units. A very well-
known example is the Unix philosophy of “everything
is a file.” The fundamental abstraction of the system is
sequences of bytes which allow read/write operations.
Basic files and directories are rather static and uninter-
esting; however fifos, devices, Unix domain sockets and
/proc file system found on Linux and other Unices are
all examples of ways in which file system objects can
actually be quite dynamic and interactive, while still
being like a normal file in various ways (read/write op-
erations are the same, permission bits and ownership
apply, etc.) Crucial to the success of this idea is the
fact that everything exists in a single structured hierar-
chical name space: at the very least one can inspect or
manipulate anything with simple command-line tools.
By comparison, conventional Remote Procedure Call
or Remote Method Invocation systems generally do
not impose this structure on the objects under their
control. On the other extreme, network files systems
obviously impose the file system organization on their
file objects, but generally lack the notion of sending ar-
bitrary messages to those objects. It is the desire for
this pervasive structure inspired by file systems that
constitutes one design goal for the Virtual Object Sys-
tem (VOS).

This design goal is important because hierarchi-
cal structures are fundamental to modeling of three-
dimensional environments and the objects contained
therein. Recall the robot arm: the three-dimensional
position of the wrist in the absolute coordinate frame
is determined by the position of the joints that pre-
cede it in the kinematic chain. Since this computation
is easily expressed by the composition of a series of
homogeneous transformations, we make this computa-
tion implicit in the hierarchical structure of the object
name space.

A second design goal is relative simplicity and gen-
erality of the actual network protocol. This is mea-
sured in terms of human readability and ease of writ-
ing simple, dedicated-purpose scripts to manipulate
the objects. For comparison, HTTP passes this test
extremely well. To retrieve a URL, all one has to do
is send a “GET” method with the path in question
to the server, and the contents of that URL “object”
will be returned. Common Object Request Broker Ar-
chitecture (CORBA)[8] is a very commonly used dis-
tributed architecture typically based on a binary pro-
tocol that requires at the very least that one generate
stubs from an Interface Design Language (IDL) spec-
ification and link against an Object Request Broker
(ORB). In contrast, our protocol, being XML-based,

243

should make this sort of rapid development possible.
Another XML protocol, XML-RPC [9], is trivial in
the extreme which makes rapid development easy but
doesn’t specify much beyond the most basic message
syntax. Simple Object Access Protocol[10], also an
XML-based protocol, does not have any sort of im-
plicit object structure either.

In the sections that follow, we illustrate the design
of our virtual object system in the context of real-time
visualization of the current configuration of the UMass
Torso.

B. Virtual Object System Design

The virtual object system is a distributed object
system which provides services for dispatching of mes-
sages between objects in a location-independent man-
ner. Messages express all communication between ob-
jects of the system. Unlike most other systems, how-
ever, the naming scheme imposes an explicit notion
of standard, hierarchical interconnections between ob-
jects. Specifically, a virtual object (henceforth referred
to as a Vobject) is defined by the following properties:
o It is bound to a site (described below) and has a
site-unique name;

o It has a list of types which define its supported in-
terfaces as well as other attributes;

« It has a set of one or more parent Vobjects (the site
is always a parent);

« It may have an ordered, associative list of child Vob-
jects; and

o It may send or receive messages to/from any other
Vobject.

A site is a Vobject which serves as a bridge be-
tween the Vobject system and the underlying (gen-
erally socket-based) network layer (see figure 2). It
provides a point (such as an open port) by which the
Vobjects of the site are accessible. The site accepts
messages on behalf of its hosted Vobjects and redi-
rects those messages to their proper targets. Every
Vobject must be bound to a site; this simply means
that the Vobject is an immediate child of that site in
addition to any other structural (parent/child) infor-
mation that Vobject may have.

