Machine Learning Practice

Andrew H. Fagg
Know Your Problem and your Data

Spend time understanding:
• The problem that you are trying to solve
• The questions that you need to answer
• The meaning behind the different parts of your data
• The costs for collecting / labeling data
• The costs for making different prediction errors
Know Your Data

The meaning behind your feature vectors, especially individual features

• What are their distributions?
• How do they correlate with one-another and with the thing you are trying to predict?
• Continuous or enumerated (or both)?
• How much data do you have / can you get?

Always spend time visualizing your data
Know Your Problem

• What type of a prediction problem are you facing?
 • Supervised, Semi-supervised, Unsupervised
 • Continuous, probabilistic or categorical prediction?
Know Your Approaches

• What is the right learning approach for the job?
 – Depends on the details of your data and on the details of your predictions

• Don’t be afraid to try simple approaches
 – Quick to implement
 – Depending on the problem, this may be the solution that you need
 – Either way, you will learn useful things about your problem
The Full Machine Learning Process

• Try a few quick solutions & do a bit of hand tuning
 – Identify the right representations, right approaches, and
 (approximately) the right hyper-parameters

• Grid search + cross-validation
 – Systematic testing of hyper-parameter options
 – May need multiple grid search runs

• Statistical comparisons
 – Across hyper-parameter choices (validation data sets)
 – Across modeling approaches (test data sets)
Over-fitting

It is easy to over-fit data sets!

• Primary issue: training set size is too small given the number of parameters that we trying to fit
• Always look at the over-fitting question by varying training set size
• Some methods have mechanisms that combat over-fitting directly
• Others need the data to be structured properly
Euclidean Distance

- Euclidean distance is at the center of many ML algorithms
- However, this metric is not always meaningful
- Especially an issue when we are working in high-dimensional feature spaces
- In these cases, manifold-sensitive approaches are appropriate
 - PCA, LLE, MDS, ISOMap, tSNE
- Or, approaches that don’t focus on the full feature space:
 - Trees, Forests
Your customer/supervisor may or may not care about the details of the methods used

• Be ready to talk about the high level of your analysis
 – Specific methods / hyper-parameters are probably not important

• Show data, including intermediate results

• Be honest about what works and what doesn’t
 – Specific examples + aggregate results
 – Make clear statistical arguments
Machine Learning Practice