The type information associated with a Vobject de-
scribes the syntax and semantics of messages this Vob-
ject may receive and generate. This is based on the no-
tion in object-oriented programming of interfaces and
method signatures. All Vobjects support a common
interface which allows for the querying and chang-
ing of the information which is fundamental to all
Vobjects listed above. For example, the main object
types that make up the robotic arm consist of “ob-
ject3d”, “object3d.box” and “property.” Vobjects of
type “object3d” support generalized operations that
can be performed on anything that can be manipu-



thetree

(a)
AN
< R,

sitel ownsobjectsaand e

®
TN
° /? Fig. 2. A graph-
@ b ical example of
- how the objects on
various sites might

— local
— remote

site 2 owns object ¢ site 3 owns objects b and d interconnect. Ob-

) 2 jects which are

/ - - \ distributed among

BS \@> @>/ ) sevel.ral sites can

- / \ \ be linked together

—lod 0o — local @5 Jay | to form a tree
~ remote - ~ remote - structure.

parent —= child stel

O Q

site3

site2 @\

lated in three dimension (translation, rotation, and
scaling). Vobjects of type “object3d.box” represent a
box or rectangular prism and (unlike the amorphous
“object3d” type) suggest a way to visualize this object
in three dimensions. Being a subclass of “object3d”,
“object3d.box” supports the operations of “object3d”
as well. Finally the “property” type is an extremely
common type specifying a simple interface to access
some store of data. The usage of this data is deter-
mined by the contextual name given by their parent
(explained below). The robot arm example uses prop-
erties to store the position (a 3-element vector) and
orientation (a rotation matrix) of the object relative
to the parent object; it also stores information texture
which is mapped onto the surface of the 3D primitive.

The parent set is the set of links to Vobjects of which
this Vobject is a child. Note that the usage “parent”
and “child,” while derived from conventional termi-
nology for tree structures, does not actually mean this
structure follows the strict definition of a tree. It is
actually a general directed graph. As such, the edges
(links) between nodes (objects) are bidirectional, but
asymmetric. Edges are described with the parent-child
relation tuple. This tuple stores the parent object, the
child Vobject, the child’s position in the parent, and
the child’s contextual name in the parent.

The child Vobject list is an ordered, associative list
of links to other Vobjects. Each child Vobject may be
addressed by its position in the list or by contextual
name. Each Vobject’s child list is a separate context.
The contextual name is simply an alias, similar to a
symbolic link, which supplies some information about
the purpose of the child in the context of the parent.
For example, consider a Vobject which represents a

244

<message length=222"
to="‘“vop://zarya:4234/wrist /orientation”
from=*“vop://interreality.org:4233”
method=“property-replace”
nonce="“262679938” >
<data>0.286476 -0.347896 -0.517211< /data>
<datatype>x-3tuple-float< /datatype>
< /message>

Fig. 3. An example message changing the orientation of the
robot’s wrist. The method designates the operation to be per-
formed on the designated object; the nonce is a unique message
identifier.

3D volume such as the forearm of the robotic arm. It
has, as children, two Vobjects which themselves con-
tain information about properties such as position and
orientation.

Slash-delimited paths which should be intuitive from
file name and URL syntax is used to address Vobjects,
such as the path going all the way from the world
object, along the kinematic chain, to the robot arm’s
hand: “/world/robotarm/shoulder/elbow/wrist/hand.”
This makes it very easy to browse the object tree in
the same fashion one might browse a file system.

C. Network Protocol

When Vobjects exist in the same process — that is, a
thread of control and the associated memory within an
operating system of a single machine — method invo-
cations are made directly with no intermediate packag-
ing of parameters of the method call into a message or
network packet. When a Vobject exists over the net-
work, however, the method call will be made through
a piece of code called a stub. A stub simply converts
the calling parameters of a method into the fields of a
message. Unlike other RPC systems there is presently
no interface design language, so stubs must be coded
by hand. However, an advantage of this is that it be-
comes much easier to include code which may stream-
line message processing or provide caching logic. If
necessary, the stub will send a message to the remote
Vobject and wait for a reply. Because these stubs sep-
arate interface from implementation, it also becomes
useful for code reuse, for some stubs can be written
in terms of other Vobject types, or provide additional
logic for that Vobject. This has proven to be especially
useful in implementing A3DL (discussed below).

The underlying protocol used between sites is XML-
based, sent over TCP/IP sockets. Messages are parsed
using a flex and bison based parser. Figure 3 is an ex-
ample of changing the value of a property. In this case,
the orientation of the robot’s wrist is being changed;
the contents of the property are the Euler angles of
the transform with respect to the enclosing coordinate



frame.

IV. A WEARABLE COMPUTER INTERFACE FOR 3D
ENVIRONMENTS

A. Rendering of the 3D Environments

Using this Vobject system as a basis, we have de-
veloped a prototype API for describing 3D virtual ob-
jects. Because Vobjects may be arbitrarily distributed
about the network, the world is constructed of the
union of many Vobjects collected from various nodes
of the network. In designing distributed systems, one
important principle is that of placing specialized pro-
cessing as close as possible to the data source. This is
generally convenient for the implementation or special-
ization of the Vobjects, as well as being more robust
than the alternative which would force the raw data to
be delivered to and processed entirely by a centralized
rendering system.

For our arm example, the set of Vobjects which rep-
resent the arm consist of a homogeneous transform for
each joint and the attached geometry representing the
upper arm, forearm and hand. These Vobjects exist on
a workstation which is attached to the robot controller.
Other aspects of the 3D environment (such as the en-
closing walls of the room) exist on another, separate
server. A third (wearable) computer performs the ac-
tual rendering and presents the user interface. Because
the Vobjects modeling the robot arm are hosted inde-
pendently of the enclosing world, they may join and
leave that world (and hence appear/disappear from
the visualization) without disturbing any other ele-
ments of that world. This also allows the object to
appear in multiple worlds.

To facilitate the development of both the actual ren-
dering software as well as clients which make use of 3D
Vobjects (independent of rendering), we have devel-
oped an Abstract 3D Layer (A3DL). This is a simple
interface for representing and manipulating 3D Vob-
jects. Using this API, the robot presents the geometric
model in terms of volumetric primitives (to represent
the physical parts of the arm) and homogeneous trans-
forms (to represent their spatial relationships). The
robot controller itself knows nothing about the actual
rendering process — it simply exports a geometric rep-
resentation that captures the arm’s spatial state. The
implementation of A3DL for a specific 3D engine be-
comes primarily a process of filling in the necessary
back-end code to represent the Vobjects in the engine
that is being used. For our implementation, we use
the Crystal Space 3D engine[11].

B. The Wearable Computer Platform

One design constraint has been the goal of imple-
menting a fully mobile system. One major factor in

245

the development of many virtual reality systems is in
the specialized hardware required. We elected to de-
ploy our system on the Xybernaut wearable computer,
which is a commercial product. The Xybernaut is a
complete, self-contained Intel-based system packaged
into a belt or vest form-factor. The CPU is a 200MHz
mobile Pentium with 192 MB RAM and a 4 GB hard
disk. The operating system is Red Hat Linux. The
HMD is based on a 640x480 color LCD; a concave
mirror is positioned to reflect the display image toward
one eye of the wearer. The field of vision covered is
approximately 30°. Although in practice this display
leaves much to be desired in terms of contrast and
focus, it is very easy to switch the mirror for a semi-
silvered (or semi-transparent) mirror. This allows one
to see through the mirror as well as see the reflection,
which makes possible the idea of “augmented reality”
(overlaying a virtual world onto the real one, appear-
ing to match up with real features of the real world).
Finally, the wearable operates on a Lithium-ion bat-
tery and uses 802.11b wireless ethernet. The battery
presently lasts about 2.5 hours with moderate use. De-
spite being a relatively slow 200MHz CPU and having
no extra hardware support for 3D rendering, we are
able to generate 10 frames per second entirely with
software-based rendering.

One of the basic features of a virtual reality system
should be the ability to walk about the virtual envi-
ronment freely and for the rendering system to im-
mediately respond to what the user looks at — that
is, change the viewing direction based on what direc-
tion the user’s head is pointing. For tracking head
orientation, we use an Intersense IS-300 gyroscopic
tracker [6]. This device uses 3-axis gyroscopes mea-
suring rotational acceleration, along with geomagnetic
and gravity sensors to measure compass heading and
pitch/roll of the head. The device is attached to the
headset of the wearable computer. Filtered head ori-
entation information is delivered via a serial port at a
rate of up to 50 Hz.

Depending upon the application and the user con-
text, the Cartesian position of the virtual viewpoint
is translated using one of several approaches. First,
the user may physically drive the forward/backward
movement of the viewpoint by pressing buttons on a
keyboard. Second, the position of the user may be
sensed using either services provided by the UMass
smart room [1], [2] or a GPS receiver. The smart
room has been equipped with panoramic and pan-tilt-
zoom cameras which track the movement of people
and robots within the room. Unlike many localiza-
tion systems which rely on magnetic or sonar sensors,
this camera-based system is entirely passive and can
be very quickly set up and calibrated. This tracking
system provides an estimate of 2D position within the



room at a rate of 9 Hz, with an error standard devia-
tion of 30 c¢m.

V. EXAMPLE APPLICATIONS

We have constructed three examples to demonstrate
the utility of our mobile virtual reality system. The
first example, using the robotic torso, has been dis-
cussed previously. However, a note on the general ease
of implementation: the code specific to the robot rep-
resentation consists of a total of less than 150 lines of
C++. Nearly all of this code is dedicated toward the
creation and initialization of the arm-specific trans-
formations and 3D volumetric Vobjects. The program
then executes forever in a loop, polling joint angles ev-
ery 150 milliseconds. Because the polling is done once
every 150 ms, the worst-case lag from real movement
to response on the screen is on the order of 250 ms at
the 10 FPS screen rate.

The second example application augments the user’s
field of view with information about subjects moving
within a nearby room. In this case, the user with the
wearable computer is positioned in a known location
outside of the smart room. A 3D model of the envi-
ronment is made available to the wearable computer
by the world server depicted in figure 4. The world
Vobject contains a variety of 3D Vobjects, including
doors, desks, and an avatar that corresponds to the
tracked subject. Each Vobject in the model is rep-
resented using a set of properties, including position
and orientation. In the case of desks and doors, these
properties are stored locally to the server. However,
as in the case of the avatar position in this example,
the locally stored Vobject may be replaced with a ref-
erence to a Vobject that is made available by other
servers. In our example, this position information is
made available by the smart room tracking system,
but could equally be provided by any other tracking
system (including a GPS-based system).

Figure 5A shows an example view from the wear-
able computer. Because the virtual and real worlds
are approximately aligned, the user has the impression
of seeing the subject through a transparent wall. Al-
though the subject is currently rendered as a monolith,
it is possible to substitute a more interesting, subject-
specific avatar (represented as general mesh objects).

The third experiment involves the monitoring of a
set of robots during a mapping and search task. In the
current instantiation, a mobile robot is placed within a
maze and is asked to autonomously map the space (see
figure 5B). The robot communicates via a radio link its
own estimated position, as well as the position of any
obstacles that it encounters to to a base station. The
Vobject server for this robot combines the robot po-
sition tracking with the robot’s maze-discovery infor-
mation to create a three-dimensional geometric model.

246

world server
world
ﬂnérN
Y
- door_1 desk 2 avatar
/& orient \\
pos
/ x / orien
[.] [.] polygon
list
GPS server Smart room
top tracking server
o top
,// pos
[..] =<~
T[]

Fig. 4. Vobjects hierarchy for the representation of the virtual
environment in the X-ray vision example. Vobject properties
may be stored and manipulated by the local server or may ref-
erence objects exported by remote servers.

This model is updated in real time with the robot’s
current position and the map that it has thus far dis-
covered. As with the first experiment, the actual ren-
dering is done on the wearable computer based on the
dynamically-changing geometric description given by
the base station. Because the user’s head position is
tracked by the sensors in the smart room, the user is
able to “walk around” the geometric model that has
been created.

VI. CONCLUSIONS AND FUTURE WORK

Visualization of robot state through augmented and
virtual reality systems will become one of the key bases
for human interaction with large numbers of robots
and sensors. In this paper, we have presented some
initial steps toward developing a mobile virtual reality
system for visualization of state information. Our Vir-
tual Object System addresses the issues of presenting
a uniform interface for network-available data with a
particular focus on the distributed representation of
hierarchical, three-dimensional models. These models
may be updated as a function of live data sources and
rendered in real time for presentation to remote users.
Furthermore, the system has been designed with lim-
ited network and computational resources in mind,
allowing for the presentation of the dynamic virtual
space in a virtual reality format to a user equipped



moving subject

Fig. 5. (A) The
user view of the
X-Ray vision
demonstration,
and (B) tracking
the movements
of a robot as it
maps a set of
rooms.

current robot position

discovered walls

with a fully-mobile, wearable computer.

On the technical side, our immediate focus is on the
development of more complex 3D models for the repre-
sentation of spaces involving multiple rooms and large
numbers of objects. We are also designing avatars
which will be capable of expressing subject state in-
formation, including subject identity and current ac-
tivity.

We are also examining issues involving the interac-
tion of the user with the available sensory resources.
In a search and rescue task, the virtual/augmented
reality interface can make survivor and hazard infor-
mation available to the field user on a wide range of
spatial scales — from summary views of an entire build-
ing down to the what has been discovered around the
corner from the user. In addition, the field user should
be able to make high level requests of the robot/sensor
network using intuitive interfaces (such as pointing to-
ward a door), with the necessary resources being au-
tomatically marshaled to satisfy the requests.

Finally, we are examining the presentation of both
static and live visual imagery within the virtual en-
vironments. One important issue to be addressed is
that of conveying to the user a sense of the spatial
relationships between the data taken by the disparate
sensors. This must be accomplished in an informa-
tive and timely manner and may present a trade-off
with presentation quality. The virtual environment
allows the user to navigate amongst the data collected
by these sensors and to perform queries from individ-
ual sensors for high quality images or even live image

247

streams. Through this interface, we hope to leverage
the user’s own ability to construct internal cognitive
maps of three dimensional spaces in order to “fill in”
details not available from the sensors.

VII. ACKNOWLEDGMENTS

Preparation of this manuscript was supported
in part by NSF #EIA 9703217, DARPA/ITO
#DABT63-99-1-0022 (SDR) and DARPA /ITO
#DABT63-99-1-0004 (MARS). The authors wish to
thank T. Reed Hedges, Joshua Gay, James Davis,
Michael Piantedosi, Jack Wileden, and Amy McGov-
ern for their valuable comments during the develop-
ment of this work and the writing of this manuscript.
The authors wish to also thank Xybernaut Corpora-
tion for their support of this work.

The most recent version of the Virtual Object Sys-
tem is available for download from:

www.interreality.org

REFERENCES

D. Karuppiah, P. Deegan, E. Araujo, Y. Yang, G. Holness,
Z. Zhu, B. Lerner, R. Grupen, and E. M. Riseman, “Soft-
ware mode changes for continuous motion tracking,” in
Proceedings of the International Workshop on Self Adap-
tive Software, 2000.

G. Holness, D. Karuppiah, S. Uppala, S. C. Ravela,
and R. A Grupen, “Service paradigm for reconfigurable
agents,” in Proceedings of the 2nd Workshop on Infras-
tructure for Agents, MAS, and Scalable MAS, May 2001.
S. Feiner, B. MaclIntyre, T. Hollerer, and A. Webster, “A
touring machine: Prototyping 3d mobile augmented real-
ity systems for exploring the urban environment,” in Pro-
ceedings of the First International Symposium on Wearable
Computers, 1997.

T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey,
D. Kirsch, R. W. Picard, and A. Pentland, “Augmented
reality through wearable computing,” Presence, vol. 6, no.
4, Fall 1997.

T. Jebara, C. Eyster, J. Weaver, T. Starner, and A. Pent-
land, “Stochasticks: Augmenting the billiards experience
with probabilistic vision and wearable computers,” in Pro-
ceedings of the IEEE International Symposium on Wear-
able Computers, October 1997.

E. Foxlin and M. Harrington, “WearTrack: A self-
referenced head and hand tracker for wearable computers
and portable VR,” in Proceedings of the Fourth Interna-
tional Symposium on Wearable Computers, 2000.

S. Gibson and A. Murta, “Interactive rendering with real-
world illumination,” in Proceedings of the 11th FEurograph-
ics Workshop on Rendering, June 2000.

“Common object request broker architecture (CORBA) 2.5
specification,” Tech. Rep., Object Management Group,
2001.

E. Kidd, “XML-RPC HowTo,” Tech. Rep., 2001, xmlrpc-
c.sourceforge.net/xmlrpc-howto/xmlrpe-howto.html.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer,
“Simple object access protocol (SOAP) 1.1,” Tech. Rep. 08,
W3C, May 2000, www.w3.org/TR/SOAP.

J. Tyberghein, A. Zabolotony, E. Sunshine, T. Hieber,
S. Galbraith, M. Geisse M. Voase an S. Humpbhreys,
A. Pfaffe, M. Ewert, R. Bate, G Haussmann, and P. Wyett,
“Crystal space manual,” Tech. Rep. 19.dev, 2001, crys-
tal.sourceforge.net/docs/online/manual/.

2]

(3]

(9]

(10]

(11]



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	footer: U.S. Government work not protected by U.S. Copyright
	header: 


